27
多多多多多多多多多多多多多 Rate Constants for Multi- Channel, Multi-Well Reactions 张张张 张张张张张张

多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Embed Size (px)

Citation preview

Page 1: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

多通道多位井速率常数的计算Rate Constants for Multi-Channel, Multi-Well Reactions

张绍文

北京理工大学

Page 2: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

化学反应速率理论

碰撞理论(经典碰撞理论,轨线法,量子散射理论)

过渡状态理论(传统过渡状态理论,变分过渡状态理论)

Page 3: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

过渡状态理论的基本假设

玻恩 -奥本海默近似 反应物微观状态保持玻尔兹曼分布 不返回假定 运动分离假定

Page 4: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

化学反应速率常数的计算 正则系综速率常数的计算

传统过渡态理论

正则变分过渡态理论

TkvR

B BeQ

Q

h

TkTk /0)(

),(min)(

)(),( /)(

sTkTk

eQ

sQ

h

TksTk

s

TksvR

B B

Page 5: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

考虑到量子隧道效应时

)()()( TkTTk

Page 6: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

微正则系综速率常数的计算 传统过渡态理论

)(

)()(

Eh

ENEk

QeETEf

dETEfEkTk

TkE B /)(),(

),()()(

/

0

Page 7: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

微正则变分过渡态理论

)(

)},({min)(Eh

SENEk s

Page 8: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

隧道穿透系数的计算

BWK近似

2

1

2/1))((22

)(

x

xdxExV

m

eE

dEe

dEeET

v

TkE

TkE

B

B

0

/0

/)()(

Page 9: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Master Equation Method

Why Use Master Equation

• Calculate pressure dependence of rate constants• Calculate branching ratios of multi-channel

reactions• High accuracy

Page 10: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Single Well Multi-channel Case

B + C

D + E

F + G

A

Page 11: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

• Methodology

A B + C

E

E0

Eik(Ei)

Ej

Rij Rji

A

B+C

ni

nj

0

)(][][

jE

iijijijiji nEkdEnRnRM

dtdn

• ni is the population of reactant molecules at energy Ei.

• [M] is the concentration of bath gas.

• Rij is the rate of collision-induced excitation from Ej to Ei of the reactant molecule on collision with a bath gas molecule (Energy transfer coefficient).

• k(Ei) is the microcanonical rate constant of the reaction at energy Ei

1. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: London, 1990.

2. Klippenstein, S. J., Harding, L. B. J. Phys. Chem. 1999, 103, 9388.

3. Diau, E. W. G, Lin M. C. J. Phys. Chem. 1995, 99, 6589.

4. Robertson, S. H., Pilling, M. J., Baulch, D. L., Green, N. J. B. J. Phys. Chem. 1995, 99, 13452.

Page 12: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

j

iiijijiji nknRnREMtn )(][

dd

j

iiijijiji nknPnPEZ

tn )(

dd

Z: collision number per unit time, collision frequency, (time-1)

Pi(E,E’): probability of energy transferred per collision, (energy-1)

Page 13: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

ij

jiiiiijij PEZkJjiEPZJ

dt

;,

d Jnn

gJg unik kuni is pressure dependent thermal rate constants

gBg unik

1SJSB jiBfB ijiii ,0;/1

Page 14: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Energy Transfer Rate Coefficient

Pij=c(Ej)exp[-(Ej-Ei)/], Ei < Ej

Exponential down model

Pji f(Ei) = Pij f(Ej)

f(Ei) = [(Ei) exp(- Ei/kBT)]/Q

c(E) is normalization coefficient; is energy transfer constant; f(E) is distribution function; (E) is density of state; Q is partition function.

E

Ei

Ej

Rij Rji

1d),(0

iji EEEP

Page 15: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Microcanonical Rate Constant

)(

)},({min)(Eh

SENEk

R

GTSs

NGTS(E,S) is the sum of states of the Generalized Transition State (GTS).

R(E) is the density of states of the reactant.

1. Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. J. Phys. Chem. 1980, 84, 1370.2. Hase, W. L. Acc. Chem. Res. 1998, 31, 659.3. Forst, W. Theory of Unimolecular Reactions; Academic: London, 1973. 4. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics. Theory and Experiment; Oxford: New York, 1996.5. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: London,

1990.

Page 16: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Rate Constants for Multi-channel Reaction

B + C

D + E

F + G

A

j

iiijijiji nknRnREMtn )(][

dd

i

iij

ijijiji knnRnREMtn )(][

dd

Sum over channels

Page 17: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Rate Constants for Multi-Well Multi-channel Reaction

Page 18: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

),...,()()()()()()(

)()()()()(d)(),(d

d0

'''

MIiEnEknnEfEkKEnEk

EnEkEnEkEZnEEnEEPZt

En

ipimRidiRiidi

M

ijjij

M

ijijiiE ii

i

i

1. J. A. Miller, S. J. Klippenstein, S. H. Robertson, J. Phys. Chem. A 2000, 104, 7525-7536

2. S. J. Klippenstein, J. A. Miller, J. Phys. Chem. A 2002, 106, 9267-9277

Z: collision number per unit time, collision frequency, (time-1)

Pi(E,E’): probability of energy transferred per collision, (energy-1)

Page 19: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Pi(E’,E) fi(E) = Pi(E,E’) fi(E’)

kij(E)j(E)=kji(E)i(E)

M

IiE idiRimR

M

IiE idi

R

ii

dEEfEkKnndEEnEkt

n00

)()()()(d

d

RmB nnn

Page 20: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

wt

wG

d

d

N

jjj

t wggetw j

0

)0()(

Page 21: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Solution to the Master Equation

• Finding the eigenvalue and eigenvectors ?

• Solving the stiff ordinary differential equations ?

Page 22: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000

Pressure (Torr)

p

Branching fraction of product (stiff ODE results)

C2H5+O2=C2H4+HO2 的产物产率

实验 理论

Page 23: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

Master Equation Study of HMX decomposition

H

O

H

N

H

O

N

H

OO

N

NN

N

H

O

H

N

O

HH

NO

O

H H

H HN

N

O O

O O

N N

H H

N N

O O

N

H H

H

H

H

H

H

O

H

N

N

N

N

O

O

N

N

H

N

H

O

O

O

O

N

O

O

O

N+I

II

P

Page 24: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

0

10

20

30

40

50

Reaction Coordinate

E (

kcal

/mol

)

NO2 Fission (44.17 kcal/mol)

HONO Elimination (47.29 kcal/mol)

Potential energy profile of the HONO elimination and NO2 fission chnnels

Page 25: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3 4

log{P/Torr}

log{k(T,P)/s

-1}

500 K800 K1000 K1500 K

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3 4

log{P/Torr}

log{k(T,P)/s

-1}

500 K800 K1000 K1500 K

Pressure dependent rate constants

a b

NO2 fission HONO elimination

Page 26: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-3 -2 -1 0 1 2 3 4

log{P/Torr}

log{kNO2 (T)/k

HONO (T)} 500 K

800 K1000 K1500 K

Branching ratios vs pressure

Page 27: 多通道多位井速率常数的计算 Rate Constants for Multi-Channel, Multi- Well Reactions 张绍文 北京理工大学

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

400 800 1200 1600

T/K

log{k

NO2(T)/k

HONO(T)}

0.005 Torr0.01 Torr0.05 Torr1 Torr10 Torr1000 TorrHigh pressure lim it

Branching ratios vs temperature