51
2ème école de RMN Cargèse 1823 Mars 2013 Analysis of molecular motions by Nuclear Magnetic Resonance (Mostly high resolution liquid state) Carine van Heijenoort CNRSICSN laboratoire de chimie et biologie structurales [email protected] 0169823794 1

0')&(1%(( 2.-$,#/(3#4,0'-(5,&)#-, - Freethcgerm.free.fr/IMG/pdf/CvanHeijenoort_dynamique1.pdf · Carinevan’Heijenoort’-’RMN’et’mouvements’moléculaires Cargèse2013 Wüthrich,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 2ème  école  de  RMN  Cargèse  

    18-‐23  Mars  2013

    Analysis  of  molecular  motions  by    Nuclear  Magnetic  Resonance

    (Mostly  high  resolution  liquid  state)

    Carine  van  HeijenoortCNRS-‐ICSN

    laboratoire  de  chimie  et  biologie  structurales

    [email protected]‐gif.fr0169823794

    1

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013 Multiplicity  of  proteins  states

    Sequence

    3D  structure

    disorder  →  ordermolecular  recognitionvirus/phages  assembly

    stepping  motors

    order  →  disorder

    α  ↔  β

    «  lock  &  key  »induced  Eit

    conformational  switch

    virus/pathogen  penetrationmembrane  insertionNucléosome  activation

    Elexible  ensemble

    Elexible  linkersdisplay  of  sites

    entropic  bristles,  springs    and  clocks

    Folding

    “Non  folding”

    Dunker  et  al.,  Journal  of  Molecular  Graphics  and  Modelling  19,  26–59,  2001Dobson,  C.,  Nature  426,  18-‐25,  2003

    2

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013 Different  techniques  for  the  analysis  of  proteins  dynamics

    X-‐ray  cristallography   B  factors time  scalesstatic  disorder,  crystal  contacts,  ...

    X-‐Ray,  neutron  scatteringDoniach,  Chem.  Rev.  2001,  101  ;  Zacai,  science  2000,  288.

    size/shape  modiSicationstimescales  (ps-‐ns)  for  1H  positions

    FluorescenceWeiss,  Nat.  Struct.  Biol.  2000,  7  ;  Yang,  Science  2003,  302  ;  Haustein,  Curr.  Opin.  Struct.  Biol.  2004,  14.  

    ensemble  /  single  moleculecellular  context

    probes

    Mass  Spectroscopy  (HX  MS)radical  footprintingWales,  Mass.  Spectrom.  Rev.  2006,  25  ;  Busenlehner,  Arch.  Biochem.  Biophys.  2005,  433.  Guan,  Trends.  Biochem.  Sci.  2005,  30.

    large  molecular  assemblies

    Mössbauer,   Raman,   2D   infrared  spectroscopy

    Molecular  dynamics   ForceSields  ...Short  timescales  ...

    NMR

    Boehr,  Chem.  Rev.  2006,  106,  3055.  Palmer,  Chem.  Rev.  2004,  104,  3623.

    ➫  10-‐12↔  105  s➫  Site-‐speciSic  information  ➫  multiple   atomic   probes   1H,   2H,   15N,   13C,  31P,  ...➫  Simultaneous  monitoring  of  probes➫   kinetic   &   thermodynamic   proSile   of  dynamic  processes

    ➫  isotope  labeling➫  quantities➫  size  limitation➫  complexity  of  the  method  ?

    3

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    How  motions  are  «  visible  »  in  NMR  ?

    ü Molecular  motions  in/luence  NMR  parameters‣ Motions  timescales  versus  NMR  timescales  ?

    ü Three  distinct  timescales  in  NMRo Equilibrium  constant  time  T1  /  Signal  lifetime  T2

    § NMR  experiment    perturbation  of  spins  system§ Typical  timescale  for  (macro)molecules  in  solution  :  100  ms  -‐  s  (T1)  /  10ms-‐s  (T2)§ Determine  the  lowest  frequency  of  motions  that  can  be  characterized  during  one  NMR  experiment.

    o Spectral  range  :  τ=1/Δν§ Spectrum  features  :  chemical  shift  range,  couplings,  …§ Averaging  if  the  interactions  by  motions  that  have  higher  frequencies§ Perturbation  of  spectral  appearance  by  motions/processes  occuring  around  this  timescale

    o “Larmor”  timescale:  τ=1/ω0§ Precession  frequency  of  the  spins  in  the  magnetic  Sield  B0=ω0/γ§ EfSiciency   of   spins   state   transitions   during   the   relaxation   processes   is   determined   by   the   spectral  density  of  molecular  motions  around  these  frequencies.

    4

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    s ms nsμs

    Three  distinct  typical  timescales  in  NMRReturn  to  equilibrium  :  T1

    Signal  lifetime  :  T2Spectral  range  :  τ=1/Δν

    Larmor  precession  :  τ=1/ω0

    How  motions  are  «  visible  »  in  NMR  ?

    5

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Internal  motions

    Types  of  motions

    Folding  ;  order  ↔  disorderEffect  of  m

    otions  on  

    spins  interaction

    s ms nsµs ps

    Macroscopic  diffusion

    Magnetization  exchange

    Diffusionexperiments

    Conformational  exchange

    Interactions

    Catalytic  processesRegulation,  signalization

    Molecular  rotations

    Molecular  vibrations

    Lineshape  modiEications

    Averaging  of  spectral  

    components

    Spin  relaxation averaging  of  non-‐secular  interactions

    T1,  T2 1/Δω 1/ω0

    Signal  relaxation frequencies  differencesnutation  

    frequencies

    NMR  parameters

    Functions

    Dipolar  Couplings  averaging

    How  motions  are  «  visible  »  in  NMR  ?

    6

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Wüthrich, « NMR of proteins and nucleic acids », WileyInterscience, 1986

    Dynamical  processes  slower  than  T1«real  time»  kineticsfolding/unfoldingInteractions,  exchangeH/  D  exchange...

    NMR  timescales1.  Relaxation  times

    ü Longitudinal  relaxation   time  constant  T1  characterizes  the  time  it  takes  to  the  spin  system  to  return  to  equilibrium.

    ü It  determines  the  delay  beteen  two  scans

    ü Motions   slower   than   T1   can   not   be  characterized  by  one  NMR  scan.

    ü NB.   T1   depends   on   the   magnetic   Sield  strength   B0,   the   type  of  spin,   the  size  of  the  molecule,   the   local   dynamics   of   the  system,  the  temperature,  etc.    

    7

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    1.  Relaxation  times

    ü Transversal   relaxation   time   constant   T2  characterizes  the  lifetime  of  the  signal.

    ü It   determines   the   linewidth   of   the  resonances

    ü Motions   slower   than   T1   can   not   be  characterized  by  one  NMR  scan.

    ü NB.   T1   depends   on   the   magnetic   Sield  strength   B0,   the   type  of  spin,   the  size  of  the  molecule,   the   local   dynamics   of   the  system,  the  temperature,  etc.    

    8

    /2 /20

    1/( )2

    Mx(t) = �Meqsin(�0t)exp(�t/T2)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    1.  Relaxation  times

    9

    ü Relaxation  contants  depends  on  the  magnetic  Sield  strength  B0,  the  type  of  spin,  the  size  of  the  molecule,  the  local  dynamics  of  the  system,  the  temperature,  etc.    

    0,1

    1

    10

    100

    τc(s)

    T1400,600,800MHz

    rela

    xati

    on t

    imes

    (s)

    10-12 10-11 10-10 10-9 10-8

    Longitudinal relaxation time constant for a system of 2 proton spins with rHH=0.2nm

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Internal  motions

    Types  of  motions

    Folding  ;  order  ↔  disorderEffect  of  m

    otions  on  

    spins  interaction

    s ms nsµs ps

    Macroscopic  diffusion

    Magnetization  exchange

    Diffusionexperiments

    Conformational  exchange

    Interactions

    Catalytic  processesRegulation,  signalization

    Molecular  rotations

    Molecular  vibrations

    Lineshape  modiEications

    Averaging  of  spectral  

    components

    Spin  relaxation

    T1,  T2 1/Δω 1/ω0

    Signal  relaxation frequencies  differencesnutation  

    frequencies

    NMR  parameters

    Functions

    Dipolar  Couplings  averaging

    How  motions  are  «  visible  »  in  NMR  ?

    averaging  of  non-‐secular  interactions

    10

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    11

    Δω=13ppm Δν=7800HzB0=14.1T

    Δν=12350Hz

    B0=22.3T

    τspect~100μs

    Δω=0,2ppm Δν=120HzB0=14.1T

    Δν=190Hz

    B0=22.3T

    τspect~5-‐10ms

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    12

    Δω(15Ν)=25ppmΔν~1500Hzτspect~0,7ms

    B0=14,1T

    Δω(1Η)=3,5ppmΔν~2000Hzτspect~0,5ms

    B0=14,1T

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    13

    Δω(15Ν)=1,5ppmΔν~100Hzτspect~10ms

    B0=14,1T

    Δω(1Η)=0,5ppmΔν~300Hzτspect~3ms

    B0=14,1T

    Same  nucleus  ;  two  different  conformations

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    14

    Δω(15Ν)=1,5ppmΔν~100Hzτspect~10ms

    B0=14,1T

    Δω(1Η)=0,5ppmΔν~300Hzτspect~3ms

    B0=14,1T

    Same  nucleus  ;  two  different  conformations

    Δν Hz( ) =Δω ppm( )

    2π∗ 10−6 ∗ γB0

    τspect =1

    Δν Hz( )

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    15

    •  Dipolar  interaction  between  spins  magnetic  moment

     

    E/ℏ  ≤  104-‐105  Hz

    •  Chemical  shift  anisotropy

    E/ℏ  ≤  104-‐105  Hz

    •  Quadrupolar  interaction  spin/electric  Sield

    I  >  1/2

    E/ℏ  ~  2.105  Hz  (2H)  ;  E/ℏ  ~  3.106  Hz  (14N)

    •  Unpaired  electron

    ˆ H ISDD = −

    µ0γ IγS

    4πrIS3

    3cos2 θIS −12

    ⎝ ⎜

    ⎠ ⎟ 3ˆ I z ˆ S z − ˆ I .ˆ S ( )

    ˆ H ICSA = −γS

    c|| − c⊥3

    B0 3cos2 θ −1( ) ˆ I z

    ˆ H IQ ≅ω I

    Q 3ˆ I z2 − ˆ I .ˆ I ( ) ; ω IQ = 3eQI4 I 2I −1( ) Vzz

    I θ( )

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    16

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

    •  Averaging  of  the  secular  interactions  by  the  motions

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    17

    •  Averaging  of  the  secular  interactions  by  the  motions

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    18

    Averaging  of  the  chemical  shift  anisotropy

    (31P)

    Burnell  et  al.,  Biochim.  Biophys.  Acta  603,  63  (1980)

    •  Averaging  of  the  secular  interactions  by  the  motions

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    2.  «Spectral»  or  «chemical  shift»  timescale

    ü Largest   observable   difference   of  resonance  frequency  (spectral  width)

    ü Smallest   observable   difference   of  resonance  frequency  (resolution)

    ü Motions   slower   than   Δν have   no   effect  on  the  appearance  of  the  spectra.

    ü Δν depends   on   the   magnetic   Sield  strength  B0,  the  type  of  the  spins.

    ü Different   nuclei   or   same   nuclei   in  different  environments

    ü Δν depends   on   the   nature   of   the  interactions  between  the  spins.

    19

    •  Using  motions  to  average  interactions

    Davis, Auger & Hodges Biophysical Journal 69:1917-1932 (1995)Gross et al., J. Magn. Res. 106, 187-190 (1995)Carlotti, Aussenac & Dufourc Biochim. Biophys. Acta. 1564:156-164 (2002)

    Glycine  powder

    Static

    1H  (kHz)

    012

    012

    048

    048

    1H  (kHz)

    Lipids  +  water

    Magic  angle  Rotation

     ωr=5000Hz

    �⌫(Hz) = ��(ppm) ⇤ 10�6 ⇤ �B02⇡

    ⌧spect =1

    ⇡�⌫(Hz)

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Internal  motions

    Types  of  motions

    Folding  ;  order  ↔  disorderEffect  of  m

    otions  on  

    spins  interaction

    s ms nsµs ps

    Macroscopic  diffusion

    Magnetization  exchange

    Diffusionexperiments

    Conformational  exchange

    Interactions

    Catalytic  processesRegulation,  signalization

    Molecular  rotations

    Molecular  vibrations

    Lineshape  modiEications

    Averaging  of  spectral  

    components

    Spin  relaxation

    T1,  T2 1/Δω 1/ω0

    Signal  relaxation frequencies  differencesnutation  

    frequencies

    NMR  parameters

    Functions

    Dipolar  Couplings  averaging

    How  motions  are  «  visible  »  in  NMR  ?

    averaging  of  non-‐secular  interactions

    20

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    3.  Larmor  timescale

    ü Resonance   frequencies   of   the   spin   (i.e.  difference   of   energy   between   the  different   observable   states   of   the   spin  system)

    ü Motions   in   this   timescale  have  no  effect  on  the  appearance  of  the  spectra.

    ü Motions in this timescale are responsible for the efficiency of the relaxation processes.

    ü   The   relationship   between   «motions»  and  relaxation  rate  constants  is  indirect.

    21

    ββ

    αα

    βα

    αβ

    ωI

    ωI

    ωS

    ωS

    ωI -ωS

    ωI+ωS

    B0=14,1T|ωI|=2π.600MHz ; τL(I)=265ps

    |ωS|=2π.60MHz ; τL(S)=2,65ns

    |!0| = |�B0|

    ⌧Larmor

    =1

    !0

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    3.  Larmor  timescale

    ü Resonance   frequencies   of   the   spin   (i.e.  difference   of   energy   between   the  different   observable   states   of   the   spin  system)

    ü Motions   in   this   timescale  have  no  effect  on  the  appearance  of  the  spectra.

    ü Motions in this timescale are responsible for the efficiency of the relaxation processes.

    ü   The   relationship   between   «motions»  and  relaxation  rate  constants  is  indirect.

    22

    ex

    ey

    ezB0+Blocal(t)

    Blocal(t)  

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013NMR  timescales

    3.  Larmor  timescale

    ü Resonance   frequencies   of   the   spin   (i.e.  difference   of   energy   between   the  different   observable   states   of   the   spin  system)

    ü Motions   in   this   timescale  have  no  effect  on  the  appearance  of  the  spectra.

    ü Motions in this timescale are responsible for the efficiency of the relaxation processes.

    ü   The   relationship   between   «motions»  and  relaxation  rate  constants  is  indirect.

    23

    τc(s)

    1 H r

    elax

    ation

    times

    (s)

    0,01

    0,1

    1

    10

    100

    T1

    T2400,600,800MHz

    400,600,800MHz

    10-12 10-11 10-10 10-9 10-8

    15N r

    elax

    ation

    times

    (s)

    B0=14.1Teslas

    0,01

    0,1

    1

    10

    100

    10-12 10-11 10-10 10-9 10-8

    T1

    T2

    τc(s)

    |!0| = |�B0|

    ⌧Larmor

    =1

    !0

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Internal  motions

    Types  of  motions

    Folding  ;  order  ↔  disorderEffect  of  m

    otions  on  

    spins  interaction

    s ms nsµs ps

    Macroscopic  diffusion

    Magnetization  exchange

    Diffusionexperiments

    Conformational  exchange

    Interactions

    Catalytic  processesRegulation,  signalization

    Molecular  rotations

    Molecular  vibrations

    Lineshape  modiEications

    Averaging  of  spectral  

    components

    Spin  relaxation

    T1,  T2 1/Δω 1/ω0

    Signal  relaxation frequencies  differencesnutation  

    frequencies

    NMR  parameters

    Functions

    Dipolar  Couplings  averaging

    How  motions  are  «  visible  »  in  NMR  ?

    averaging  of  non-‐secular  interactions

    24

  • k1A � B�A k�1 �B

    A

    BEa

    ωAωB

    ωA ωB

    ωA

    ωB

    Kd = k1/k�1 = pB/pAkex = 1/�ex = k1 + k�1 = k1/pB = k�1/pA

    ωA ωB

    Δω

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    ü Processes   that   are   on   the   spectral   timescale  (μs-‐ms   range)   affect   the   appearance   of   the  spectra.

    ü These   processes   generally   correspond   to  conformational/chemical  exchange.

    ü The  effects  on  spectra  depend  on  the  relative  values   of   kex   (τex)   Δω/2   (2/Δω).   One   talk   of    slow   or   fast   exchange   at   the   chemical   shift  timescale.

    1/πΔν

    Coalescence

    «  fast  »  exchange

    «  slow  »  exchange

    µsms

    25

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    ü Conformational   exchange   corresponds   to   a  sudden   precession   frequency   change,   with   a  probability   kex   to   switch   from   one   state   to    another.

    ü These   frequency  changes   induce  a  dephasing  of   the   transverse  magnetization,   that  adds  to  the  «natural»  loss  of  coherence  of  the  spins.

    ü R2(app)  =  R2  +  Rex

    kex=1/τex=k1+k-1=k1/pB=k-1/pA

    A Bk1

    k-1ωA ωB

    ωA ωB

    20 moléculesin state A

    Total transverse magnetization for a large number of spins initially in the same environment.

    Δν=1000Hz kex=500Hz pA=pB

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    26

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Motional  narrowing(Rétrécissement  des  raies  par  l’échange)

    When   kex   increases   from   0   to   Δω,   the   loss   of  coherence  becomes  faster,   resonances  broaden  and   get   closer,   until   one   very   enlarged  resonance   remains   observable:   this   is   the  «  coalescence  »  point.

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    27

    0,2

    1,0

    6,3

    k (kHz)

    0,5

    k (kHz)

    1,0

    2,5

    3,5

    6,3

    ν

    -3kHz 3kHz

    t

    Δν=1000Hz

    Case  of  a  symetrical  two-‐site  exchange

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Motional  narrowing(Rétrécissement  des  raies  par  l’échange)

    When   kex   becomes  greater   than  Δω,   increasing  kex   induces   a   narrowing   of   the   mean  resonance,  down  to  the  «natural»  linewidth.

    One  then  observe  only  one  apparent  resonance,  which   does   not   correspond   to   the   true  resonance   frequencies   of   the   spins   in   the  various  sites.  

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    Δν=1000Hz

    Case  of  a  symetrical  two-‐site  exchange

    6,3

    20

    50

    10

    k (kHz)

    20

    30

    50

    6,3

    ν

    -3kHz 3kHz

    t

    k (kHz)

    28

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    k1A � B�A k�1 �B

    AB

    Ea

    ωA ωB

    ωA ωB

    ωA

    ωB

    Kd = k1/k�1 = pB/pAkex = 1/�ex = k1 + k�1 = k1/pB = k�1/pA

    ωA ωB

    Δω

    ➫  Additional  transverse  magnetization  dephazing  ➫  Apparent  increase  of  transverse  relaxation

    ➫  R2app  =  R2  +  Rex➫  Increased  linewidths

    ➫  Apparent  resonances  frequencies

    ➫  Perturbation  of  spectra

    that  depends  on  the  relative  values  of  kex  and  Δω

    29

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    Exchange  regime

     ☞  “Fast”  exchange  :  Δω  ≪  kex➫  One  peak  at  ω  =  pAωA  +  pBωB  ➫  Rex  ∝  B02

    ☞  “intermediate”  exchange  :  Δω  ≃  kex➫  One  or  several  broadened  peaks➫  Rex  ∝  B0

    ☞  “slow”  exchange  :  Δω≫  kex  ➫  Several  peaks➫  Rex  independent  of  B0➫  Rex(B)→kBA=pAkex  ;  Rex(A)→kAB=pBkex

    ν(Hz)

    0

    0.51.5

    5.0

    50

    0.05

    kex/∆ν

    500

    pA=pBR2A=R2B=5s-1

    ∆ν=200Hz

    30

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    ν(Hz)

    0

    0.51.5

    5.0

    50

    0.05

    kex/∆ν

    500

    pA=pBR2A=R2B=5s-1

    ∆ν=200Hz

    Exchange  regime

     ☞  “Fast”  exchange  :  Δω  ≪  kex➫  One  peak  at  ω  =  pAωA  +  pBωB  ➫  Rex  ∝  B02

    ☞  Number  of  states  in  exchange  ?

    ☞  “intermediate”  exchange  :  Δω  ≃  kex➫  One  or  several  broadened  peaks➫  Rex  ∝  B0

    ☞  “slow”  exchange  :  Δω≫  kex  ➫  Several  peaks➫  Rex  independent  of  B0➫  Rex(B)→kBA=pAkex  ;  Rex(A)→kAB=pBkex

    31

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    Exchange  regimeCase  of  unequal  populations

     ☞  “Fast”  exchange  :  Δω  ≪  kex➫  One  peak  at  ω  =  pAωA  +  pBωB  ➫  Rex  ∝  B02

    ☞  “intermediate”  exchange  :  Δω  ≃  kex➫  One  or  several  broadened  peaks➫  Rex  ∝  B0

    ☞  “slow”  exchange  :  Δω≫  kex  ➫  Several  peaks➫  Rex  independent  of  B0➫  Rex(B)→kBA=pAkex  ;  Rex(A)→kAB=pBkex

    pA  ≫  pB  ⇒  Rex(B)  ≫  Rex(A)

    ☞   The   minor   peak   can   be   undetectable  even  in  a  slow  exchange  regime.

    -150 -100 -50 0 50 100 150

    pA=0.8 ; pB=0.2R2A=R2B=5s-1

    ∆ν=200Hz

    0

    0.5

    1.5

    5.0

    50

    0.05

    kex/∆ν

    500

    ν(Hz)

    pAνA+pBνB

    32

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    Unequal  populationsAn  «extreme»  case:  exchange  of  labile  protons  with  the  solvent  

    pA=105 ; R2A=1s-1, R2B=10s-1

    Only the amide proton magnetization is depicted

    kex = 0, 10, 100, 400, 1000, 5000 s-1

    τex = inf, 100, 10, 2.5, 1, 0.2 mskex /Δν = 0 , 0.005, 0.05, 0.2, 0.5, 2.5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    -1000 0 1000 2000

    ν(HN) ν(H20)

    1 10 102 103 104

    kex (s-1)

    I(H

    N)/

    I0(H

    N)

    ν(H

    N)-ν 0

    (HN

    )

    0

    0.2

    0.4

    0.6

    0.8

    10

    100

    200

    300

    400

    500

    33

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    k1A � B�A k�1 �B

    AB

    Ea

    ωA ωB

    ωA ωB

    ωAωB

    ms μs1/πΔν

    coalescence

    “fast” intermediate

    exchange

    lineshape analysis

    longitudinalmagnetization

    exchange

    R2app

    R1ρapp

    “slow” intermediate

    exchange

    R2app = R2 + Rex

    thermodynamic parameters

    Keq

    = k1/k�1 = pB/pA

    �G = �RT lnK

    kinetic parameters

    kex

    = 1/⌧ex

    = k1 + k�1 = k1/pB = k�1/pA

    kex

    (T ) = k0 exp (�Ea/kT )

    34

  • d

    dt�Mz(t) = (�R+K)�Mz(t)

    d

    dt

    ��!M+(t) = (i⌦�R+K)

    ��!M+(t)

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    M t( ) =

    M 1 t( ) M 2 t( )

    … M n t( )

    ⎢ ⎢ ⎢ ⎢ ⎢

    ⎥ ⎥ ⎥ ⎥ ⎥

    General  equation  of  exchange k1A � B�A k�1 �B

    R −K =ρA −k1 −k−1

    −k1 ρB −k−1

    ⎢ ⎢

    ⎥ ⎥

    ddt

    ΔMA+ t( )

    ΔMB+ t( )

    ⎢ ⎢ ⎢

    ⎥ ⎥ ⎥

    =−iΩA −R2A

    0 − pBkex pAkex

    pBkex −iΩB −R2B0 − pAkex

    ⎢ ⎢

    ⎥ ⎥

    MA+ t( )

    MB+ t( )

    ⎢ ⎢ ⎢

    ⎥ ⎥ ⎥

    MA+ t( )

    MB+ t( )

    ⎢ ⎢ ⎢

    ⎥ ⎥ ⎥

    =aAA(t) aAB(t)

    aBA(t) aBB(t)

    ⎢ ⎢

    ⎥ ⎥

    MA+ 0( )

    MB+ 0( )

    ⎢ ⎢ ⎢

    ⎥ ⎥ ⎥

    ☞  In  the  general  case,  the  expression  of  aij  coefSicients  is  “complicated”

    two-‐site  exchange

    35

  • aAA(t) =1

    2

    (1 +

    i!

    �)e�(⇢+k��)t + (1� i!

    �)e�(⇢+k+�)t

    aBB(t) =1

    2

    (1� i!

    �)e�(⇢+k��)t + (1 +

    i!

    �)e�(⇢+k+�)t

    aAB(t) = aBA(t) =k

    2�

    he�(⇢+k��)t � e�(⇢+k+�)t

    i

    � =�k2 � !2

    �1/2

    M+1 (t) = M+A (t) +M

    +B (t) = M

    +(0)e�⇢t

    k1A � B�A k�1 �B

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    The  case  of  a  two-‐site  symmetrical  exchange

    “Slow”  exchange  limit

    ”Fast”  exchange  limit

    -150 -100 -50 0 50 100 150

    k/Δν

    0

    0.05

    0.51.52.552550

    500

    k1=k-‐1ωA=-‐ωB=ωρΑ=ρΒ=ρ aAA(t) = aBB(t) =

    1

    2

    h1 + 2e(�2kt)

    ie�⇢t

    aAB(t) = aBA(t) =1

    2

    h1� 2e(�2kt)

    ie�⇢t

    aAA(t) = e�(⇢+k�i!)t

    aBB(t) = e�(⇢+k+i!)t

    aAB(t) = aBA(t) ! 0

    Two  resonances  at  -‐ω  and  +ωlinewidth  (ρ+ω)/π

    One  resonance  at  (ωA+ωB)/2Linewidth  ρ/π

    36

  • k1A � B�A k�1 �B

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    vs

    AB

    Ea

    ωA ωB

    thermodynamic parameters

    Keq

    = k1/k�1 = pB/pA

    �G = �RT lnK

    kinetic parameters

    kex

    = 1/⌧ex

    = k1 + k�1 = k1/pB = k�1/pA

    kex

    (T ) = k0 exp (�Ea/kT )

    ωAωB

    kex = kon[P ] + koff

    kex = kon[L] + koff

    Kd =[P ][L][PL]

    =koffkon

    konP + L � PL

    �Pf koff �Pb�Lf �Lb

    ωf

    ωb

    Intramolecular Intermolecular  processes

    37

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    ωA ωBkex = kon[P ] + koff

    kex = kon[L] + koff

    Kd =[P ][L][PL]

    =koffkon

    konP + L � PL

    �Pf koff �Pb�Lf �Lb

    ωf

    ωb

    Intermolecular  processesü The   e x change   r e g ime   depends   on   t h e  

    concentration  of  the  free  speciesü Usually,  it  is  considered  that  kon  is  controlled  by  the  

    diffusion   and   that   the   exchange   regime   is  controlled  by  koff

    ü This   in   general   allows   one   to   correlate   ‘slow’  exchange  regime  with  high  afSinities  (Kd  <  10μM),  and  ‘fast’  exchange  regime  with  low  afSinities  (Kd  >  100μM)

                     This  is  not  always  true,  especially  when  large  conformational   changes   occur   upon   binding.  Association  rate  constants   can   thus  vary  a   lot   and  low  afSinities  can  be  associated  with  slow  exchange  regime.   This   is   often   the   case   for   interactions  involving   peptides   or   intrinsically   disordered  proteins.

    Beware  of  multi-‐sites  binding:   strong  afSinities  can   then   be   associated   with   fast   exchange  regime.

    !

    38

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleconformational  exchange

    ωA ωBkex = kon[P ] + koff

    kex = kon[L] + koff

    Kd =[P ][L][PL]

    =koffkon

    konP + L � PL

    �Pf koff �Pb�Lf �Lb

    ωf

    ωb

    Intermolecular  processes

    Py tr

    act “

    stre

    ngth

    33 µM

    18 µM

    16 µM

    7.1 µM

    1.3 µM

    ITCKd

    Exchange regime & RNA binding affinity

    U2AF65 conformation depends on Py tract strength

    (Michael  Sattlerpersonal  communication)

    39

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    1/πΔν

    Coalescence “Fast”  

    intermediate  exchange

    “Slow”  intermediate  exchange  

    R2apparent  =  R2  +  Rex

    k1A � B�A k�1 �B

    A

    BEa

    ωAωB

    ωA ωB

    ωA

    ωB

    ωA ωB

    Δω

    µsms

    longitudinal  magnetization  exchange

    Lineshapes  analysis

    δapp  =  pAδA  +pBδB

    weighted  average  values

    thermodynamic parametersKd = k1/k�1 = pB/pA

    �G = �RT lnK

    kinetic parameterskex = 1/�ex = k1 + k�1 = k1/pB = k�1/pA

    kex(T ) = k0 exp (�Ea/kT )

    40

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    1/πΔν

    Coalescence “Fast”  

    intermediate  exchange

    “Slow”  intermediate  exchange  

    µsms

    Δω( )2−4k2

    R2+k

    S ω( ) = 12 1 +kD

    ⎝ ⎜ ⎜

    ⎠ ⎟ ⎟ L ω , R2 + k −D( )

    +12

    1 − kD

    ⎝ ⎜ ⎜

    ⎠ ⎟ ⎟ L ω , R2 + k + D( )

    D = k2 − Δω2( )

    2

    k T( ) = k0 exp − EaRBT⎛

    ⎝ ⎜ ⎜

    ⎠ ⎟ ⎟ Ross  &  True,  J.  Am.  Chem.  Soc.  106,  2451  (1984)

    Lineshape  perturbation  

    Changing  the  exchange  regime  by  varying  the  temperature

    {13C}  N,N’  diméthylformamide  gaz,  B0=4,7T

    Ea=90,1kJ.mol-‐1  ;  k0=1,16.104Hz  

    41

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    Fig. 2. Observed (a) and calculated (b) 188.3MHz 19F-n.m.r. spectra of 3',5'-difluoromethotrexate bound to L. casei dihydrofolate reductase.The sample contained slightly less than one molar equivalent of difluoromethotrexate, so that all the ligand is bound to the enzyme. The small sharp resonance marked X represents a small amount (  Ea  =  50,6kJ/mol

    Lineshape  perturbation

    42

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    �obs = ff�f + fb�b

    ms μs1/πΔν

    “fast”“slow”Kd =

    [P ][L][PL]

    =koffkon

    konP + L � PL

    �Pf koff �Pb�Lf �Lb

    kex = kA + kB

    kB = koffkA = kon[P ]{kon[L]}

    kex > ��

    fbff

    = VboundVbound+Vfree

    �|(��)2 � 4k2|

    R2 + k

    Robs2 (P ) = R2(P ) + kon[L] = R2(P ) + kofffPLfP

    Robs2 (L) = R2(L) + kon[P ] = R2(L) + kofffPLfL

    Robs2 (PL) = R2(PL) + koff

    Robs = ffRf + fbRb

    R2,obs = pELR2,EL + pLR2,L

    +pELp2L(�EL � �L)2

    koff

    43

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    fbff

    = VboundVbound+Vfree

    Robs2 (P ) = R2(P ) + kon[L] = R2(P ) + kofffPLfP

    Robs2 (L) = R2(L) + kon[P ] = R2(L) + kofffPLfL

    Robs2 (PL) = R2(PL) + koff

    Temperature  variation‣R2  decreases  when  T  increases‣kex  increases  when  T  increases  

    Changing  protein  or  ligand  concentration.

    Robs2 = R2,T exp(Ew/RbT ) + kT exp(�Ek/RbT )

    Fig. 5. The temperature dependence of the linewidth of the N1-proton resonance of trimethoprim in its comp lex w i th d ihyd ro fo l a t e reductase, presented as an Arrhenius plot [ln (pi x linewidth) vs 1/T]. The points are experimental data, the error bars indicating the estimated maximum uncertainty in linewidth (+ 2 Hz). The line was calculated using the following parameters: W0 (273K)=32Hz; Ea(W0)=13 kJ/mole; kex(313K)=160s-1; Ea(exchange)=75 kJ/mole, where W0 is the natural linewidth (in the absence of exchange) and Ea denotes activation energy. (from Bevan et al. (1985), Eur. Biophys. J. 11, 211.

    1/πΔν

    Coalescence

    µsms

    “Slow”  intermediate  exchange  

    “Fast”  intermediate  exchange

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    44

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    1/πΔν

    Coalescence

    µsms

    “Slow”  intermediate  exchange  

    “Fast”  intermediate  exchange

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    Titration  :  disappearance/appearance  of  peaks  

    Cerdan  et  al.,  FEBS  408,  235  (1997)

    DNA

    Protein

    DNA  +  Protein    ⇆    DNA-‐protein

    45

  • �MAz(t)�MBz(t)

    �=

    aAA(t) aAB(t)aBA(t) aBB(t)

    � �MAz(0)�MBz(0)

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    1/πΔν

    Coalescence

    µsms

    “Slow”  intermediate  exchange  

    “Fast”  intermediate  exchange

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    t1 τmt2

    [DNA]/[Prot]=2

    ➫ kex=14±2Hzτex=74±7ms

    DNA  +  Protein    ⇆    DNA-‐protein

    V

    b

    (⌧m

    ) = xb

    e

    ��⌧mcosh(D⌧

    m

    )� �D

    sinh(D⌧m

    )

    V

    f

    (⌧m

    ) = xf

    e

    ��⌧mcosh(D⌧

    m

    ) +�

    D

    sinh(D⌧m

    )

    V

    crosspeak

    (⌧m

    ) = xb

    x

    f

    k

    D

    e

    ��⌧msinh(D⌧

    m

    )

    � =1

    2(R1b +R1f ); � =

    1

    2(R1b �R1f );D =

    q�

    2 + xb

    x

    f

    k

    2

    Cerdan  et  al.,  FEBS  408,  235  (1997)

    46

  • �MAz(t)�MBz(t)

    �=

    aAA(t) aAB(t)aBA(t) aBB(t)

    � �MAz(0)�MBz(0)

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    1/πΔν

    Coalescence

    µsms

    “Slow”  intermediate  exchange  

    “Fast”  intermediate  exchange

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    V

    b

    (⌧m

    ) = xb

    e

    ��⌧mcosh(D⌧

    m

    )� �D

    sinh(D⌧m

    )

    V

    f

    (⌧m

    ) = xf

    e

    ��⌧mcosh(D⌧

    m

    ) +�

    D

    sinh(D⌧m

    )

    V

    crosspeak

    (⌧m

    ) = xb

    x

    f

    k

    D

    e

    ��⌧msinh(D⌧

    m

    )

    � =1

    2(R1b +R1f ); � =

    1

    2(R1b �R1f );D =

    q�

    2 + xb

    x

    f

    k

    2

    011

    mt1 t2

    1 3 52 4 6

    ( /2)1

    ( /2)2

    ( /2)3

    rec, dig

    2

    1

    Cross Peaks

    DiagonalPeaks

    Cross Peaks

    2D  longitudinal  magnetization  exchange  experiment  (EXSY)

    2

    1

    k 2m

    mincrease

    mincrease

    diagonal peak amplitudes

    cross peak amplitudes

    /s m /s m0 0.1 0.2 0.3 0.4 0.5

    0.2

    0.4

    0.6

    0.8

    1

    0 0.1 0.2 0.3 0.4 0.5

    0.2

    0.4

    0.6

    0.8

    1

    47

  • Titration  :  Peaks  shiftskon

    P + N ⌦ PN�Nf

    koff

    �Nb

    �obs

    = ff

    �f

    + fb

    �b

    Kd

    =koff

    kon

    =[P ][N ]

    [PN ]

    Kd =(P0 � fbN0)(N0 � fbN0)

    fbN0

    fb =��

    �b � �f

    fb[P ]

    = � 1Kd

    fb +1

    Kd

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    1/πΔν

    Coalescence

    µsms

    “Slow”  intermediate  exchange  

    “Fast”  intermediate  exchange

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    Scatchard plot

    Kd~170µM

    Baleja et al. Biochemistry 33, 3071 (1994) 48

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleThe  case  of  one  observed  peak  

    Case  of  unequal  populations

    ☞  “Fast”  exchange  :  Δω  ≪  kex➫  One  peak  at  ω  =  pAωA  +  pBωB  ➫  Rex  ∝  B02

    ☞  Number  of  states  in  exchange  ?☞  “intermediate”  exchange  :  Δω  ≃  kex

    ➫  One  or  several  broadened  peaks➫  Rex  ∝  B0

    ☞  “slow”  exchange  :  Δω≫  kex  ➫  Several  peaks➫  Rex  independent  of  B0➫  Rex(B)→kBA=pAkex  ;  Rex(A)→kAB=pBkex

    pA  ≫  pB  ⇒  Rex(B)  ≫  Rex(A)

    ☞  The  minor  peak  can  be  undetectable  even  in  a  slow  exchange  regime.

    -150 -100 -50 0 50 100 150

    pA=0.8 ; pB=0.2R2A=R2B=5s-1

    ∆ν=200Hz

    0

    0.5

    1.5

    5.0

    50

    0.05

    kex/∆ν500

    ν(Hz)

    pAνA+pBνB

    Experiments  to  characterize  thermodynamics,  kinetics  and   structural   parameters   of   the   exchange   when  only  one  peaks  is  observed  ?

    49

  • thermodynamic parameters

    Kd

    = k1/k�1 = pB/pA

    �G = �RT lnK

    kinetic parameters

    kex

    = 1/⌧ex

    = k1 + k�1 = k1/pB = k�1/pA

    kex

    (T ) = k0 exp (�Ea/kT )

    structural parameters

    �! ; !A

    ; !B

    Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    50

    k1A � B�A k�1 �B

    ABEa

    ωA ωB

    ωA ωB

    ωAωB

    ωA ωB

    Δω

    ΔG

    ms μs1/πΔν

    fast regimeslow regime

    longitudinal  magne7za7on  

    exchange Lineshape

    relaxa7on  dispersionR2app=R2+Rex

    averaged  values

    One  observed  resonance,  several  states  in  exchange

    15N

    1H

  • Carine  van  Heijenoort  -‐  RMN  et  mouvements  moléculaires

    Cargèse  2013

    Characterization  of    dynamic  processes  in  the  spectral  timescaleSome  methods  to  characterize  conformational  exchange

    51

    ms μs1/πΔν

    régime rapiderégime lent

    échange  d’aimanta7on  longitudinale forme  de  raie

    Dispersion  de  relaxa7onR2eff=R2+Rex

    valeurs  moyennes

    Une  seule  résonance  apparente,  plusieurs  états  en  échange

    τcp/2τcp/2 τcp/2τcp/2

    y x

    2IzSy

    2n2n

    Tr/2

    Sx

    Tr/2

    14JNH

    14JNH

    Sx2IzSy

    RelaxationτCPMG

    15Ndecoupling

    Suppression ofDD-CSA cross-cor.

    t1

    1H

    2HzNy Nx exp[-R2eff(15N)Tr]

    acquisition

    Tr

    Reff2 = R02 + Rex(pB , kex, �!, ⌧CP , 2Necho)

    200 400 600 800 1000 1200

    5

    10

    15

    20

    25

    30

    35

    νCPMG

    (Hz)

    R2

    eff

    (Hz)

    residue 39 ; T=298K, pH=3.5, 700MHz

    es

    tim

    ate

    d R

    ex

    =1/2τCP

    relaxation dispersion experiment

    Afternoon  Practical  course

    ✓An  example  of  relaxation  dispersion  experiment‣sequence  analysis

    ✓Data  processing‣nmrPipe  /  macro

    ✓Extraction  of  exchange  parameters  from  the  NMR  data‣Fitting  procedure  writen  in  the  software  “octave”

    ✓Some  typical  examples