10
回收 PET 自增強複合材料技術及其產品應用開發 The Development of Self-reinforced Recycled PET Composites and its Applications 吳昌謀 *1 (30%)、賴玟佑 1 (50%)、林柏均 1 (20%)、廖光陽 2 國立臺灣科技大學 1 、升暘科技有限公司 2 C.M. Wu 1 , W.Y. Lai 1 , P.C. Lin 1 , K.Y. Liao 2 Department of Materials Science and Engineering, National Taiwan University of Science and Technology 1 SUNRISING Eco-Friendly Technology Co. Ltd. 2 摘要 本文旨在開發新世代回收 PET 自增強複合材料且具有阻燃特性之製程與材 料研究技術能量,以量產型熱壓設備進行批次試量產設備建構,並導入連續式製 程創造出具量產性和低生產成本的優勢,藉由紡織技術開發回收 PET 自增強混 合包繞紗及複合織物,再進一步利用薄膜堆疊法製備複合材料並深入了解自增強 複合材料之機械物性等特性研究。結果顯示回收 PET 自增強複合材料(srrPET)拉伸強度高達 121.3 MPa ,彎曲強度高達 82.0 MPa ,衝擊吸收能量高達 1103.2 J/m 回收阻燃 PET 自增強複合材料(srPET-FR) 不僅擁有阻燃之特性且拉伸強度達 110.7 MPa,彎曲強度達 82.7 MPa,衝擊吸收能量達 852.0 J/m。針對兩種複合材 料之開孔拉伸性質,從複合材料的屈服強度和楊氏模數得知,兩種複合材料系統 皆擁有對鑽孔不敏感之特性,且栓孔強度高達 198.3 MPa 180.4 MPa。最後, 針對產業的應用性和未來新穎的環保科技,致力於永續發展的解決方案,有其市 場商機之積極意義,因此更凸顯此一材料與技術開發之其重要性。 Abstract In this study, the object is to research a new generation of recycled self-reinforced PET composites with flame retardancy and create the technology energy. The advantage of mass-production type hot pressing system and continues-processing could develop the mass production capability and low production cost. And using the textile technology to create the recycled PET commingle yarn and complex fabric. Then, the self-reinforced recycled PET (srrPET) composites were prepared by film stacking technique into composites. For the srrPET composites, the tensile strength is up to 121.3 MPa, the flexural strength and impact absorption energy are 82.0 MPa and 1103.2 J/m, respectively. Self-reinforced recycled PET (srPET-FR) composites not noly have flame retardancy properties but also have high tensile strength (110.7 MPa), flexural strength (82.7 MPa) and impact absorption energy (852.0 J/m). For the open hole tensile test, both composites systems exhibit notch insensitivity, superior ductile behavior and have the best bearing strength (198.3 MPa and 196.2 MPa). Finally, the market adaptability

回收 PET 自增強複合材料技術及其產品應用開發 收PET自增強複合材料... · PDF file以減低能源汙染及增進環境保護[1]。由於 pet 在大自然中

Embed Size (px)

Citation preview

  • PET

    The Development of Self-reinforced Recycled PET Composites and its Applications

    *1 (30%)

    1(50%)

    1(20%)

    2

    1

    2

    C.M. Wu1, W.Y. Lai

    1, P.C. Lin

    1, K.Y. Liao

    2

    Department of Materials Science and Engineering,

    National Taiwan University of Science and Technology1

    SUNRISING Eco-Friendly Technology Co. Ltd.2

    PET

    PET

    PET (srrPET)

    121.3 MPa82.0 MPa1103.2 J/m

    PET (srPET-FR)

    110.7 MPa 82.7 MPa 852.0 J/m

    198.3 MPa 180.4 MPa

    Abstract

    In this study, the object is to research a new generation of recycled

    self-reinforced PET composites with flame retardancy and create the technology

    energy. The advantage of mass-production type hot pressing system and

    continues-processing could develop the mass production capability and low

    production cost. And using the textile technology to create the recycled PET

    commingle yarn and complex fabric. Then, the self-reinforced recycled PET

    (srrPET) composites were prepared by film stacking technique into composites. For

    the srrPET composites, the tensile strength is up to 121.3 MPa, the flexural strength

    and impact absorption energy are 82.0 MPa and 1103.2 J/m, respectively.

    Self-reinforced recycled PET (srPET-FR) composites not noly have flame retardancy

    properties but also have high tensile strength (110.7 MPa), flexural strength (82.7

    MPa) and impact absorption energy (852.0 J/m). For the open hole tensile test, both

    composites systems exhibit notch insensitivity, superior ductile behavior and have the

    best bearing strength (198.3 MPa and 196.2 MPa). Finally, the market adaptability

  • and industry feasibility would be discussed.

    Keyword: Recycling, Self-reinforced composites, Commingled yarn, Flame

    retardant

    (PET)

    (

    )

    PET

    [1]

    PET

    PET

    [1, 2]

    [1, 3]

    PET [1, 4]

    PET

    2007 Pegoretti[5]

    (all-polymer composite)

    (self-reinforced composite)

    SPC (Reinforcement)

    (Matrix)

    SPC

    SPC

    /

    PE

    (PP) [6]

    (PET) [7] (PLA)

    [5]

    PP

    CurvArmordonPure

    SPC

    Curv (Hot compaction)

    Armordon Pure (Co-extrusion)

    SPC

    2006 Alcock [8]

    (constrain) (coextrusion)

    PP 30

    PP Barany

  • Karger-Kocsis [9]

    PP PP (

    ) 23

    (168 :145)

    PP 2010

    Wu [10]

    PET

    [11]

    [12, 13]Whitney [12]

    3

    Pinnell [13]

    [14-16]

    [17]

    OH

    [14,

    16, 17]

    [18]

    (Roll to

    roll)

    PET

    PET

    PET

    PET

    (mPET) PET (mPET-FR)

    226 227

    PET (rPET)

    PET (rPET-FR) 262

    259

    5500ppm 1

    (S Z)

    1

    2/2

  • 13 / 12 /

    PET

    PET

    2

    5

    (23512 MPa1 min)

    100 100 cm2

    PET 8

    1.

    (MTS 810, MTS

    Systems Corporation, Mpls. MN)

    ASTM D3039

    5 mm/min 250 mm 25 mm

    2 mm

    2.

    (AG-100 KNX,

    Shimadzu, Japan)

    ASTM D790 3.4

    mm/min 100 mm 25 mm 2

    mm 1:32

    3.

    (CPI, Atlas electric

    devices, USA) ASTM

    D256 3.4 m/sec

    63.5 mm 12.7 mm 2 mm

    2.7 mm 5.4 J

    4. (open hole)

    (MTS 810, MTS

    Systems Corporation, Mpls. MN)

    ASTM D5766

    5 mm/min 250 mm 25 mm

    2 mm 46 8 mm

    (W/D=6, 4, 3)

    5. (Pin hole)

    (MTS 810, MTS

    Systems Corporation, Mpls. MN)

    ASTM D953

    1.3 mm/min 120 mm 2 mm

    6 mm E/D=4

    W/D=234 5

    1.

    PET -

    3 3

    -

    2 PET

    121.3 MPa PET

    110.8 MPa

    91% 2

    (41.0 MPa 3.4 GPa)

    PET

  • 2.

    4 -

    5

    3

    PET

    82.0 MPa 2.8 GPa PET

    82.7 MPa 2.5 GPa

    3.

    Izod 6

    6a 6b

    PET

    6c 6d

    PET

    3

    PET

    1103.2 J/m

    PET 852.0

    J/m PET

    ()

    4.

    W/D

    ( 7)

    4 W/D

    (41.6 MPa 41.0

    MPa)(3.4 GPa 3.8 GPa)

    5

    142%

    82%

    82%

    5.

    8W/D

    ( E/D

    4) 8a

    PET W/D 5

    198.3 MPa PET

    180.4 MPa

    9

    W/D=5

    W/D=2 W/D

    PET

    PET

    PET

  • PET

    PET

    PET

    (1103.2 J/m)

    ()PET

    PET

    (Uncommingled yarn)

    ( 10)

    ( 11)

    PET

    PET

    ( 12)

    (

    )

    PET

    3R

    PET

    PET

    PET

    [19]

    PET

    PET

    (NetComposites)

    1 PET

    Figure 1 The double covered uncommingled

    yarn of rPET/mPET

  • 2 PET

    Figure 2 The manufacturing process of srrPET

    composites

    3 PET -

    Figure 3 Typical tensile stress-strain curves of

    srrPET composites

    4 PET -

    Figure 4 Typical flexural stress-strain curves of

    srrPET composites

    5 PET

    Figure 5 Typical flexural tested sample of

    srrPET composites

    6 PET

    (a) (b) PET

    (c) (d))

    Figure 6 The impact failure images for tested

    sample; srrPET composites (a) impact side

    (b)compressive side ; srrPET-FR composites (c)

    impact side (d) compressive side

    7 W/D

    Figure 7 Failure modes of tensile specimens of

    srrPET composites with different W/D ratio

  • 8 W/D- (a)

    PET (b) PET

    ( E/D=4)

    Figure 8 Typical loaddisplacement curves for

    composites with different W/D ratio (a) srrPET

    composites (b) srrPET-FR composites (E/D=4

    constant)

    9 W/D (

    E/D=4)

    Figure 9 Failure modes of pin hole tensile

    specimens of srrPET composites with different

    W/D ratio (E/D=4 constant)

    10

    Figure 10 Continues-processing

    11

    Figure 11 The composites sample after

    continues-processing

    12 PET

    Figure 12 SrrPET composites applied to canvas

  • 1

    Table 1 The specifications and mechanical

    properties of matrix and reinforcing fibers

    2 PET

    Table 2 The universal tensile properties of

    srrPET composites

    3 PET

    Table 3 The flexural and impact properties of

    srrPET composites

    4 PET

    Table 4 The open hole tensile properties of

    srrPET composites

    5 W/D

    Table 5 The tensile strength retention of

    composites with different W/D ratio after

    drilling

    [1] Awaja F., Pavel D.: Recycling of PET.

    European Polymer Journal, 41, 1453-1477

    (2005)

    [2] Merrington A.: 11 - Recycling of Plastics. in

    'Applied Plastics Engineering Handbook' (eds.:

    Kutz M.) William Andrew Publishing, Oxford,

    177-192 (2011)

    [3] Lpez M. d. M. C., Ares Pernas A. I., Abad

    Lpez M. J., Latorre A. L., Lpez Vilario J. M.,

    Gonzlez Rodrguez M. V.: Assessing changes

    on poly(ethylene terephthalate) properties after

    recycling: Mechanical recycling in laboratory

    versus postconsumer recycled material.

    Materials Chemistry and Physics, 147, 884-894

    (2014)

    [4] Karayannidis G. P., Achilias D. S.: Chemical

    Recycling of Poly(ethylene terephthalate).

    Macromolecular Materials and Engineering,

    292, 128-146 (2007)

    [5] Pegoretti A.: Trends in composite materials:

    the challenge of single-polymer composites.

    Express Polymer Letters, 1, 710 (2007)

    [6] Bledzki A., Heim H. P., Pamann D., Ries

    A.: Manufacturing of Self-Reinforced All-PP

    Composites. in 'Synthetic PolymerPolymer

    Composites' (eds.: Debes B. and Stoyko F.)

    Hanser, 719-738 (2012)

    [7] Zhang J. M., Peijs T.: Self-reinforced

    poly(ethylene terephthalate) composites by hot

  • consolidation of Bi-component PET yarns.

    Composites Part A: Applied Science and

    Manufacturing, 41, 964-972 (2010)

    [8] Alcock B., Cabrera N. O., Barkoula N. M.,

    Loos J., Peijs T.: The mechanical properties of

    unidirectional all-polypropylene composites.

    Composites Part A: Applied Science and

    Manufacturing, 37, 716-726 (2006)

    [9] Brny T., Karger-Kocsis J., Czigny T.:

    Development and characterization of

    self-reinforced poly(propylene) composites:

    carded mat reinforcement. Polymers for

    Advanced Technologies, 17, 818-824 (2006)

    [10] J. C. Chen C. M. W., F. C. Pu, C. H. Chiu.

    Fabrication and mechanical properties of

    self-reinforced poly(ethylene terephthalate)

    composites. eXPRESS Polymer Letters, 5,

    228-237 (2010)

    [11] Thoppul S. D., Finegan J., Gibson R. F.:

    Mechanics of mechanically fastened joints in

    polymermatrix composite structures A

    review. Composites Science and Technology, 69,

    301-329 (2009)

    [12] Whitney J. M., Nuismer R. J.: Stress

    Fracture Criteria for Laminated Composites

    Containing Stress Concentrations. Journal of

    Composite Materials, 8, 253-265 (1974)

    [13] Pinnell M. F.: An examination of the effect

    of composite constituent properties on the

    notched-strength performance of composite

    materials. Composites Science and Technology,

    56, 1405-1413 (1996)

    [14] Perret B., Schartel B., St K., Ciesielski

    M., Diederichs J., Dring M., Krmer J.,

    Altstdt V.: Novel DOPO-based flame

    retardants in high-performance car