ข้อสอบ PAT 1 ปี 53

  • View
    722

  • Download
    0

Embed Size (px)

Transcript

  • 1. 71 (PAT 1) 6 2553 13.00 - 16.00 . 1. 2 50 (28 ) 300 1 4 25 150 2 25 150 2. - 3. 2B () 4. 5. 6. 7. () 3

2. 71 6 2553 2 13.00 - 16.00 . 1: 25 ( 1 25) 6 1. p q 1.( p q) p2.(~ p p ) q3.[( p q ) p] q4.(~ p q ) (~ p ~ q ) 3. 3 13.00 - 16.00 . 71 6 2553 2. 1. { 1, 0, 1 } xy[ x 2 + x = y 2 + y ] 2. x[ 3 x = log 3 x ] 3. xy[ ( x > 0 y 0) ( xy < 0)] xy[ ( xy < 0) ( x 0 y > 0)] 4. x[ x > 0 x 3 x 2 ] x[ ( x 0) ( x 3 < x )] 3. A ={ 1, { 1 }} P ( A) 1. P ( A) A32. P ( P ( A) )163. { {1} } P (A ) A4. { , A } P ( A)A 4. 4 13.00 - 16.00 . 71 6 25534. RA ={ x Rx2 6x + 9 4{ xR1.A =2.A ( 1, )3.A =x 7}4.A x R 2x 3 < 7}{ x R{3 x> 4}} 5. 5 13.00 - 16.00 . 71 6 25535. y1 = f ( x ) =x+1 x 1 x 1y2 = f ( y1 ) , y3 = f ( y2 ) , ... yn = f ( yn 1 ) y2553 + y2010 n = 2 , 3 , 4 , ...1.x 1 x+12.x2 + 1 x 13.x2 + 1 2x4.1 + 2x x2 x 1 6. 6 13.00 - 16.00 . 71 6 2553 6. fg f (x) =x 1 x2 4 . Dg = ( 2, ) . x > 0 1. . . 2. . . 3. . . 4. . . g( x ) =g( x ) = 0f (x) 1 x 1 7. 7 13.00 - 16.00 . 71 6 2553 7. x sin x + cos x = a sin x cos x sin 4 x ()(= b)1.1 3 a b ab 3 22.1 ab 3 a 3 b 23. 4.ab 3 a 3b a 3 b ab 38. 25 x 2 + 21 y 2 + 100 x 42 y 404 = ( 3, 1 + 1.5 y 2 4 x 2 10 8 y 32 x 25 = 02.3 y 2 2 x 2 6 8 y 8 x + 15 = 03.y 2 4 x 2 2 y 16 x 19 = 04.y 2 7 x 2 2 y 28 x 28 = 008) 8. 71 6 2553 9. A ( 3 , 1) B (1, 5) ABCDC (8 , 3) 8 13.00 - 16.00 . D (2 , 3) 1. AB DC 2. AB DC 10 2 3. A C D 9 2 24. B C D 9 210. x y y 1 log y 2 x = a 2 y = b x 1.1 (log2 b )a 22.2 (log 2 b )a3.a (log 2 b ) 24.2a (log 2 b ) 9. 71 6 255311. 72 x + 72 < 2 3 x + 3 + 3 2 x + 21.( log8 7( log9 8, log8 9 )3.( log8 9, log7 8 )4.( log9 10, log 9 8 )2.12. 9 13.00 - 16.00 .x, log8 9 )x 1 1 + 1 + a = 0 2 4 a 1. 2. 3. 4.( , 3) (3, 0) (0, 1 )(1, 3 ) 10. 10 13.00 - 16.00 . 71 6 2553 x 1 f = x 1 x13. 0 < < 2f (sec 2 )x0x 11.2.cos 2 3. 14. sin 2 tan 2 4.cot 2 a b a = i+a1 j 3 pk 2 pb b= 2 pi + 2 j + p k b 3 1.( 3, 3.( 0,3 ) 23 ) 23 , 0) 22.(4.3 ( , 3) 2p 11. 11 13.00 - 16.00 . 71 6 255315. ABC A(0, 0) B( 2, 2) C ( x , y ) (quadrant) 2 AC BC ABC 4 C 1. 2. 3. 4.x y+4=0 4x + 3 y 1 = 0 2x y 3 = 0x+ y5=016. z1 , z2 , z 3 ,... z1 = 0, 2 zn+ 1 = zn + i n = 1,2,3,... i = z111 1. 3.2.1 324.1101 12. 12 13.00 - 16.00 . 71 6 2553 17. 3+11 33 3n + 2n 2 + + + + ... 4 16 4n 1 1.20 32.29 33.31 34.40 318. R f :R Rf ( x ) = 3 x 3 , g (1) = 8 2 ( fg ) (1) 1.1 32.2 33.14.4 3g:R Rg (1) =2 3 13. 13 13.00 - 16.00 . 71 6 255319. 13 4 S, M, L XL 3 2 1.72 4252.72 55253.3 2214.3 2210020. S A , B . P ( A) = P ( A B ) + P ( A B ) . P ( A) = 0.5, P (B ) = 0.6 P ( A B ) = 0.7 P ( A B ) = 0.4 1. . . 2. . . 3. . . 4. . . S 14. 14 13.00 - 16.00 . 71 6 255321. 40 35 50 1.3:22.2:33.2 :14.1:222. A = 7 (77), 1.B< A2a 2 + b238. R f ( x ) = 3 x + 5limx4( )f x2 2 f (x)f :R R x f (1) = 5 23. 23 13.00 - 16.00 . 71 6 2553 39. R f ( x ) = 6 x + 4y = f ( x ) (2, 19)40. Ax 19 A = { 0 ,1 , 2 , 3 , 4 }f :R Rf (1) 300 41. 7 4 7 24. 24 13.00 - 16.00 . 71 6 255342. () 6060072 1 70 43. 4 2 2 4 45, 46 6 4 44. 700 4 400 2 25. 25 13.00 - 16.00 . 71 6 255345. 4 4 20 ( 1 2 3 4 5 6 7 ) 46. 221 260 (1) (2) 26. 26 13.00 - 16.00 . 71 6 2553 47. R f :R Rg:R R (ffg g )( x ) = f ( g ( x )) g ( f ( x ))x f ( x ) = x 2 1 g ( x ) = 2 x + 1 ( f 48. g )(1)a , b, c , d9x 4 dcba abcd b 27. 71 6 2553 27 13.00 - 16.00 .49. x 1, 2, 3, , 11 1 43 28 x 28. 28 13.00 - 16.00 . 71 6 255350. 2 , 3 , 4 , 5 , 6 , ... 11792281016337111544612145513 2400 ********************