40

体 - rist.u-tokai.ac.jp · O O O O ClH3N OR2 O R1 + Et3N refl., 14 h, CH3CN HO O N H OR2 O O O OR1 sat. NaCO3 aq CH3CN, 50°C, 2 h HO N H OR2 O O R1 …

  • Upload
    vandan

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • N-

    The Method for the Preparation of N-lactoyl Amino Acid Ester by Using Ring-opening Reaction of Lactide with Amino Acid Ester

    Mikio WATANABE (Research Institute of Science and Technology, Tokai University Department of Chemistry, School of Science, Tokai University)

    Yumiko SHIMA (Department of Chemistry, School of Science,

    Tokai University)

    Keywords: Lactide, amino acid ester derivatives, ring-opening reaction

    Abstract

    Depsipeptides are naturally occurring materials and important as Antibacterial materials. We have reported that the ring-opening reaction of lacide with amines proceeded smoothly followed by hydrolysis to give corresponding lactic acid amides in high yields. [4]

    We described here the method for the preparation of condensation product of lactic acid with amino acid ester derivatives by utilizing the ring-opening reaction followed by hydrolysis.

    It was found that when excess amount of amino acid derivatives were used in this ring-opening reaction, the ring-opening products reacted excess amino acid to afford N-lactoyl amino acid derivatives without hydrolysis step.

    1.

    [1], [2], [3](a), (b), (c)

    4

  • D, L- , D-, L-3~6 1

    [4]

    N- N-

    2

    2a

    30 L-(-)-1 6 (S)-(S)-1-((2--2-))-1--2- 2-3a 85%14 94 3a 3a

    1%

    502 65(S)- 2-(2-)4a (scheme 1)

    L- L-

    2b 30 L-L-(-)-24 (S)- 2-((S)-2-(((S)-2-)))-3-3b 93

    N-

    5

  • O

    OO

    OClH3N

    OR2

    O

    R1

    +Et3N

    refl., 14 h, CH3CNHO

    ONH

    OR2

    O

    O

    O

    OR1

    sat. NaCO3 aq

    CH3CN, 50C, 2 h

    HONH

    OR2O

    O

    R1

    a: R1=H, R2=C2H5

    b: R1= Bn, R2=C2H5

    c: R1=NH

    N

    CH2, R2=CH3

    1 2 3

    4

    scheme 1

    3b 50

    (S)- 2-((S)-2-)-3- (4b64% L-

    L-(2c1 2c 2 30 L-1 6 (S)- 2-((S)-2-(((S)-2-)))-3-(1H--5-)3c 34%

    8 51

    N-

    6

  • 97% 3c 3c

    50 1.5 4(S)- 2-((S)-2-)-3-(1H -5-)4c3c

    [1]

    3 4

    O

    OO

    OClH3N

    R2

    O

    R1

    +

    1 2

    2 HO NH

    OR2O

    O

    R1

    4

    Et3N

    refl., CH3CN

    scheme 2

    a: R1=H, R2=Et

    b: R1= Bn, R2=Et

    c: R1=NH

    N

    CH2, R2=CH3

    N-

    7

  • 4 2a 4 30 1 L-(-)- 40

    90%(scheme 2)

    L-(-)- 4 2b 4 30 L-L-(-)- 70

    4b 79%L-(-)- 6 2b 4b 89%

    2c 1 80 4c 32

    N-

    8

  • L-(-)-

    N-L-(-)- 2 1 N-

    -

    3.

    (S)-(S)-1-((2--2-))-1--2- 2-3a 50mL 0.211 g(1.51mmol) 4mL 0.1594g(1.58mmol) 4mL 30 L- 0.145g(1.01mmol) 4mL 14 10% pH 2 10mL 30mL 6

    NMR (S,S)-2--N-() 3a 0.2346g ( 94%)

    1H NMR (500MHz, CDCl3) (ppm) = 1.30(3H, t, J =7.1Hz), 1.54(6H, d, J =7.0Hz), 4.02(1H, dd, J =4.7Hz, 12.8Hz), 4.08(1H, dd, J =5.2Hz, 13.4Hz), 4.24(2H, q, J =7.2Hz), 4.39(1H, q, J = 6.9Hz), 5.33(1H, q, J =6.9Hz), 6.62(1H, s)

    13C NMR (125MHz, CDCl3) (ppm) =14.1, 20.9, 40.9, 61.6, 68.4, 170.0, 175.4

    (S)- 2-(2-)4a 100mL 50 3a 2.346g(9.49mmol) 40mL 30mL 2 10% pH 3 50mL 3

    (S)-N-4a1.144g ( 65%)

    N-

    9

  • 1H NMR (500MHz, CDCl3) (ppm) = 1.29(3H, t, J =7.2Hz), 1.46(3H, d, J =6.9Hz), 4.03(1H, dd, J =5.4Hz, 10.8Hz), 4.09(1H, dd, J =5.5Hz, 10.8Hz), 4.23(2H, q, J =7.2Hz), 4.31(1H, q, J = 6.9Hz)

    13C NMR (125MHz, CDCl3) (ppm) = 14.1, 20.9, 40.9, 61.6, 68.4, 170.0, 175.4

    L-(-)- 100mL 5.592g(40.1mmol) 10mL 4.069g(40.2mmol) 20mL 30 L- 1.445g(10.0mmol) 4mL 40 10cm TLC 4a 2.961g ( 90%) (S)- 2-((S)-2-(((S)-2-)))-3-3b

    50mL L- 0.231g(1.00mmol) 4mL 0.108g(1.1mmol) 4mL 30 L- 0.145g(1.0mmol) 4mL 24 10% pH 1 10mL 30mL 4

    (S,S)-2--N-() 3b 0.313g 3b

    1H NMR (500MHz, CDCl3) (ppm) = 1.26(3H, t, J =7.2Hz), 1.38(3H, d, J =7.0Hz), 1.47(3H, d, J =6.9Hz), 3.14(1H, dd, J =5.5Hz, 13.9Hz), 3.19(1H, dd, J =5.8Hz, 13.9Hz), 4.19(2H, q, J = 7.2Hz), 4.30(1H, q, J =7.0Hz), 4.84(1H, dt, J =5.7Hz, 7.9Hz), 5.24(1H, q, J =6.9Hz), 6.49(1H, d, 7.4Hz), 7.10-7.31(5H,m)

    13C NMR (125MHz, CDCl3) (ppm) = 14.1, 17.8, 20.2, 37.8, 52.6, 61.8, 66.8, 71.4, 127.3, 128.6, 129.4, 169.3, 171.2, 174.2

    N-

    10

  • (S)- 2-((S)-2-)-3- (4b 100mL 50

    3b 0.305g (0.90mmol) 4mL 3mL 2 10% pH 3 50mL 3

    (S)-N- 4b 0.138g ( 64%) 1H NMR (500MHz, CDCl3) (ppm) = 1.25(3H, t, J =7.1Hz), 2.71(3H, d, J =6.9Hz), 3.10(1H, dd, J =6.3Hz, 13.9Hz), 3.18(1H, dd, J =5.9Hz, 13.9Hz),4.18(2H, q, J =7.2Hz), 4.21(1H, q, J =6.9Hz), 4.86(1H, dt, J =6.1Hz, 8.2Hz), 6.88(1H, d, J =7.2Hz), 7.11-7.30(5H, m)

    13C NMR (125MHz, CDCl3) (ppm) = 14.1, 21.0, 38.0, 52.7, 61.6, 68.3, 127.1, 128.5, 129.3, 135.7, 171.6, 174.2

    L-(-)- 100mL L- 0.923g (4.02mmol) 4mL 0.408g (4.0mmol) 4mL 30L- 0.145g (1.0mmol) 4mL 70 10cm

    41 4b 0.200g ( 79%) (S)- 2-((S)-2-(((S)-2-)))-3-(1H--5-)3c

    50mL L- 0.243g(1.0mmol) 2mL 0.202g(2.0mmol) 4mL 30 L- 0.145g(1.01mmol) 4mL 8 51 10cm TLC

    (S,S)-2--N-() 3c 0.303g 97%) 3c

    N-

    11

  • 1H NMR (500MHz, CDCl3) (ppm) = 1.52(3H, d, J =6.9Hz), 1.53(3H, d, J =6.9Hz), 3.10(1H, dd, J =4.5Hz, 5.5Hz), 3.20(1H, dd, J =4.5Hz, 6.8Hz) 3.68(3H, s), 4.44(1H, q, J =7.0Hz), 4.75(1H, dt, J =5.2Hz, 7.2Hz), 5.28(1H, q, J =6.9Hz), 6.85(1H, s), 7.63(1H, s), 8.08(1H, d, J = 7.4Hz)

    13C NMR (125MHz, CDCl3) (ppm) = 20.1, 20.4, 20.7, 28.7, 52.4, 67.4, 71.1, 115.7, 135.4, 170.2, 171.3, 174.0

    (S)- 2-((S)-2-)-3-(1H -5-)4c 50mL 50

    3c 0.291g (0.93mmol) 7mL 3mL 1 10mL 30mL 3 (S)-N- 4c 0.008g ( 4%)

    1H NMR (500MHz, D2O) (ppm) = 1.14(3H, d, J =6.9Hz), 2.98(1H, dd, 8.4Hz, J =14.9Hz), 3.08(1H, dd, J = 5.4Hz, 14.9Hz), 3.64(1H, s), 4.11(1H, q, J =6.9Hz), 4.61(1H, dd, J =5.4Hz, 8.4Hz), 6.86(1H, s), 7.59(1H, s)

    13C NMR (125MHz, D2O) (ppm) = 19.5, 28.0, 48.8, 53.1, 67.5, 117.0, 133.9, 135.1, 172.8, 177.4

    L-(-)- L- 50mL L- 0.9772g(4.04mmol) 2mL 0.8140g(8.04mmol) 4mL 30 L- 0.1441g(1.00mmol) 4mL 80 51 10cm ( 11 4c 0.152g ( 32%) 4.

    [1] Fernando Albericio, Klaus Burger, Javier Ruiz-Rodriguez, and Jan Spengler, Org. Lett., 33, 3413-21 (1999).

    N-

    12

  • [2] Fernando Albericio, Klaus Burger, Javier Ruiz-Rodriguez, and Jan Spengler., Org.Lett., 2005, 7, 4

    [3] Brockmann. H; Schmidt-Kastner, G, Chem. Ber., 1955, 88, 57 (a) B. Dietrich, J. M. Lehn, and J. P. Sauvage, J, Chem. Soc., Chem. Commum., 1973, 15 (b) S. Akabori and T. Yoshii, Tetrahedron Lett., 1978, 4523 (c) , , , , , 1984

    [4] Mikio Watanabe and Yumiko Shima, Proceedings of Tokai University Research Institute of Science and technology, 33, 34~41(2014)

    N-

    13

  • Formation of a Double Layer-Like Potential Structure associated with a Langmuir Caviton

    Takao TANIKAWA (Research Institute of Science and Technology, Tokai University)

    Keywords: double layers, Langmuir cavitons, resonance absorption, microwave-plasma system

    Abstract

    A mechanism of generating a double layer-like potential structure at the location of a density cavity

    created by an intense localized electron plasma oscillation (caviton) is experimentally investigated in

    microwave-plasma interaction systems. Upon the injection of the microwave pulse into an non-uniform

    plasma from the lower density side, an intense electron plasma wave (EPW) is resonantly excited at the

    critical layer. The ponderomotive force associated with this inherently localized EPW expels electrons out of

    the resonance region, raising the potential there almost instantaneously. This results in the acceleration of

    ions in this region, depleting the ions there. In this way, a negative potential dip is formed near the original

    resonance layer in the time scale of 1/fpi, where fpi is the ion plasma frequency. It appears that this

    potential dip repels background electrons, causing the expansion of the negative potential region. This

    process eventually leads to the formation of a double layer-like potential structure. The observed particle

    distribution functions are consistent with the observed potential structure. An ion phase-space hole may have

    been generated following the formation of a caviton in our experiments. One-dimensional electrostatic

    particle-in-cell computer simulations have been carried out in order to understand our experimental results.

    1.

    Figure 1. Schematic diagram of the Large Caviton Device (LCD).

    14

  • (Langmuir

    caviton)1970 [1][2][3, 4]

    [5 - 9]

    k

    [10]

    collapse[1, 11][12 - 14]

    [15]

    dc

    Table 1. Typical Experimental Parameters

    Background Argon Plasma

    n ~ 1011 cm3

    Te ~ 6Ti ~ 1.5 eV

    D ~ 3103 cm

    L nc (n/z)1 = 50 ~ 100 cm = (1.7 ~ 3.5)104 D

    pn ~ 3104 Torr

    en/pe ~ 4104

    cs ~ 1.9105 cm/s

    Microwave Pulse

    f0 = 0/2 = 2.8 GHz (for LCD)

    = 3.0 GHz (for LSSC)

    80 kW < P0 < 500 kW (for LCD)

    0 kw < P0 60 kW (for LSSC)

    trf = 0.15 ~ 1.2 s

    Figure 2. Schematic diagram of the Large Space Simulation Chamber (LSSC).

    15

  • [16]

    2.

    UCLALarge Caviton Device (LCD)

    (Fig. 1) JAXA

    Large Space Simulation Chamber

    (LSSC) (Fig. 2) LCD

    ~400 kHz

    ~15 kW

    LSSC

    120

    dc

    3 ~ 10 ms

    Table 1

    2

    2

    (P0) LCD

    Figure 3. Resonance absorption of an electromagnetic (em) wave by a non-uniform plasma.

    Figure 4. Axial profiles of the intensity of oscillating electric fields associated with the incident microwave (designated as EM wave) and the excited electrostatic wave (designated as ES wave) in the evanescent region of the incident microwave.

    16

  • 80 kW < P0 < 500 kW

    LSSC

    P0 60 kW

    2

    [17,18]

    trf

    3.

    pe

    0

    ne ~ 11011 cm3

    (large amplitude

    electrostatic Electron Plasma Wave

    (EPW)) Fig. 3

    [19] EPW

    Fig. 4

    rf

    (ES Wave)

    (EM Wave)

    (z ~ 55 cm)

    Figure 5. Profiles of the plasma space potential developed around the location of a caviton measured at ~0.5 s after the termination of the microwave pulse of duration trf. Each trace is vertically displaced for clear presentation. The peak power of the incident microwave pulse was ~160 kW. The plasma space potential was determined from a full I-V characteristics of a cold Langmuir probe. The density profile for the case of trf 0.75 s is shown in the upper frame.

    17

  • 2

    EPW

    Fig. 5 trf

    z

    p ( () ()) trf

    Fig. 6 p trf 0.45 s

    trf 0.7 s

    trf p P0

    Fig. 7

    p P0

    3.5 cm

    20 s (Fig. 8)

    Figure 7. p versus the peak power of the incident microwave pulse, P0. The duration of the pulse, trf, was ~1.2 s.

    Figure 6. Depth of the negative potential well, p versus the duration of the incident microwave pulse, trf. The peak power of the incident microwave pulse was ~150 kW.

    18

  • 1.2 s

    t = 20 s

    v-x

    v = 3.5 cm / (20 1.2) s = 1.9 105 cm/s

    ~

    Fig. 9

    [20]

    EPW

    transit-time-damping [21]

    4.

    1

    Figure 8. Possible observation of the generation of an ion phase-space hole associated with a caviton. The traces shown here are the I-V characteristic curves of a retarding-grid ion energy analyzer measured at t = 4 s and 20 s after the microwave injection (trf = 1.2 s). The energy analyzer was located at 3.5 cm from the caviton in the higher density side of the plasma.

    Figure 9. Generation of an ion phase-space hole associated with a caviton (model). Due to the rapid density modification, the population depletion occurs in the ion phase-space (the 1st and 2nd frames). Eventually, an ion hole is generated (the 3rd frame). It moves upward with the ion acoustic speed cs (the 4th frame). Because the total number of ions is conserved, a soliton-like high-density region associated with the ion hole is also generated and moves with cs (the 3rd and 4th frames).

    19

  • 1

    d = 256 D

    x

    n = nc (1 + x / L )

    nc L = 500 D

    () / () = Te / Ti = 10

    (Fig. 10)() / () = M / m = 900

    0 E02/(2nc Te ) = 0.01 0 E0

    5%

    5,000

    5,000

    pe t = 220 Fig. 11 EPW

    0 E2/(nc Te ) = 3.3--

    pe t = 320 (Fig. 12)

    Fig. 9

    Figure 10. Initial conditions used in our one-dimensional (1-D), electrostatic (es), particle-in-cell (PIC) computer simulations.

    20

  • 5.

    1

    [22]

    Figure 11. Profiles of the plasma space potential (averaged over the ion plasma period), the oscillating electric field strength (averaged over the electron plasma period), the instantaneous electron and ion densities, and the instantaneous electron and ion phase-space plots at pe t = 220.

    21

  • Large Caviton Device

    UCLA A. Y. Wong

    Large Space Simulation

    Chamber

    JAXA

    [1] V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62,

    1745 (1972) [Sov. Phys. JETP 35, 908

    (1972)].

    [2] A. Y. Wong, in Laser Interaction and

    Related Plasma Phenomena, edited

    by Helmut J. Schwarz and Heinrich

    Hora (Plenum, New York, 1977), Vol.

    4B, pp. 783 840.

    [3] E. J. Valeo and W. L. Kruer, Phys. Rev.

    Lett. 33, 750 (1974).

    [4] K. G. Estabrook, E. J. Valeo, and W. L.

    Kruer, Phys. Fluids 18, 1151 (1975).

    [5] , 68, 148 (1992).

    [6] , , , 81, 94 (2005).

    [7] A. Y. Wong, P. Y. Cheung, and T. Tanikawa, in Statistical Physics and Chaos in Fusion Plasmas, edited

    by C. W. Horton, Jr. and L. E. Reichl (Wiley, New York, 1984), pp. 131 153.

    [8] M. V. Goldman, Rev. Mod. Phys. 56, 709 (1984).

    [9] D. F. DuBois, H. A. Rose, and D. Russell, J. Geophys. Res. A95, 21221 (1990).

    [10] T. Tanikawa, A. Y. Wong, and D. L. Eggleston, Phys. Fluids 27, 1416 (1984).

    [11] A. Y. Wong and P. Y. Cheung, Phys. Rev. Lett. 52, 1222 (1984).

    [12] P. Y. Cheung, A. Y. Wong, C. B. Darrow, and S. J. Qian, Phys. Rev. Lett. 48, 1348 (1982).

    [13] P. Y. Cheung, A. Y. Wong, T. Tanikawa, J. Santoru, D. F. DuBois, H. A. Rose, and D. Russell, Phys. Rev.

    Lett. 62, 2676 (1989).

    [14] T. Tanikawa and A. Y. Wong, Radiophys. Quantum Electronics 37, 596 (1994).

    [15] T. Tanikawa and A. Y. Wong, in Double Layers and Other Nonlinear Potential Structures in Plasmas,

    edited by R. W. Schrittwieser (World Scientific, Singapore, 1993), pp. 309 314.

    [16] (C) (2) 0768051519951996

    Figure 12. Profiles of the plasma space potential (averaged over the ion plasma period), the instantaneous electron and ion densities, and the instantaneous electron and ion phase-space plots at pe t = 320.

    22

  • [17] K. Takayama, H. Ikegami, and S. Miyazaki, Phys. Rev. Lett. 5, 238 (1960).

    [18] R. L. Stenzel, H. C. Kim, and A. Y. Wong, Radio Sci. 10, 485 (1974).

    [19] V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Pergamon, Oxford,

    1970).

    [20] A. Hasegawa and T. Sato, Phys. Fluids 25, 632 (1982).

    [21] A. Y. Wong, P. Leung, and D. Eggleston, Phys. Rev. Lett. 39, 1407 (1977).

    [22] N. Sato, R. Hatakeyama, and N. Sato, J. Phys. Soc. Jpn. 64, 4196 (1995).

    23

  • Synchronization of Digital Camera and Event in Windows and Linux Environment

    Naoki Yokoyama (Research Institute of Science and Technology)

    Keywords: Digital Camera, Free fall of steel ball, Synchronization

    Abstract Suitable synchronization between camera and free fall event was discussed. Digital camera and event trigger were both controlled by PC. Under semi real-time OS such as Linux, it was much better method to synchronize camera and event. 1.

    USB Windows MacOS PC USB PC SDK(Software Development Kit)Canon EOS EDSDK SDK PC Canon EDSDK USB

    EDSDK - PC Windows Linux

    2. 25.5mm

    PC Fig. 1

    Vcc Fig. 2 28V Fig.1 I/F I/O

    Fig. 1 Schematic of solenoid driver circuit

    Vcc

    24

  • Fig.2

    EDSDK I/F

    DIOInterface PEX-285122Windows Linux Linux

    3. EDSDK Fig. 3-12 Fig. 3-1 1/1600 3-2 1/3200

    Fig. 3-1 Experimental Result 1 SS=1/1600 Fig. 3-2 SS=1/3200

    115mm EDSDK EDSDK

    (ss=1/1600) Fig. 4

    Fig. 2 Schematics of solenoid driver

    25

  • Fig. 4 Experimental result in case of Reverse synchronization ss=1/1600

    Drop Zitter

    EDSDK Takepicture commandOver head

    Drop Zitter

    EDSDK Takepicture commandOver head

    Fig. 5 Difference of effective delay time between Normal Trigger and Reverse Trigger

    26

  • Fig.4 Fig. 5 Normal Trigger CPU delay time Zitter Zitter EDSDK Fig.4

    Fig. 3-1 EDSDK EDSDK Digital I/O EDSDK USB Zitter Digital I/O

    TLP621 Fig. 6

    Fig. 6 Experimental Results from left to right delay time was varied

    Fig. 3-2 Fig. 4

    Fig. 7 Fig. 6

    27

  • Fig. 7 Experimental Results in case of small delay time Fig. 7

    Table 1 EOS Kiss Digital N 256ms 1)

    4. PC USB SDK

    256ms

    PC

    28

  • Table 1 EOS Kiss Digital Experimental Results

    URL

    [1] http://www.h5.dion.ne.jp/~p-taro/kizai/kamera/reri-zutimragu.html

    [2] http://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--

    +%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+-

    -%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+-

    -%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+-

    -%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-

    1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--

    +%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--

    +%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3E

    exp # (m) (s)(ms)

    (ms)

    123 432.5 553 0.121 0.157 100 256.84 443 553 0.110 0.150 110 259.85 465 553 0.088 0.134 120 254.06 468 553 0.085 0.132 130 261.77 487.5 553 0.066 0.116 140 255.68 497.5 553 0.056 0.106 150 256.49 502 553 0.051 0.102 160 262.0

    10 517 553 0.036 0.086 170 255.711 523 553 0.030 0.078 180 258.212 532 553 0.021 0.065 190 255.513 534 553 0.019 0.062 195 257.314 532 553 0.021 0.065 197 262.515 538 553 0.015 0.055 199 254.316 535 553 0.018 0.061 202 262.617 543 553 0.010 0.045 210 255.218 545 553 0.008 0.040 220 260.419 550 553 0.003 0.025 230 254.720 550 553 0.003 0.025 240 264.721 553 553 0.000 0.000 250 250.022 551.5 553 0.002 0.017 245 262.523 552 553 0.001 0.014 245 259.324 552.5 553 0.001 0.010 247 257.125 552 553 0.001 0.014 243 257.326 552 553 0.001 0.014 240 254.3

    EOS Kiss Digital

    29

    http://www.h5.dion.ne.jp/%7Ep-taro/kizai/kamera/reri-zutimragu.htmlhttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3Ehttp://cweb.canon.jp/pls/webcc/wc_show_contents.EdtDsp?i_cd_pr_catg=%3C%21--+%25PRODUCT_CATG_CODE%25+--%3E&i_cd_pr=%3C%21--+%25PRODUCT_CODE%25+--%3E&i_cd_qasearch=Q000009125&i_cl_form=%3C%21--+%25FORM_CL%25+--%3E&i_tx_search_pr_name=%3C%21--+%25PRODUCT_SEARCH_WORD%25+--%3E&i_tx_contents_dir=%2Fe-support%2Ffaq%2Fanswer%2Feosd&i_tx_contents_file=9125-1.html&i_tx_keyword=%3C%21--+%25KEY_WORD%25+--%3E&i_tx_qasearch_url=%3C%21--+%25QA_SEARCH_URL%25+--%3E&i_cd_transition=%3C%21--+%25TRANSITION_CODE%25+--%3E&i_fl_edit=%3C%21--+%25EDIT_FLAG%25+--%3E

  • Measurement and evaluation of melatonin suppression irradiance emitting from different light sources in a domestic lighting condition

    Shu TAKESHITA (Research Institute of Science and Technology, Tokai University)

    ,,

    Keywords: blue light, circadian rhythm, melatonin suppression irradiance

    Abstract Melatonin suppression irradiances emitting from incandescent lamp, fluorescent lamps and LED lamps

    in a domestic lighting condition were measured and evaluated. Melatonin suppression irradiance of LED lamps at a position of eye measured are about 30 % higher than that of fluorescent lamps which correlated colour temperature as same as LED lamp. This phenomenon is caused by the differences of total flux of light source. If illuminance at a position of eye produced by LED lamp is as same as by fluorescent lamp, melatonin suppression irradiance is as same as irradiance produced by fluorescent lamp. Melatonin suppression irradiance depends on the correlated colour temperature. The high correlated colour temperature light source produces high melatonin suppression irradiance, clearly. 1.

    LED LED SSL 2013 43 %2020 100 % 1) LED LED

    2014 LED EU 2012 10 2) LED LED LED

    2

    30

  • 2.

    LED

    2)

    1

    E26

    LED

    size-JPN 3)

    89 cm

    1

    2

    LED

    2 60

    LED

    N 2004-2006

    30

    60W

    1)

    60W

    LE

    1

    113 cm

    Fig

    F

    ED

    6 120

    S2440

    gure 2 Ligh

    Figure 1 sch

    18 80

    113 cm

    ht sources use

    ematic layou

    LED

    m

    ed for this res

    ut of this resea

    2

    search

    arch.

    31

  • NIST

    D

    DIN4)

    Fig

    T10p

    4

    Fig

    gure 3 Phot

    pJIS AA

    30

    gure 4 Mela

    tograph of th

    atonin suppre

    he dining eval

    ssion spectru

    luated.

    um defined by

    3

    y DIN.

    32

  • 3.

    LED

    LE 30 %

    D

    500 l 6

    Figur

    ED

    LED

    lx LED

    5)

    re 5 Spectra

    L

    31 %

    al irradiance

    5

    1LED

    11

    measured at

    1

    %

    the position

    1

    LED

    of eye in the d

    LED

    D

    dining.

    6

    33

  • ipRG

    Tablemelat

    LED

    LED

    LED1)

    GCs

    e 1 Correlatonin suppre

    D

    D

    D

    Figure 6 suppressio

    ated colour tession irradia

    (K

    28328626247847649595

    Relationshon irradiance

    emperature, nce measured

    K)

    (lm

    31 65 29 84 11 99 56

    hip between e measured at

    total flux, hod at the dinin

    1) m)

    810725810780810695810

    correlated ct the position

    orizontal lumng coursed by

    (lx)

    238.0 180.0 240.0 191.3 230.0 170.0 239.0

    colour tempn of eye in the

    minance, corny different lig

    (lx)

    190.150.195.153.190.142.198.

    erature and dining.

    nea irradiancght sources.

    (W/m.7 0.0.7 0.0.0 0.0.3 0.0.1 0.0.0 0.0.1 0

    d melatonin

    ce and

    m2) 05047 03092 04343 06884 08437 08243

    0.1073

    34

  • 59 1 Grotthus-Draper ipRGCs 59

    ipRGCs

    4. LED

    LED 30 % LED LEDLED

    ipRGCs

    ipRGCs

    5. [1] : 2020. http://www.jlma.or.jp/information/LV2020_web.pdf [2] : . http://www.jlma.or.jp/information/20130125UNEP_Suigin.pdf [3] : size-JPN 2004-2006 http://warp.da.ndl.go.jp/info:ndljp/pid/1368617/www.meti.go.jp/press/20071001007/20071001007.html [4] DIN V5031-100: 2009, Strahlungsphysik im optischen Bereich und Lichttechnik - Teil 100: ber das

    Auge vermittelte, nichtvisuelle Wirkung des Lichts auf den Menschen - Gren, Formelzeichen und Wirkungsspektren.

    [5] : 96(10)713-7162012.

    35

  • fix-all-but-cover4.papers-rev2.pdfnumbered-1.2015numbered-2._Tanikawa_Feb 2015_ver02numbered-3.fixed-final-vol341. 2. 3. 4.

    numbered-4.2013R3