22
``````````````````````````````````` গၤ NBY::83ᆐ႐ᄰĂĂ୭ᔇހJDLjඛᄰ ۞౪ຳ୭དĂ܈୷ĂᇄᏎঌᏲਜ਼ଝ Ᏺ.ঢ።Lfmwjo༤ધݬހᏄ)QNV*ăདᎌ.3/3W ᒗ,6/3WኹपᆍLj۞ᔜਜ਼ᎌᏎ)4ད*ᔫ LjᏴኹڼ७ሆభߒሣቶă܈ᎌ611NI{ၒਜ਼భ߈ܠၒኹăᇄᏎঌᏲ ހۻୈ)EVU*ᄋ౯ਜ਼ሆ౯ኹă ᄋᒬறǖBਜ਼CăBୈᆐདਜ਼ ܈୷ᄋறཀྵᐐፄਜ਼ပປLjᏤᄰᓰ ኹLj༦ᎌዏঌᏲᔜఝތǗCୈး᎖ඛᄰ ᎌೂᓰኹᇹᄻଐă ᄰਭ4ሣĂኹĂDNPTର߈ܠᒙୈቛധĂ ᔜఝਜ਼ᄂቶăႥQNV༤ધᄰਭᓜၫᔊᒜ ၒဣሚă ݧ91୭Ă23nn y 23nnĂ2/1nn୭ମ௦URGQ ᓤLjᓤ ݝ7nn y 7nnൡᄋă NBY::83ᔫᏴ1°Dᒗ+81°DጓᆨपᆍLj༦ᎌ በᆨପހၒă ``````````````````````````````````` ᄂቶ ࡁߛǖᏴ1/4jo 3 ߅೫႐ৈᄰ ǖඛᄰ436nX )ቯᒋ* Ⴅǖ4W Q.Q ဟ- 411Ncqt .3/3Wᒗ,6/3Wᔫኹपᆍ ᎌᏎ)4ད* ߅QNVఎਈ ᇄᏎঌᏲ ቛധෝါǖ31oB )ᔢᒋ* ᐐፄᇙތĂပ ތᄋᇄ)Qc*ᓤ ``````````````````````````````````` ። OBOE࿑ހࡀESBNყހ ۾߅ቧ0ຢᇹᄻ)TpD*ހ၂ጥ ᎌᏎછᇹᄻ உ৩ހ၂ጥ NBY::83 ႐ᄰĂĂ411Ncqt BUFད0܈________________________________________________________________ Maxim Integrated Products 1 ``````````````````````````````````````````````````````````````````` ৪ቧᇦਜ਼ኡቯᒎฉ 19-0474; Rev 1; 7/09 ۾ᆪᆪၫᓾ೯ፉᆪLjᆪᒦభถᏴडፉݙᓰཀྵᇙăኊጙݛཀྵLj༿Ᏼଐᒦݬఠᆪᓾ೯ă ᎌਈଥĂૡ৪ቧᇦLj༿ೊNbyjnᒴሾ၉ᒦቦǖ21911 963 235: )۱ᒦਪཌ*Lj21911 263 235: )ฉᒦਪཌ*Lj षᆰNbyjnᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă ୭ᒙᏴၫᓾ೯ᔢă ᓖǖჅᎌୈᔫᏴ1°Dᒗ,81°Dᆨपᆍă ჅᎌቯᄋĂᇄ)Qc*ᓤă৪ᇄ)Qc*ᓤဟ༿ᏴቯଝĐ,đ९ă * FQ > ൡă PART ACCURACY GRADE PIN-PACKAGE HEAT EXTRACTION MAX9972ACCS A 80 TQFP-EP* Bottom MAX9972BCCS B 80 TQFP-EP* Bottom

0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

° + °

________________________________________________________________ Maxim Integrated Products 1

19-0474; Rev 1; 7/09

° °

*

PART ACCURACY GRADE PIN-PACKAGE HEAT EXTRACTION

MAX9972ACCS A 80 TQFP-EP* Bottom

MAX9972BCCS B 80 TQFP-EP* Bottom

Page 2: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

2 _______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

VDD to GND...........................................................-0.3V to +9.4VVSS to GND..........................................................-6.25V to +0.3VVDD to VSS ........................................................................+15.7VVL to GND.................................................................-0.3V to +5VDHV_, DTV_, DLV_, DATA_, RCV_, LDV_,

DUT_ to GND...........................................................VSS to VDDCHV_, CLV_, CMPH_, CMPL_, COMPHI,

COMPLO to GND.....................................................VSS to VDDFORCE_, SENSE_, PMU_ to GND ..............................VSS to VDDLD, DIN, SCLK, CS to GND......................................-0.3V to +5VDUT_, CMPH_, CMPL_ Short-Circuit Duration ...........Continuous

DHV_, DLV_, DTV_ to Each Other ..............................VSS to VDDCHV_, CLV_ to DUT_ ..................................................VSS to VDDDOUT to GND...........................................................-0.3V to +5VTEMP Short-Circuit Duration ......................................ContinuousFORCE_ Path Switch Current..............................................50mASENSE_ Path Switch Current .............................................1.5mAContinuous Power Dissipation (TA = +70°C)

80-Pin TQFP-EP (derate 35.7mW/°C above +70°C) ....2857mWStorage Temperature Range .............................-65°C to +150°CJunction Temperature ......................................................+150°CLead Temperature (soldering, 10s) .................................+300°C

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

DRIVER (all specifications apply when DUT_ = DHV_, DUT_ = DTV_, or DUT_ = DLV_)

DC CHARACTERISTICS

Voltage Range -2.2 +5.2 V

A grade 0.995 1 1.005 Gain Measured at 0 and 3V

B grade 0.95 1.05 V/V

Gain Temperature Coefficient 50 ppm/°C

A grade ±10 Offset

VDHV_ = 2V, VDLV_ = 0V, VDTV_ = 1V B grade ±100

mV

Offset Temperature Coefficient ±250 μV/°C

Power-Supply Rejection Ratio PSRR VDD, VSS independently varied over full range

18 mV/V

Maximum DC Drive Current IDUT_ ±40 ±90 mA

DC Output Resistance IDUT_ = ±10mA (Note 2) 48.5 49.5 50.5

DC Output Resistance Variation IDUT_ = -40mA to +40mA 2.5

DHV_ to DLV_ and DTV_: VDLV_ = VDTV_ = +1.5V, VDHV_ = -2.2V, +5.2V

5

VDHV_ = VDTV_ = +1.5V, VDLV_ = -2.2V, +5.2V

5 DC Crosstalk

VDHV_ = VDLV_ = +1.5V, VDTV_ = -2.2V, +5.2V

5

mV

0 to 3V (Note 3) ±5 mV Linearity Error

Full range (Note 4) ±15 mV

DLV_ to DHV_ and DTV_:

DTV_ to DHV_ and DLV_:

Page 3: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

_______________________________________________________________________________________ 3

ELECTRICAL CHARACTERISTICS (continued)(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

AC CHARACTERISTICS (Note 5)

Dynamic Output Current (Note 1) 40 mA

Drive-Mode Overshoot, Undershoot, and Preshoot

200mV to 4VP-P swing (Note 6) 5% +10

mV

VDHV_ = VDTV_ = 1V, VDLV_ = 0V 25 Term-Mode Spike

VDLV_ = VDTV_ = 0V, VDHV_ = 1V 25 mV

VDLV_ = -1V, VDHV_ = 0V 25High-Impedance-Mode Spike

VDLV_ = 0V, VDHV_ = 1V 25mV

Prop Delay, Data to Output 2 ns

Prop-Delay Temperature Coefficient

10 ps/°C

Prop-Delay Match, tLH vs. tHL 30 ps

Prop-Delay Skew, Drivers Within Package

150 ps

3VP-P, 40MHz, PW = 4ns to 21ns

20Prop-Delay Change vs. Pulse Width

Relative to 12.5ns pulse 1VP-P, 40MHz,

PW = 2.5ns to 23.5ns 90

ps

Prop-Delay Change vs. Common-Mode Voltage

1VP-P, VDLV_ = 0 to 3V, relative to delay at VDLV_ = 1V

80 ps

Prop Delay, Data to High Impedance

VDHV_ = +1.5V, VDLV_ = -1.5V, both directions

1.8 ns

Prop Delay, Data to Term VDHV_ = +1.5V, VDLV_ = -1.5V, VDTV_ = 0V, both directions

1.6 ns

Minimum Voltage Swing (Note 7) 25 mV

VDHV_ = 0.2V, VDLV_ = 0V, 20% to 80% 0.7

VDHV_ = 1V, VDLV_ = 0V, 20% to 80% 0.7

VDHV_ = 3V, VDLV_ = 0V, 10% to 90% 1.5 2.0 2.5

VDHV_ = 4V, VDLV_ = 0V, RL = 500 , 10% to 90%

2.6 Rise/Fall Time

VDHV_ = 5V, VDLV_ = 0V, RL = 500 , 10% to 90%

3.4

ns

Rise/Fall-Time Matching VDHV_ = 1V to 5V ±5 %

200mV, VDHV_ = 0.2V, VDLV_ = 0V 1.8

1V, VDHV_ = 1V, VDLV_ = 0V 2.4 Minimum Pulse Width (Note 8)

3V, VDHV_ = 3V, VDLV_ = 0V 3.3

ns

Page 4: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

4 _______________________________________________________________________________________

ELECTRICAL CHARACTERISTICS (continued)(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

COMPARATOR (Note 9)

DC CHARACTERISTICS (driver in high-impedance mode)

Input Voltage Range -2.2 +5.2 V

Differential Input Voltage VDUT_ - VCHV_, VDUT_ - VCLV_ -7.4 +7.4 V

Hysteresis VCHV_ = VCLV_ = 1.5V 8 mV

A grade ±10 Input Offset Voltage

VDUT_ = 1.5V (VCOMPHI = 0.8V, VCOMPLO = 0.2V) B grade ±100

mV

Input Offset Temperature Coefficient

25 μV/°C

Common-Mode Rejection Ratio CMRR VDUT_ = 0 and 3V 60 dB

VDUT_ = 1.5V ±5 Linearity Error (Note 10)

VDUT_ = -2.2V, +5.2V ±10 mV

Power-Supply Rejection Ratio PSRR VDUT_ = 1.5V, supplies independently varied over full range

5 mV/V

AC CHARACTERISTICS (Note 11)

Terminated (Note 12) 500 Equivalent Input Bandwidth

High impedance (Note 13) 300MHz

Propagation Delay 3.9 ns

Prop-Delay Temperature Coefficient

4 ps/°C

Prop-Delay Match, tLH to tHL 120 ps

Prop-Delay Skew, Comparators Within Package

Same edges (LH and HL) 200 ps

0 to 4.9V 20 Prop-Delay Dispersions vs. Common-Mode Voltage (Note 14) -1.9V to +4.9V 30

ps

Prop-Delay Dispersions vs. Overdrive

VCHV_ = VCLV_ = 0.1V to 0.9V, VDUT_ = 1VP-P, tR = tF = 500ps, 10% to 90% relative to timing at 50% point

220 ps

Prop-Delay Dispersions vs. Pulse Width

2ns to 23ns pulse width, relative to 12.5ns pulse width

±60 ps

Prop-Delay Dispersions vs. Slew Rate

0.5V/ns to 2V/ns 50 ps

Page 5: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

_______________________________________________________________________________________ 5

ELECTRICAL CHARACTERISTICS (continued)(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

LOGIC OUTPUTS

Reference Voltages COMPHI andCOMPLO

(Note 15) 0 +3.6 V

Output High Voltage OffsetIOUT = 0mA, relative to COMPHI atVCOMPHI = 1V

±50 mV

Output Low Voltage OffsetIOUT = 0mA, relative to COMPLO atVCOMPLO = 0V

±50 mV

Output Resistance ICHV_ = ICLV_ = ±10mA 40 50 60 ΩCurrent Limit 25 mA

Rise/Fall Time20% to 80%, VCHV_ = 1VP-P,load = T-line, 50Ω, > 1ns

0.7 ns

PASSIVE LOAD

DC CHARACTERISTICS (RDUT_ ≥ 10MΩ)

LDV_ Voltage Range -2.2 +5.2 V

Gain 0.99 1.01 V/V

Gain Temperature Coefficient 0.02 %/°C

Offset ±100 mV

Offset Temperature Coefficient 0.02 mV/°C

Power-Supply Rejection Ratio PSRR 10 mV/V

A grade 7.125 7.5 7.875Output ResistanceTolerance—High Value

IDUT_ = ±0.2mA,VLDV_ = 1.5V B grade 4.200 6.0 7.875

A grade 1.90 2.0 2.10Output ResistanceTolerance—Low Value

IDUT_ = ±0.1mA,VLDV_ = 1.5V B grade 1.05 1.5 2.10

0 to 3V ±10Switch Resistance Variation Relative to 1.5V

Full range ±30%

VLDV_ = -2V, VDUT_ = +5V ±4Maximum Output Current(Note 16) VLDV_ = +5V, VDUT_ = -2V ±4

mA

Linearity Error, Full RangeMeasured at -2.2V, +1.5V, and +5.2V(Note 16)

±25 mV

AC CHARACTERISTICS

Settling Time, LDV_ to OutputVLDV_ = -2V to +5V step, RDUT_ = 100kΩ(Note 17)

0.5 μs

Output Transient ResponseVLDV_ = +1.5V, VDUT_ = -2V to +5V squarewave at 1MHz, RDUT_ = 50Ω

20 ns

Page 6: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

6 _______________________________________________________________________________________

ELECTRICAL CHARACTERISTICS (continued)(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

PMU SWITCHES (FORCE_, SENSE_, PMU_)

Voltage Range -2.2 +5.2 V

Force Switch Resistance VFORCE_ = 1.5V, IPMU_ = ±10mA 40 Ω

VPMU_ = 6.2V, VFORCE_ set to makeIFORCE_ = 30mA

25

Force Switch ComplianceVPMU_ = -3.2V, VFORCE_ set to makeIFORCE_ = -30mA

25

mA

0 to 3V ±10Force Switch ResistanceVariation (Note 18) Full range ±30

%

Sense Switch Resistance 700 1000 1300 Ω

Sense Switch ResistanceVariation

Relative to 1.3V, full range ±30 %

PMU_ Capacitance Force-and-sense switches open 5 pF

FORCE_ Capacitance 5 pF

SENSE_ Capacitance 0.2 pF

FORCE_ External Capacitance Allowable external capacitance 2 nF

SENSE_ External Capacitance Allowable external capacitance 1 nF

FORCE_ and SENSE_ SwitchingSpeed

Connect or disconnect 10 μs

PMU_ LeakageFORCE EN_ = SENSE EN_ = 0,VFORCE_ = VSENSE_ = -2.2V to +5.2V

±0.5 ±5 nA

TOTAL FUNCTION

DUT_

Leakage, High-Impedance Mode

Load switches open,VDUT_ = +5.2V,VCLV_ = VCHV_ = -2.2V,VDUT_ = -2.2V,VCLV_ = VCHV_ = +5.2V, full range

2 μA

Leakage, Low-Leakage Mode Full range ±1 ±20 nA

Low-Leakage Recovery Time (Note 19) 10 μs

Term mode 2Combined Capacitance

High-impedance mode 5pF

Load Resistance (Note 20) 1 GΩLoad Capacitance (Note 20) 12 nF

Page 7: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

_______________________________________________________________________________________ 7

ELECTRICAL CHARACTERISTICS (continued)(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

VOLTAGE REFERENCE INPUTS (DHV_, DTV_, DLV_, DATA_, RCV_, CHV_, CLV_, LDV_, COMPHI, COMPLO)

Input Bias Current ±100 μA

Input Bias Current TemperatureCoefficient

±200 nA/°C

Settling to Output 0.1% of full-scale step 10 μs

DIGITAL INPUTS (DATA_, RCV_, LD, DIN, SCLK, CS)

Input High Voltage (Note 21)VL / 2 +

0.2+3.6 V

Input Low Voltage (Note 21) -0.3VL / 2 -

0.2V

Input Bias Current 100 μA

SERIAL DATA OUTPUT (DOUT)

Output High Voltage IOH = -1mAVL

- 0.4VL V

Output Low Voltage IOL = 1mA 0 +0.4 V

Output Rise and Fall Time CL = 10pF 1.1 ns

SCLK to DOUT Delay CL = 10pF tDH

tSCLK -tDS

- 2nsns

SERIAL-INTERFACE TIMING (Note 22)

SCLK Frequency 50 MHz

SCLK Pulse-Width High tCH 10 ns

SCLK Pulse-Width Low tCL 10 ns

CS Low to SCLK High Setup tCSS0 3.5 ns

SCLK High to CS Low Hold tCSH0 0 ns

CS High to SCLK High Setup tCSS1 3.5 ns

SCLK High to CS High Hold tCSH1 15 ns

DIN to SCLK High Setup tDS 3.5 ns

DIN to SCLK High Hold tDH 1 ns

CS High to LOAD Low Setup tCLL 6 ns

LD Low Hold Time tLDW 5 ns

LD High to Any Activity 0 ns

VL Rising to CS Low Power-on delay 2 μs

TEMP SENSOR

Nominal Voltage TJ = +27°C 3.00 V

Temperature Coefficient +10 mV/°C

Output Resistance 500 Ω

Page 8: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

8 _______________________________________________________________________________________

ELECTRICAL CHARACTERISTICS (continued)(VDD = +8V, VSS = -5V, VL = +3V, VCOMPHI = +1V, VCOMPLO = 0V, VLDV_ = 0V, LOAD EN LOW = LOAD EN HIGH = 0, TJ = +75°C.All temperature coefficients measured at TJ = +50°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

POWER SUPPLIES

Positive Supply Voltage VDD (Note 23) 7.6 8 8.4 V

Negative Supply Voltage VSS (Note 23) -5.25 -5 -4.75 V

Logic Supply Voltage VL 2.3 3.6 V

Positive Supply Current IDD fOUT = 0MHz 97 120 mA

Negative Supply Current ISS fOUT = 0MHz 99 120 mA

Logic Supply Current IL 0.15 0.30 mA

Static Power Dissipation fOUT = 0MHz 1.3 1.5 W

Operating Power Dissipation fOUT = 100Mbps (Note 24) 1.4 W

Note 1: All minimum and maximum specifications are 100% production tested except driver dynamic output current, which isguaranteed by design. All specifications are with DUT_ and PMU_ electrically isolated, unless otherwise noted.

Note 2: Nominal target value is 49.5Ω. Contact factory for alternate trim selections within the 45Ω to 55Ω range.Note 3: Measured at 1.5V, relative to a straight line through 0 and 3V.Note 4: Measured at end points, relative to a straight line through 0 and 3V.Note 5: DUT_ is terminated with 50Ω to ground, VDHV_ = 3V, VDLV_ = 0, VDTV_ = 1.5V, unless otherwise specified. DATA_ and

RCV_ logic levels are VHIGH = 2V, VLOW = 1V.Note 6: Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot

is any aberration in the signal before it reaches 10% of its swing.Note 7: At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the

specified swing.Note 8: At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_.Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.Note 10: Relative to a straight line through 0 and 3V.Note 11: Unless otherwise noted, all propagation delays are measured at 40MHz, VDUT_ = 0 to 1V, VCHV_ = VCLV_ = +0.5V, tR = tF

= 500ps, ZS = 50Ω, driver in term mode with VDTV_ = +0.5V. Comparator outputs are terminated with 50Ω to GND.Measured from VDUT_ crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.

Note 12: Terminated is defined as driver in drive mode and set to zero volts.Note 13: High impedance is defined as driver in high-impedance mode.Note 14: VDUT_ = 200mVP-P. Propagation delay is compared to a reference time at 1.5V.Note 15: The comparator meets all its timing specifications with the specified output conditions when the output current is less than

15mA, VCOMPHI > VCOMPLO, and VCOMPHI - VCOMPLO ≤ 1V. Higher voltage swings are valid but AC performance maydegrade.

Note 16: LOAD EN LOW = LOAD EN HIGH = 1.Note 17: Waveform settles to within 5% of final value into load 100kΩ.Note 18: IPMU_ = ±2mA at VFORCE_ = -2.2V, +1.5V, and +5.2V. Percent variation relative to value calculated at VFORCE_ = +1.5V.Note 19: Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_.Note 20: Load at end of 2ns transmission line; for stability only, AC performance may be degraded.Note 21: The driver meets all of its timing specifications over the specified digital input voltage range.Note 22: Timing characteristics with VL = 3V.Note 23: Specifications are simulated and characterized over the full power-supply range. Production tests are performed with

power supplies at typical values.Note 24: All channels driven at 3VP-P, load = 2ns, 50Ω transmission line terminated with 3pF.

Page 9: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

_______________________________________________________________________________________ 9

(TA = +25°C, unless otherwise noted.)

MAX

9971

toc0

1

t = 2.0ns/div

V DUT

_ =

50m

V/di

v

0

DRIVER SMALL-SIGNAL RESPONSE

VDLV_ = 0RL = 50Ω

VDHV_ = 500mV

VDHV_ = 100mV

VDHV_ = 200mV

MAX

9971

toc0

2

t = 2.0ns/div

V DUT

_ =

300m

V/di

v

0

DRIVER LARGE-SIGNAL RESPONSE

VDLV_ = 0RL = 50Ω

VDHV_ = 3V

VDHV_ = 1V

MAX

9971

toc0

3

t = 2.0ns/div

V DUT

_ =

500m

V/di

v

0

DRIVER LARGE-SIGNAL RESPONSE INTO 500Ω

VDLV_ = 0RL = 500ΩCL = 0.1pF VDHV_ = 3V

VDHV_ = 1V

4.5ns CABLE

MAX

9971

toc0

4

t = 2ns/div

V DUT

_ =

100m

V/di

v

0

DRIVER 1VP-P, 150MbpsSIGNAL RESPONSE

VDLV_ = 0VDHV_ = 1VRL = 50Ω

MAX

9971

toc0

5

t = 1ns/div

V DUT

_ =

100m

V/di

v

0

DRIVER 1VP-P, 400MbpsSIGNAL RESPONSE

VDLV_ = 0VDHV_ = 1VRL = 50Ω

MAX

9971

toc0

6

t = 2.5ns/div

V DUT

_ =

250m

V/di

v

0

DRIVER 3VP-P, 100MbpsSIGNAL RESPONSE

VDLV_ = 0VDHV_ = 3VRL = 50Ω

MAX

9971

toc0

7

t = 1.25ns/div

V DUT

_ =

250m

V/di

v

0

DRIVER 3VP-P, 250MbpsSIGNAL RESPONSE

VDLV_ = 0VDHV_ = 3VRL = 50Ω

MAX

9971

toc0

8

DRIVER DC CURRENT-LIMITAND OVERVOLTAGE RESPONSE

VDHV_ = 1.5V

VDUT_ (V)

I DUT

_ (m

A)

630-3

-80

-60

-40

-20

0

20

40

60

80

100

-100-6 9

-300

-200

-250

-100

-150

0

-50

50

3 75 9 114 86 10 12 13

DRIVER 3V TRAILING-EDGE TIMING ERROR vs. PULSE WIDTH

MAX

9971

toc0

9

PULSE WIDTH (ns)

TIM

ING

ERRO

R (p

s)

NORMALIZED AT PW = 12.5ns,PERIOD = 25ns, VDHV_ = 3V, VDLV_ = 0

NEGATIVE PULSE

POSITIVE PULSE

Page 10: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

10 ______________________________________________________________________________________

(TA = +25°C, unless otherwise noted.)

MAX

9971

toc1

0

DRIVER TIME DELAYvs. COMMON-MODE VOLTAGE

NORMALIZED AT VCM = 1.5V

FALLING EDGE

RISING EDGE

COMMON-MODE VOLTAGE (V)

TIM

E DE

LAY

(ps)

2.52.01.51.00.5

-40

-20

0

20

40

60

80

-600 3.0

MAX

9971

toc1

1

t = 2ns/div

V DUT

_ =

200m

V/di

v

0

DRIVE-TO-TERMTRANSITION

RL = 50Ω

DHV_ TO DTV_

DLV_ TO DTV_

MAX

9971

toc1

2

t = 2ns/div

V DUT

_ =

200m

V/di

v

0

DRIVE-TO-HIGH-IMPEDANCETRANSITION

RL = 50Ω

DHV_ TO HIGH IMPEDANCE

DLV_ TO HIGH IMPEDANCE

-2.5

-1.5

-2.0

-0.5

-1.0

0.5

0

1.0

2.0

1.5

2.5

DRIVER LINEARITY ERROR vs. OUTPUT VOLTAGE

MAX

9971

toc1

3

LINE

ARIT

Y ER

ROR

(mV)

DUT_ = DHV_VDLV_ = 1.5VVDTV_ = 1.5V

VDUT_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

MAX

9971

toc1

4

DRIVER LINEARITY ERRORvs. OUTPUT VOLTAGE

DUT_ = DLV_VDHV_ = 1.5VVDTV_ = 1.5V

VDUT_ (V)

LINE

ARIT

Y ER

ROR

(mV)

1.50.5-0.5 4.53.52.5-1.5

-1.0

-1.5

-2.0

-0.5

0

0.5

1.0

1.5

2.0

2.5

-2.5-2.5 5.5

-2.5

-1.5

-2.0

-0.5

-1.0

0.5

0

1.0

2.0

1.5

2.5

DRIVER LINEARITY ERRORvs. OUTPUT VOLTAGE

MAX

9971

toc1

5

LINE

ARIT

Y ER

ROR

(mV)

DUT_ = DTV_VDLV_ = 1.5VVDHV_ = 1.5V

VDUT_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

CROSSTALK, DUT_ DRIVEN BY DHV_ WITH DLV_ VARIED

MAX

9971

toc1

6

VDLV_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

VDHV_ = 3VVDTV_ = 1.5V

NORMALIZED AT VDLV_ = 0

V DUT

_ ER

ROR

(μV)

-20

-40

-60

-80

0

20

40

60

80

-100

100

CROSSTALK, DUT_ DRIVEN BY DHV_ WITH DTV_ VARIED

MAX

9971

toc1

7

VDTV_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

V DUT

_ ER

ROR

(μV)

-20

-40

-60

-80

0

20

40

60

80

-100

100VDHV_ = 3VVDLV_ = 0

NORMALIZED AT VDTV_ = 1.5V

CROSSTALK, DUT_ DRIVEN BY DLV_ WITH DHV_ VARIED

MAX

9971

toc1

8

VDHV_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

V DUT

_ ER

ROR

(μV)

-20

-40

-60

-80

0

20

40

60

80

-100

100VDTV_ = 1.5VVDLV_ = 0

NORMALIZED AT VDHV_ = 3V

Page 11: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

______________________________________________________________________________________ 11

(TA = +25°C, unless otherwise noted.)

CROSSTALK, DUT_ DRIVEN BY DLV_ WITH DTV_ VARIED

MAX

9971

toc1

9

VDTV_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

V DUT

_ ER

ROR

(μV)

-20

-40

-60

-80

0

20

40

60

80

-100

100VDHV_ = 3VVDLV_ = 0

NORMALIZED AT VDTV_ = 1.5V

CROSSTALK, DUT_ DRIVEN BY DTV_ WITH DHV_ VARIED

MAX

9971

toc2

0

VDHV_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

V DUT

_ ER

ROR

(μV)

-20

-40

-60

-80

0

20

40

60

80

-100

100VDTV_ = +1.5VVDLV_ = -1.5V

NORMALIZED AT VDHV_ = 3V

CROSSTALK, DUT_ DRIVEN BY DTV_ WITH DLV_ VARIED

MAX

9971

toc2

1

VDLV_ (V)1.50.5-0.5 4.53.52.5-1.5-2.5 5.5

V DUT

_ ER

ROR

(μV)

-20

-40

-60

-80

0

20

40

60

80

-100

100VDHV_ = 3VVDTV_ = 1.5V

NORMALIZED AT VDLV_ = 0

MAX

9971

toc2

2

DRIVER GAIN vs. TEMPERATURE

NORMALIZED AT TJ = +85°C

TEMPERATURE (°C)

GAIN

(V/V

)

70 8060 90

1.0000

1.0002

0.9998

1.0006

1.0004

1.0008

0.999650 100

MAX

9971

toc2

3

DRIVER OFFSET vs. TEMPERATURE

NORMALIZED AT TJ = +85°C

TEMPERATURE (°C)

OFFS

ET (m

V)

70 8060 90

1

2

-1

0

-2

4

3

5

-350 100

MAX

9971

toc2

4

COMPARATOR RESPONSE TO0 TO 3V SIGNAL

VCHV_ = VCLV_ = 1.5V, RL = 50ΩVCOMPHI = 1V, VCOMPLO = 0

t = 2.0ns/div

V CM

P_ _

= 1

00m

V/di

v

MAX

9971

toc2

5

COMPARATOR OFFSETvs. COMMON-MODE VOLTAGE

NORMALIZED AT VCM = 1.5VOTHER COMPARATOR REFERENCE = -2.5V

COMMON-MODE VOLTAGE (V)

OFFS

ET (m

V)

-0.5 0.5-1.5 1.5 2.5 3.5 4.5

0

0.05

-0.10

-0.05

-0.15

-0.25

-0.20

-0.30

0.15

0.10

0.20

-0.35-2.5 5.5

-400

-300

-200

-100

0

100

200

300

400

0 20 40 60 80 100

COMPARATOR WAVEFORM TRACKING

MAX

9971

toc2

6

REFERENCE LEVEL (%)

TIM

ING

VARI

ATIO

N (p

s)

NORMALIZED AT 50% REFERENCEVDUT_ = 0 TO 1V PULSE

VDUT_ FALLING

VDUT_ RISING

-150

-110

-130

-70

-90

-30

-50

-10

30

10

50

1 3 4 52 6 7 8 9 10

COMPARATOR TIMING VARIATION vs. PULSE WIDTH

MAX

9971

toc2

7

PULSE WIDTH (ns)

TRAI

LING

-EDG

E ER

ROR

(ps)

NORMALIZED AT PW = 10ns

Page 12: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

12 ______________________________________________________________________________________

(TA = +25°C, unless otherwise noted.)

MAX

9971

toc2

8

COMPARATOR TIMING VARIATIONvs. INPUT SLEW RATE

SLEW RATE (V/ns)

TIM

ING

VARI

ATIO

N (p

s)

1.5 2.0 2.5 3.0 3.5 4.0 4.5

50

3040

20100

-10-20-30-40

-50

60

-601.0 5.0

NORMALIZED AT SR = 2V/nsVCOMPHI = 1V, VCOMPLO = 0, RL = 50Ω

VDUT_ FALLING VDUT_ RISING

MAX

9971

toc2

9

COMPARATOR RESPONSEvs. HIGH SLEW-RATE OVERDRIVE

INPUT SLEW RATE = 6V/nsTERM MODE, VDTV_ = 0 TO 1V

VCOMPHI = 1V, VCOMPLO = 0, RCOMP_ = 50Ω

t = 2ns/div

V CM

P_ _

= 2

00m

V/di

v

MAX

9971

toc3

0

COMPARATOR OFFSETvs. TEMPERATURE

TEMPERATURE (°C)

OFFS

ET (μ

V)

60 70 80 90

100

0

50

-50

-100

-150

-200

-250-300

-350

150

-40050 100

NORMALIZED AT TJ = +75°C

MAX

9971

toc3

1

DRIVE 1V TO LOW-LEAKAGE TRANSITION

t = 2.5μs/div

I DUT

_ =

2μA/

div

10μA

0μA

MAX

9971

toc3

2

LOW LEAKAGE TO DRIVE 1V TRANSITION

t = 100ns/div

I DUT

_ =

2μA/

div 10μA

0μA

MAX

9971

toc3

3

HIGH-IMPEDANCE LEAKAGE AT DUT_vs. DUT_ VOLTAGE

VDUT_ (V)

I DUT

_ (μ

A)

-0.5 0.5-1.5 1.5 2.5 3.5 4.5

-0.2

-0.1

-0.4

-0.3

-0.6

-0.5

-0.7

0.1

0

0.2

-0.8-2.5 5.5

MAX

9971

toc3

4

LOW-LEAKAGE CURRENTvs. DUT_VOLTAGE

VDUT_ (V)

I DUT

_ (n

A)

-0.5 0.5-1.5 1.5 2.5 3.5 4.5

1.4

1.5

1.2

1.3

1.0

1.1

0.9

1.7

1.6

1.8

0.8-2.5 5.5

MAX

9971

toc3

5

IDD SUPPLY CURRENTvs.TEMPERATURE

TEMPERATURE (°C)

I DD

(mA)

70 8060 90 100

104

105

102

103

100

101

107

106

108

50

MAX

9971

toc3

6

ISS SUPPLY CURRENTvs.TEMPERATURE

TEMPERATURE (°C)

I SS

(mA)

70 8060 90 100

-108

-107

-109

-110

-105

-106

-104

50

Page 13: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

______________________________________________________________________________________ 13

(TA = +25°C, unless otherwise noted.)

MAX

9971

toc3

7

PASSIVE LOAD OFFSETvs. TEMPERATURE

TEMPERATURE (°C)

OFFS

ET (μ

V)

70 8060 90 100

80

100

60

20

40

0

-20

140

120

160

50

MAX

9971

toc3

8

PASSIVE LOAD HIGH RESISTORvs. VOLTAGE

DUT_ = DLV_

VDLV_ = -2.2V

VDLV_ = +1.5V

VDLV_ = +5.2V

VOLTAGE (V)

RESI

STAN

CE (Ω

)

1.50.5-0.5 4.53.52.5-1.5

7300

7200

7100

7700

7800

7900

7400

7500

7600

8000

7000-2.5 5.5

MAX

9971

toc3

9

PASSIVE LOAD LOW RESISTORvs. VOLTAGE

DUT_ = DLV_ VDLV_ = -2.2V

VDLV_ = +1.5V

VDLV_ = +5.2V

VOLTAGE (V)

RESI

STAN

CE (Ω

)

1.50.5-0.5 4.53.52.5-1.5

1900

1850

2100

2150

1950

2000

2050

2200

1800-2.5 5.5

15

21

18

27

24

33

30

36

42

39

45

-50 -30 -20 -10-40 0 10 20 4030 50

PMU_ FORCE_ SWITCH RESISTANCE vs. FORCE_ CURRENT

MAX

9971

toc4

0

FORCE_ CURRENT (mA)

SWIT

CH R

ESIS

TANC

E (Ω

)

VPMU_ = 5.2V

15

21

18

27

24

33

30

36

42

39

45

-50 -30 -20 -10-40 0 10 20 4030 50

PMU_ FORCE_ SWITCH RESISTANCE vs. FORCE_ CURRENT

MAX

9971

toc4

1

FORCE_ CURRENT (mA)

SWIT

CH R

ESIS

TANC

E (Ω

)

VPMU_ = 1.5V

15

21

18

27

24

33

30

36

42

39

45

-50 -30 -20 -10-40 0 10 20 4030 50

PMU_ FORCE_ SWITCH RESISTANCE vs. FORCE_ CURRENT

MAX

9971

toc4

2

FORCE_ CURRENT (mA)

SWIT

CH R

ESIS

TANC

E (Ω

)

VPMU_ = -2.2V

Page 14: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

1 DATA1

2 RCV1

3, 8, 13, 18, 51

GND

4 CMPH1

5 CMPL1

6 DATA2

7 RCV2

9 CMPH2

10 CMPL2

11 CMPL3

12 CMPH3

14 RCV3

15 DATA3

16 CMPL4

17 CMPH4

19 RCV4

20 DATA4

21 DHV4

22 DLV4

23 DTV4

24 CHV4

25 CLV4

26 DHV3

27 DLV3

28 DTV3

29 CHV3

30 CLV3

31 DGND

32 DOUT

33 LD

34 DIN

35 SCLK

36 CS

37 SENSE4

38 FORCE4

14 ______________________________________________________________________________________

Page 15: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

39 SENSE3

40 FORCE3

41 TEMP

42, 47, 52, 56, 60

VDD

43 DUT4

44 PMU4

45, 50, 53, 57

VSS

46 VL

48 DUT3

49 PMU3

54 PMU2

55 DUT2

58 PMU1

59 DUT1

61 FORCE2

62 SENSE2

63 FORCE1

64 SENSE1

65 COMPLO

66 COMPHI

67 LDV4

68 LDV3

69 LDV2

70 LDV1

71 CLV2

72 CHV2

73 DTV2

74 DLV2

75 DHV2

76 CLV1

77 CHV1

78 DTV1

79 DLV1

80 DHV1

— EP

______________________________________________________________________________________ 15

Page 16: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

16 ______________________________________________________________________________________

MAX9972

BUFFER

HIGH-IMPEDANCELOGIC

HIGH IMPEDANCELLEAK

LOAD ENHIGH

PMU_

0

0

0

0

DUT_

TERM

MULTIPLEXER

ONE OF FOUR IDENTICAL CHANNELS SHOWN

50Ω

7.5kΩ

SEETABLE 3

2.0kΩ

LOAD ENLOW

SERIALINTERFACE

30Ω

FORCE EN1kΩ

SENSE EN

TERM

COMMON TO ALL FOUR CHANNELS

LLEAK

SENSE ENFORCE EN

LOAD EN LOW

CS

COMPLOCOMPHI

SENSE_

FORCE_

LDV_

CLV_

CMPL_

CMPH_

CHV_

RCV_

DATA_

DLV_

DTV_

DHV_

SCLK

DINLD

DOUT

LOAD EN HIGH

TEMP

VDD

VL

VSS

GND

DGND

0

Page 17: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

______________________________________________________________________________________ 17

±

μ

Ω Ω Ω

EXTER N AL C O NN EC TIO N S

INTERNALCONTROL BITS

RCV_ DATA_ TERM LLEAK

DRIVEROUTPUT

DRIVERMODE

0 0 X 0 DUT_ = DLV_ Drive

0 1 X 0 DUT_ = DHV_ Drive

1 X 0 0High

ImpedanceReceive

1 X 1 0 DUT_ = DTV_ Receive

X X X 1 Low LeakLow

Leakage

MAX9972

DLV_

DHV_

DTV_

DATA_

RCV_

TERM

BUFFER50Ω

DUT_

0

00

11

COMPARATORSAND LOAD

LLEAK

HIGH IMPEDANCE

Page 18: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

18 ______________________________________________________________________________________

Ω

°°

Ω

DUT_ > CHV_ DUT_ > CLV_ CMPH_ CMPL_

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

MAX9972

COMPHI

CHV_

DUT_

CLV_

COMPLO

50ΩCMPH_

50ΩCMPL_

Ω

ACCURACY GRADE

HIGH RESISTOR (k )

LOW RESISTOR (k )

A 7.5 2

B 6 1.5

Page 19: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

CS

LDLD CS

______________________________________________________________________________________ 19

BIT STATEBIT NAME FUNCTION

0 1POWER-UP

STATE

0 TERM Term Mode Control High Impedance Term Mode 0

1 LLEAK Assert Low-Leakage Mode Term Mode Low Leakage 0

2 SENSE EN Enable Sense Switch Disabled Enabled 0

3 FORCE EN Enable Force Switch Disabled Enabled 0

4 LOAD EN LOW Enable Low Load Resistor Disabled Enabled 0

5 LOAD EN HIGH Enable High Load Resistor Disabled Enabled 0

6 — Unused X X 0

7 — Unused X X 0

8 CH1 Update Channel 1 Control Register Disabled Enabled 1

9 CH2 Update Channel 2 Control Register Disabled Enabled 1

10 CH3 Update Channel 3 Control Register Disabled Enabled 1

11 CH4 Update Channel 4 Control Register Disabled Enabled 1

MAX9972

SCLK

DIN

CS

LD

ENABLE

QUAD F/F

D Q

ENABLE

0–5

8

TERM

LLEA

K

SENSE

EN

FORC

E EN

LOAD

EN LO

W

LOAD

EN HIIG

H

UNUSED

UNUSED

CH1

CH2

CH3

CH4

MODE BITSCHANNEL 4

MODE BITSCHANNEL 3

MODE BITSCHANNEL 2

MODE BITSCHANNEL 1

LOAD

QUAD F/F

D Q

ENABLE

0–5

9

LOAD

QUAD F/F

D Q

ENABLE

0–5

10

LOAD

QUAD F/F

D Q

ENABLE

0–5

116666

LOAD

11 10 9 8 7 6 5 4 3 2 1 0

Page 20: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

PROCESS: BiCMOS

20 ______________________________________________________________________________________

SCLK

tCH

tCSSO tCL

tDH

tCSS1

tCSH1

tDS

tCSHO

CS

DIN D11D10D9D4D3D1D0 D2

MAX9972

tLDW

tCLL

LD

*FIRST BIT SHIFTED IN DURING WORD WRITE.

Page 21: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

______________________________________________________________________________________ 21

TQFP

MAX9972

21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 4031

80 79 78 77 76 75 74 73 72 71 69 68 67 66 65 64 63 62 6170

DHV1

DLV1

DTV1

CHV1

CLV1

DHV2

DLV2

DTV2

CHV2

CLV2

LDV1

60 VDD

DUT1

PMU1

VSS

VDD

DUT2

PMU2

VSS

VDD

GND

VSS

PMU3

DUT3

VDD

VL

VSS

PMU4

DUT4

VDD

TEMP

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

LDV2

LDV3

LDV4

COM

PHI

COM

PLO

SENS

E1

FORC

E1

SENS

E2

FORC

E2

DHV4

DLV4

DTV4

CHV4

CLV4

DHV3

DLV3

DTV3

CHV3

CLV3

DGND

DOUT LD DIN

SCLK CS

SENS

E4

FORC

E4

SENS

E3

FORC

E3

DATA2

CMPH1

GND

DATA1

RCV1

CMPL1

CMPH2

GND

RCV2

CMPL2

DATA3

CMPH3

GND

RCV3

CMPL3

DATA4

CMPH4

GND

RCV4

CMPL4

80 TQFP-EP C80E-4 21-0115

china.maxim-ic.com/packages

Page 22: 0 x ¨ ÖR 411Ncqt! BUF Q Å í0 w í · ````` d NBY::83 0 x ¨ Ö R [ m ßJD È 0 x Þ j ¯ ³ [ m Q Å í > w í Ä Î ò [ ò. ¢ bLfmwjo $ § l k ß ] Ä)QNV* Q Å í å .3/3W

22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2009 Maxim Integrated Products

0 6/06 —

1 7/09 1–22