15
重重 SUSY 重重重重重重重重重重 ?() 1. 重重 重重重重 重重重重重重重重重重重 SUSY、 2. 重重 重重重重重重重重重重重 重 重 重重 SUSYLHC 3. 重重 重重重重重重重重重重 SUSY 重重 重重 ( 重重重重重重重重重重重重重 ) 重重重 BICEP2 重重重重重重重重重重重重[Harigaya, Ibe, Ichikawa, Kaneta, S.M., arXiv:1403.5880]

重い SUSY ?(その動機と暗黒物質)

  • Upload
    diep

  • View
    132

  • Download
    2

Embed Size (px)

DESCRIPTION

最近の BICEP2 の影響に ついて も言及する! [Harigaya, Ibe, Ichikawa, Kaneta, S.M., arXiv:1403.5880].  重い SUSY ?(その動機と暗黒物質). 松本 重貴  ( カブリ 数物 連携宇宙研究機構 ). 重い SUSYの定義、そしてその動機について 重いSUSYの予言する暗黒物質とLHC 実験 重いSUSYのまとめと今後の展望. 1/11. 重いSUSYについて. 全て のスカラー粒子(ヒッグスを除く)が 10—100TeV と重い SUSY 模型 ↓ - PowerPoint PPT Presentation

Citation preview

重い SUSY ?(その動機と暗黒物質)

1. 重いSUSYの定義、そしてその動機について

2. 重いSUSYの予言する暗黒物質とLHC実験

3. 重いSUSYのまとめと今後の展望

松本 重貴  ( カブリ数物連携宇宙研究機構 )

最近の BICEP2 の影響についても言及する!  [Harigaya, Ibe, Ichikawa, Kaneta, S.M., arXiv:1403.5880]

1/11

全てのスカラー粒子(ヒッグスを除く)が 10—100TeV と重いSUSY 模型                      ↓     フェルミオニック超対称粒子は? 様々な可能性

10-100

Mass (TeV)

0.1-1

Scalars

GauginosHiggsinos

Scalars

Gauginos

HiggsinosScalarsGauginos

Higgsinos

Scalars

GauginosHiggsinos

Split-SUSY Pure Gravity Focus point Super-split

[N. Arkani-Hamed & S. Dimopoulos, JHEP 0506, 2005]

[M. Ibe, T. Moroi, & T. T. Yanagida, PLB644, 2007]

[J. Feng, T. Moroi, and K. Matchev, PRD61, 2000]

もっと重かった これ中心にいく 横崎君トーク

[There must be several papers, since long ago.]

≒ SM

重いSUSYについて

2/11

Gluinos

~ 現象論の観点からの重い SUSY を考える動機 ~Mass

(TeV)

100

10

1

0.1

BinoWinos

Gravitino,Scalars,Higgsinos

Higgs

Phenomenological advantages

• Higgs mass of 126GeV• SUSY Flavor/CP prob.

relaxed• Dark matter candidate• No gravitino problem• Compatible w/ leptogenesis• GUT works ( 永田君トーク)標準模型 vs. 重い SUSY (PGM)Higgs massFlavor/CPGravitinoDark matterCoupling U.Naturalness

○標準模型 重い SUSY

◎◎ ○○ ○

◎◎△

×××

重いSUSYについて

3/11重いSUSYについて

Gluinos

~ 模型構築の観点からの重い SUSY を考える動機 ~Mass

(TeV)

100

10

1

0.1

BinoWinosHiggs

MSSM SUSYNo singlets →SUGRA interactions

[Inoue, Kawasaki,

Yamaguchi, Yanagida, 1992]

Gravitino,Scalars,Higgsinos

Minimal (Simplest) Setup!

[Okada, Yamaguchi, Yanagida, 1990; Ellis, et. al., 1990]

[H.Murayama, et. al., 1998;

L.Randall, et. al., 1999][Hisano, S.M., Nagai, Saito, Senami, 2007 (TH);

T. Moroi, et. al., 1999 (NT),]

= A conjecture on SUSY breaking mediation[Ibe, Moroi, Yanagida (2007), Ibe, Yanagida (2011), Ibe, Matsumoto, Yanagida (2012)]

Anomaly Mediation:

Dark Matter:

m-term:

Higgs mass:

[Gravitino mass is fixed to be O(100)TeV]Scalar masses:

4/11重いSUSYについて

Gluinos

Mass(TeV)

100

10

1

0.1

BinoWinosHiggs

・ Effective Lagrangian: 長井君トーク

佐藤君トーク・ Gaugino masses (@ MSUSY scale):+ other contributions

+ other contributions + other contributions

[From PQ sector [K. Nakayama & T. T. Yanagida, PLB722, 2013][Vector Matters [K. Harigaya, M. Ibe, T. T. Yanagida, JHEP1312]

・ Charged wino mass (Dm ~ 150—164 MeV)

・ Several DM regions:

[Independent of the gaugino mass]

[Y. Yamada, PLB682, 2010; M.Ibe, S.M., R. Sato, PLB721, 2013]

1. Bino DM This region has already been ruled out.2. Wino DM [Hisano, S.M., Nagai, Saito, Senami, 2007]3. Coannihilation regions [Harigaya, Kaneta, S. M., 2014]

Gravitino,Scalars,Higgsinos

5/11重いSUSYの暗黒物質

[J.Hisano, S.M., M.Nagai, O.Saito, M.Senami, 2007]

~ Wino dark matter region ~

Thermal relic abundance: Annihilations modes are w0w0, w + w - , w0w±, w±w±.

Wino DM with its mass of about 3.1TeV explains the Planck data.

Non-thermal contribution: Gravitino produced after inflation. Its decay into DM at late time. DWDMh2 = 0.16(m/0.3TeV)   ×(TR/1010GeV). [Gherghetta, Giudice; Wells, Moroi, Randall, 1999]

Wino DM with its mass less than 3.1TeV explains the Planck data.

[M. Ibe, T. T. Yanagida, 2011]

The BICEP2 Result

6/11重いSUSYの暗黒物質~ Wino dark matter region ~

mwino0.1TeV 0.5TeV 1TeV 5TeV

0.27 0.32 2.3 3.1

[PRD88, 2013]

Disappearingtrack search!

From Collider (LHC) experiment: From DM indirect detections:

• Wino mass up to 500GeV will be explored in future (100fb-1@14TeV).• Is it possible to use “the double disappearing tracks search” at HL-LHC?• Chargino productions via VBF is useful? [s ~ 0.4fb@14TeV, |Dh| > 4.2]

[Bhattacherjee, Feldstein, Ibe, S.M., Yanagida, PRD87, 2013, Snowmass rept. arXiv:1308.0355]

Continuum g

Fermi-LAT Limit

Line gH.E.S.S. Limit

BICEP2

7/11重いSUSYの暗黒物質~ Bino-Gluino coannihilation ~

Thermal relic abundance:

Annihilations modes: gluino + gluino (Sommerfeld) gluino + bino (Suppressed) bino + bino (Suppressed)Chemical equilibrium between gluino and bino maintains due to conversion processes, etc.

• Dark matter can be as heavy as several TeV with the mass differencebetween gluino and wino being of the order of O(100)GeV.

• No signals are expected in direct and indirect DM observations.• The only possible way to explore the DM is the use of “Hadron Collider”. • Process at the LHC is pp gluino + gluino (gluino bino + two jets),

where the gluino is degenerated with the bino dark matter. • Initial state radiations play important roles, pp gluino+gluino+jet(s).

Bino mass up to 1TeV will be covered in near future (green/blue lines). [B. Bhattacherjee, et. al., PRD89, 2014, S. Mukhopadhyay, M. Nojiri, T. T. Yanagida, arXiv:1403.6028]

BICEP2

8/11重いSUSYの暗黒物質~ Wino-Gluino coannihilation ~

Thermal relic abundance:

Annihilations modes: gluino + gluino (Sommerfeld) gluino + wino (Suppressed) wino + wino (Sommerfeld)Chemical equilibrium between gluino and bino maintains due to conversion processes, etc.

• The mass of the dark matter is predicted to be 3—7 TeV in this region, where it is smoothly connected to 3.1TeV predicted by the wino DM.

• In order to explore the DM in this coannihilation region, we have to rely on the indirect DM detection utilizing (monochromatic) g-rays, so that future air Cherenkov telescopes (CTA) will play important roles.

• If we impose the limit from the line g-ray observation at H.E.S.S. with adopting the cuspy profile, the wino mass up to 3.3TeV is ruled out. [ T. Cohen, M. Lisanti, A. Pierce, and T. R. Slatyer, JCAP10, 061, 2013 ]

• Even in such a case, we find the allowed mass region of 3.5—7 TeV.

9/11重いSUSYの暗黒物質~ Bino-Wino coannihilation ~

Thermal relic abundance:

Annihilations modes: wino + wino (Sommerfeld) wino + bino (Suppressed) bino + bino (Suppressed)Chemical equilibrium between gluino and bino maintains due to conversion processes, etc.

• The mass of the bino DM can be as heave as about 2TeV with the mass difference between the bino DM and the wino being 10—40GeV.

• The bino mass less than 90GeV has already been ruled out by LEPII.• The most important process to explore the DM at the LHC is the wino

production (charged wino + neutral wino, two charged wino modes).☆ Charged wino decays into W* + bino with almost 100% branching.☆ Neutral wino decays into Z* + bino, l+l– + bino, h* + bino, and their branching fractions depend on the masses of higgsino & sleptons.

• The best process is pp charged and neutral winos llln + 2binos.

BICEP2

10/11重いSUSYの暗黒物質~ Wino-Bino coannihilation ~

Thermal relic abundance:

Annihilations modes: bino + bino (Suppressed) bino + wino (Suppressed) wino + wino (Sommerfeld)Chemical equilibrium between gluino and bino maintains due to conversion processes, etc.

• The mass of the wino DM is predicted to be smaller than 3.1TeV, with the mass difference between the bino DM and wino being 100—200 GeV.

• In order to explore the DM in this coannihilation region, we have to rely on the indirect DM detection utilizing (monochromatic) g-rays, so that future air Cherenkov telescopes (CTA) will play important roles.

• If we impose the limit from the line g-ray observation at H.E.S.S. with adopting the cuspy (Einasto or NFW) dark matter profile, the whole parameter (mass) space in this coannihilation region is ruled out.

重い SUSY のまとめと今後の展望• 重い SUSY のシナリオ( Pure Gravity Mediation type )は、現

象論及び理論の両側面から非常に魅力的。しかもゲージーノは軽いので、現在及び近い将来に行われる実験・観測でシグナルが見える可能性が有る。

• 重い SUSY のシナリオ( Pure Gravity Mediation type) が予言する暗黒物質(領域)とそれら検出に関する今後の展望は以下の通り。

☆ Bino DM Region : ノーマルな宇宙論を考えると既に排除済み。

☆ Wino DM Region : 3.1TeV or (0.3—3.1TeV) を予言。質量が低い 領域は LHC (消失荷電トラック検出)が、高い領域 は γ 線を用いた暗黒物質の間接検出が有効。

  ☆ Bino(DM)-Gluino: 0.5—8TeV を予言。ハドロン加速器がアクセス可。                特に縮退系のグルイーノ対生成の検出が大事。  ☆ Wino(DM)-Gluino: 3.1—7TeV を予言。 γ 線を用いた暗黒物質の間 接検出(銀河中心からのライン γ 線)が大事。  ☆ Bino (DM)-Wino: 0.1—3TeV を予言。加速器における荷電 &中性                ウィーノ生成からのトリ・レプトン検出が大事。

☆ Wino (DM)-Bino: 2.8—3.1TeV を予言。 γ 線を用いた暗黒物質の間 接検出(銀河中心からのライン γ 線)が大事。

11/11

0.9TeV

0.5-1TeV

0.1-0.9TeV

BICEP2 の結果を考慮すると(TR = 2 x 109GeV を仮定 )

0.9-1TeV

0.9TeV