01 Combinatoriek I

Embed Size (px)

Citation preview

  • 8/9/2019 01 Combinatoriek I

    1/27

    Combinatorics

    Wiskundige Methoden / Mathematical Methods FEB21010(X)

    dr. Twan [email protected] - H11-10

    Econometric Institute

    May 1, 2013

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 1 / 27

  • 8/9/2019 01 Combinatoriek I

    2/27

    What is combinatorics?

    Combinatorics is about counting!

    Counting all possible license plates

    Counting the different hands in a card game

    Counting the number of passwords for a website

    Counting the possibilities to arrange books on a book shelf 

    Counting the ways to distribute bonuses over employees

    . . .

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 2 / 27

  • 8/9/2019 01 Combinatoriek I

    3/27

    Example: PasswordsA password for a website should satisfy the following conditions.

    It should consist of 12 characters.

    It should consist of letters and digits only.

    Question:  How many different passwords are possible.

    1 {a, b , . . . , z , A, B , . . . , Z , 0, 1, . . . , 9} ↔ {1, 2, . . . , 62}.

    2 Choosing a password is equivalent to selecting 12 times a numberbetween 1 and 62.

    3 Answer:

    6212 = 3, 226, 266, 762, 397, 899, 821, 056 ≈ 3.3 · 1021

    4 Two important observations:◮ Repetition is allowed: AAABBBCCCAAA is a valid password.◮ Order is important: ABCDEFGHIJKL  = LKJIHGFEDCBA.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 3 / 27

  • 8/9/2019 01 Combinatoriek I

    4/27

    Example: Counting the number of hands in a poker gameTexas Hold’em

    The game is played with a standard deck containing 52 cards.

    Every player gets two cards from the deck.

    Then, the game starts.

    Examples of hands:   {Ace♥, Ace♠},  {4♦, Jack♣}

    Question:   How many different hands are possible? 

    Two important observations:

    Repetition is  not  allowed: You cannot have  {Ace♠, Ace♠}.

    Order is  unimportant:   {4♦, Jack♣} = {Jack♣, 4♦}.

    Further questions:

    What is the probability of getting two Aces?

    What is the probability of getting two Hearts

    . . .Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 4 / 27

  • 8/9/2019 01 Combinatoriek I

    5/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;

    whether the order is important.

    Repetition is Repetition is

    k   from  n   not allowed allowedOrder is   k -permutation   k -permutation with

    important from  n   repetition from n

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 5 / 27

  • 8/9/2019 01 Combinatoriek I

    6/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;

    whether the order is important.

    Repetition is Repetition is

    k   from  n   not allowed allowedOrder is   k -permutation   k -permutation with

    important from  n   repetition from npasswords

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    hands in a card game

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 6 / 27

  • 8/9/2019 01 Combinatoriek I

    7/27

    Examples for remaining fundamental counting problems

    1 Committee to organize a party, consisting of 

    ◮ a chairman, and◮ a treasurer, and◮ a secretary.

    Characteristics: No repetition, order is important.

    Question:  If there are 10 candidates, how many committees can be formed? 

    2 A grandmother wants to distribute 20 chocolates over 10grandchildren.

    Characteristics: With repetition, order is unimportant.

    Question:   In how many ways can grandmother distribute the chocolates over her grandchildren? 

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 7 / 27

  • 8/9/2019 01 Combinatoriek I

    8/27

    Four fundamental counting problems

    Basic counting problem:  Select k times from a set of n elements.

    Four variants can be classified according towhether repetition is allowed;

    whether the order is important.

    Repetition is Repetition isk   from  n   not allowed allowed

    Order is   k -permutation   k -permutation withimportant from  n   repetition from n

    forming a committee passwords

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    hands in a card game distributing chocolate

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 8 / 27

  • 8/9/2019 01 Combinatoriek I

    9/27

    What is counting?

    Basic rule 1.0

    Counting   is determining the number of elements in a set.

    We denote the number of elements in a set  A  by |A|.

    The number of elements in a set  A  equals the number of ways tochoose an element  x  ∈ A.

    One-to-one rule 1.3Let  A  and  B  be finite sets. If and only if there is a one-to-onecorrespondence between  A  and  B , then the number of elements in  A  andB   is equal:   |A| = |B |.

    A one-to-one correspondence is also called a  bijection.Examples:

    ◮ {A, B , . . . , Z } ↔ {1, 2, . . . , 26}◮ Deck of cards  ↔ {1, 2, 3, 4} × {1, 2, . . . , 13} ↔ {1, 2, . . . , 52}.

    We denote the set {1, 2, . . . , n}  by N n.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 9 / 27

  • 8/9/2019 01 Combinatoriek I

    10/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;whether the order is important.

    Repetition is Repetition isk   from  n   not allowed allowed

    Order is   k -permutation   k -permutation withimportant from  n   repetition from n

    forming a committee passwords???

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    hands in a card game distributing chocolate

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 10 / 27

  • 8/9/2019 01 Combinatoriek I

    11/27

    Our first result

    Theorem 1.4:   k   from  n, with repetition, order is important

    Selecting a  k -permutation from  n elements, with repetition, can be done in

    nk 

    ways.

    Examples:

    The number of 12-character passwords over an alphabet of 62characters equals 6212 ≈ 3.3 × 1021.

    The number of integers that a computer can represent by 8 bits (= 1byte) equals 28 = 256.

    The number of three-letter ‘words’ on a license plate equals263 = 17576.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 11 / 27

  • 8/9/2019 01 Combinatoriek I

    12/27

  • 8/9/2019 01 Combinatoriek I

    13/27

    Rule of sum and rule of product

    Recall the following theorems from Precalculus.

    Rule of sum 1.1

    If  A  and  B  are finite,  disjoint  sets, then  |A ∪ B | = |A| + |B |.

    In general, if  A ∪ B  = ∅, then |A ∪ B | = |A| + |B | − |A ∩ B |.

    Rule of product 1.2

    If  A  and  B  are finite sets, then  |A × B | = |A| · |B |.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 13 / 27

  • 8/9/2019 01 Combinatoriek I

    14/27

    Example: Counting the possible license plates in Belgium

    A license plate in Belgium consists of 

    a number between 1 and 7;three capital letters;

    a number with three digits.

    Examples:   1-ABC-123; 4-DKM-542; 3-ZZZ-999;

    There are 100 combinations of three letters that cannot be used.Examples:   AAP, BOM, DIK

    Question:  How many license plates are possible in Belgium? 

    Two important observations:Repetition is allowed:   1-TTT-111

    Order is important:   1-ABC-123  = 1-CBA-213

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 14 / 27

  • 8/9/2019 01 Combinatoriek I

    15/27

    Example: Counting the possible license plates in BelgiumA license plate in Belgium consists of 

    a number between 1 and 7;

    three capital letters;

    a number with three digits.

    Exactly 100 three-letter combinations are forbidden.

    {License plates} ↔ X  × Y  × Z ,

    where

    X   = {1, . . . , 7} = N 7,

    Y   = {three-letter, non-forbidden words},

    Z  = {three-digit number}.

    |{License plates}|One-to-one

    ↑=   |X ×Y ×Z |

    Product rule↑=   |X | · |Y | · |Z | = 7 ·(263−100) ·103.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 15 / 27

  • 8/9/2019 01 Combinatoriek I

    16/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;whether the order is important.

    Repetition is Repetition isk   from  n   not allowed allowed

    Order is   k -permutation   k -permutation withimportant from  n   repetition from n

    forming a committee passwords???   nk 

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    hands in a card game distributing chocolate

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 16 / 27

  • 8/9/2019 01 Combinatoriek I

    17/27

    Example: Displaying products in a music store

    Consider a music store with 50 DVD’s .

    The store has room for displaying 10 DVD’s.(“Our recommendation” / “Our Top 10” /  . . .)

    Question:   In how many ways can the shop display  10  DVD’s? 

    50 · 49 · . . . · 41 = 50 · 49 · . . . · 41 ·

     40 · 39 · . . . · 1

    40 · 39 · . . . · 1

    = 50 · 49 · . . . · 41 · 40 · 39 · . . . · 1

    40 · 39 · . . . · 1

    = 50 · 49 · . . . · 1

    40 · 39 · . . . · 1=

     50!

    40! =

      50!

    (50 − 10)!

    Here  n! = n · (n − 1) · . . . · 1.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 17 / 27

    O

  • 8/9/2019 01 Combinatoriek I

    18/27

    Our second result

    Theorem 1.5:   k   from  n, without repetition, order is important

    Selecting a  k -permutation from  n  elements, without repetition, can bedone in

    P (n, k ) =  n!

    (n − k )!

    ways.

    Remarks:

    Note that  n! = n · (n − 1) · . . . · 1; 1! = 1; 0! = 1.

    Arranging all  n  items can be done in

    n!

    (n − n)! =

      n!

    0!  =

      n!

    1  = n!

    ways.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 18 / 27

    F f d l i bl

  • 8/9/2019 01 Combinatoriek I

    19/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;

    whether the order is important.

    Repetition is Repetition isk   from  n   not allowed allowed

    Order is   k -permutation   k -permutation withimportant from  n   repetition from n

    displaying DVD’s passwords

    P (n, k ) =   n!(n−k )!   nk 

    Order is not  k 

    -combination  k 

    -combination withimportant from  n   repetition from nhands in a card game distributing chocolate

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 19 / 27

    E i A i b k h lf

  • 8/9/2019 01 Combinatoriek I

    20/27

    Exercise: Arranging books on a shelf 

    A student possesses6 books on economics, and

    6 books on mathematics.

    The books are arranged in a sequence on a book shelf.

    How many options are there, if 

    1 the books can be placed in any order?

    2 the books on economics should be on the left?

    3 all books on mathematics should be adjacent?

    4 the subjects should alternate?

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 20 / 27

  • 8/9/2019 01 Combinatoriek I

    21/27

    I t S t diff

  • 8/9/2019 01 Combinatoriek I

    22/27

    Intermezzo: Set difference

    Set difference  A− B 

    Let  A  and  B  be sets. Then we define their difference as

    A − B  = {x  ∈ A : x   /∈ B }.

    Alternative notation for the set difference is  A \ B .

    Examples: Consider the sets  N 6  = {1, 2, 3, 4, 5, 6}  and  A = {1, 2, 3, 5}.Then

    N n − A = {4, 6}.

    Let  B  = {2, 5}. Then

    A − B  = {1, 3}.

    Let  C   = {3, 4}. ThenA − C   = {1, 2, 5}.

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 22 / 27

    F f d t l ti g bl s

  • 8/9/2019 01 Combinatoriek I

    23/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;

    whether the order is important.

    Repetition is Repetition isk   from  n   not allowed allowed

    Order is   k -permutation   k -permutation withimportant from  n   repetition from n

    displaying DVD’s passwords

    P (n, k ) =   n!(n−k )!   nk 

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    hands in a card game distributing chocolate???

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 23 / 27

    Our third ‘result’

  • 8/9/2019 01 Combinatoriek I

    24/27

    Our third result

    Important observation: Two similar problems

    1

    Selecting k 

     elements from a set of  n

     elements without repetition2 Selecting a subset of size  k   from a set with  n  elements.

    Definition:   k   from  n, without repetition, order is unimportant

    We define 

    C (n, k ) =

    n

    as the number of  k -combinations without repetition from  n

    We pronounce this as ‘n  choose  k ’, or ‘n  over  k ’

    Tomorrow, we will derive an expression that allows us to compute thesenumbers!

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 24 / 27

    Combinatorial theorems I

  • 8/9/2019 01 Combinatoriek I

    25/27

    Combinatorial theorems I

    Theorem: Complementarity (Exercise 1.21)

    For  n ≥ 0, 0 ≤ k  ≤ n, it holds that

    n

     =

      n

    n − k 

    .

    Proof  Consider the set  N n.nk 

      is the number of subsets of  N n  of size  k .

    If  A  is a subset of size  k , then  N n − A  is a subset of size  n − k .

    There is one-to-one correspondence between subsets of size  k   andsubsets of size  n − k :

    {subsets of size  k } → {subsets of size  n − k } : A → N n − A

    By the one-to-one rule the number of subsets of size  k  equals thenumber of subsets of size  n − k .

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 25 / 27

    Combinatorial theorems II

  • 8/9/2019 01 Combinatoriek I

    26/27

    Combinatorial theorems II

    Theorem: Pascal’s identity (Exercise 1.22)

    For  n ≥ 0, 1 ≤ k  ≤ n, it holds thatn + 1

     =

    n

     +

      n

    k − 1

    .

    Proof  Consider the set  N n+1.n+1k 

      is the number of subsets of  N n+1  of size  k .

    Each subset  A  of size  k  satisfies either1   n + 1  /∈ A:   A ⊆ N n:   A  is a subset of  N n  of size  k 2   n + 1 ∈ A:   A − {n + 1} ⊆ N n:   |A − {n + 1}|  is a subset of  N n  of size

    k − 1.There is a one-to-one correspondence between

    1   set of subsets of  N n  of size  k   or k − 1, and2   set of subsets of  N n+1  of size  k .

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 26 / 27

    Four fundamental counting problems

  • 8/9/2019 01 Combinatoriek I

    27/27

    Four fundamental counting problems

    Four basic counting problems can be classified according to

    whether repetition is allowed;

    whether the order is important.

    Repetition is Repetition isk   from  n   not allowed allowed

    Order is   k -permutation   k -permutation withimportant from  n   repetition from n

    displaying DVD’s passwords

    P (n, k ) =   n!(n−k )!   nk 

    Order is not   k -combination   k -combination withimportant from  n   repetition from n

    hands in a card game distributing chocolateC (n, k ) =

    n

    Twan Dollevoet (Econometric Institute)   Combinatorics   May 1, 2013 27 / 27