of 99 /99
Control de calidad del Hormigón Río Gallegos, Noviembre 2013 1

05 - analisis datos.pdf

Embed Size (px)

Text of 05 - analisis datos.pdf

Page 1: 05 - analisis datos.pdf

Control de calidad del Hormigón

Río Gallegos, Noviembre 2013

1

Page 2: 05 - analisis datos.pdf

Control de calidad

Desde que se comenzó con la producción de bienes, se han hecho intentos en controlar el proceso de manera de mejorar la calidad y los costos.Shewhart reconoció que dentro de un proceso de fabricación, no hay solamente variables naturales inherentes al proceso en sí, que afectan la calidad sino también variaciones que se pueden explicar.

2

Page 3: 05 - analisis datos.pdf

Control de calidad

Es posible establecer límites para la variación natural de cualquier proceso, de manera que las fluctuaciones dentro de esos límites, pueden ser explicados por causas aleatorias, pero cualquier variación por fuera de estos límites, variaciones especiales, representarían un cambio en el proceso en desarrollo.

3

Page 4: 05 - analisis datos.pdf

Control de calidad

Se pueden aplicar estos conceptos a la producción de hormigón en una planta de hormigón elaborado, por ejemplo, y para el requisito de lograr una resistencia a la compresión especificada.Las variaciones naturales existen en el proceso, debido a la variación en las materias primas (granulometría de los agregados, composición química, precisión en los pastones, comportamiento de la planta, muestreo y ensayos).

4

Page 5: 05 - analisis datos.pdf

Control de calidad

Las causas de variación, fuera de las naturales, podrían ser debido al cambio de los materiales componentes, la exactitud de las balanzas, personal nuevo, problemas con el equipo.

5

Page 6: 05 - analisis datos.pdf

Calidad

Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los ensayos.Por eso, no debe sorprendernos de que se trata de un material variable.

6

Page 7: 05 - analisis datos.pdf

Calidad

Ello significa que si se realizan ensayos sobre muestras de hormigón idénticas, se verificarán variaciones en las propiedades mecánicas entre las diversas muestras.Esa variabilidad se debe tener en cuenta a la hora de redactar las especificaciones.

7

Page 8: 05 - analisis datos.pdf

Calidad: factores

Los que contribuyen a esa variabilidad son:

MaterialesProducciónEnsayos

8

Page 9: 05 - analisis datos.pdf

Verificación de la Calidad

Se refiere colectivamente a todas los pasos dados para asegurar la confianza adecuada de que el hormigón se comportará satisfactoriamente en servicio.

9

Page 10: 05 - analisis datos.pdf

Control de la Calidad

Se aplica a cada acción empleada para medir las propiedades del hormigón y sus materiales componentes y controlarlas dentro de especificaciones establecidas.

10

Page 11: 05 - analisis datos.pdf

Calidad tradicional

Muchas especificaciones del hormigón, se basaban en recetas o prescripciones, que no tenían en cuenta las características del producto final.

11

Page 12: 05 - analisis datos.pdf

Calidad tradicional

Antes, se solía tomar en forma periódica, una muestra supuestamenterepresentativa, se la ensayaba y se la comparaba con lo que establecía la especificación.Si ese material estaba dentro de las tolerancias fijas, se daba por aprobado y si no lo hacía, se lo rechazaba.

12

Page 13: 05 - analisis datos.pdf

Ensayos

Cuando se realiza un ensayo, existe la posibilidad de que el material tenga un 50 % de posibilidades de pasar el límite de la especificación y otro 50 % de no hacerlo. Si falla y se realiza un segundo ensayo, la probabilidad sigue siendo la misma (50 % + 50 %) con lo cual se verifica que existe un 75 % de posibilidad de pasar y un 25 % de no hacerlo.

13

Page 14: 05 - analisis datos.pdf

Ensayos

14

Page 15: 05 - analisis datos.pdf

Calidad

Una de las características a señalar es que se debe realizar un muestreo totalmente al azar, pues sino las técnicas estadísticas no dan resultados significativos.

15

Page 16: 05 - analisis datos.pdf

Muestreo al azar- Lote

Involucra una selección que le da igual probabilidad a todas las partes que conforman el lote, de poder ser elegidas.

Es una cantidad prescripta y definida del material , que puede ser un volumen, un área, una cantidad de producción, unidades, etc, que se produce mediante el mismo proceso y con un mismo propósito

16

Page 17: 05 - analisis datos.pdf

Lote

Al establecer su tamaño, se puede elegir la ubicación y la frecuencia del muestreo, para decidir qué cantidad de material es necesario tomar para cumplir con los límites especificados.

17

Page 18: 05 - analisis datos.pdf

Lote

Bajo este concepto, de muestreo y ensayo lote por lote, el proceso constructivo del hormigón se puede pensar como la producción de sucesivos lotes, que se deben ensayar para ser aceptados o rechazados.

18

Page 19: 05 - analisis datos.pdf

Lote: ejemplo

19

Page 20: 05 - analisis datos.pdf

Muestra

La muestra resulta ser una porción del lotey se la usa para representarlo.Este término se emplea en un sentidoestadístico.

20

Page 21: 05 - analisis datos.pdf

Lote: ejemplo

21

Page 22: 05 - analisis datos.pdf

Lote

Se prefiere que en general haya cuatro o cinco porciones de la muestra.

22

Page 23: 05 - analisis datos.pdf

Variabilidad: medición

Es necesario definir el concepto de variabilidad más precisamente.La distribución de las resistencias del hormigón se pueden aproximar a una distribución normal de frecuencias o de Gauss.

23

Page 24: 05 - analisis datos.pdf

Distribución normal de la resistencia a la compresión

Se define mediante dos parámetros, el valor medio de la distribución y la desviación estándar, que es una medida de la extensión de los resultados de la resistencia alrededor del valor medio.

24

Page 25: 05 - analisis datos.pdf

Parámetros estadísticos básicos

• Se verifica que los resultados de los ensayos de los materiales de construcción tienden a agruparse alrededor de un valor central definido, denominado MEDIA o PROMEDIO.

• Los valores tienden a disponerse en forma simétrica alrededor del valor central, por lo que permite el empleo de la curva de distribución normal o de Gauss.

25

Page 26: 05 - analisis datos.pdf

Expresión Curva de Gauss

26

Page 27: 05 - analisis datos.pdf

Desviación estándar

27

Page 28: 05 - analisis datos.pdf

Curva de Gauss

Tiene forma de campana.Esto permite establecer relaciones entre la media y la desviación estándar , para fijar límites realistas en las especificaciones de acuerdo con los tamaños de muestras seleccionados.

28

Page 29: 05 - analisis datos.pdf

Resultados de ensayos de resistencia de hormigón

29

Page 30: 05 - analisis datos.pdf

Curva de Gauss

Una desviación estándar baja significa que la mayor parte de los resultados de la resistencia estarán próximos al valor medio, y una desviación estándar elevada, representa resistencias que estarán muy por arriba y por debajo de la media.El área bajo la distribución normal entre dos valores de ¨ x ´ representa la probabilidad de que un resultado caiga dentro del intervalo de valores.

30

Page 31: 05 - analisis datos.pdf

Curva de Gauss

El término ¨ cola ¨ se usa para significar que el área debajo de la distribución normal entre un valor, por ejemplo, una resistencia a la compresión, y donde la frecuencia es efectivamente cero.Para la resistencia es importante la cola más baja, mientras que es importante para otras propiedades, por ejemplo, la consistencia, en ambas colas, superior e inferior.

31

Page 32: 05 - analisis datos.pdf

Curvas de Gauss

32

Page 33: 05 - analisis datos.pdf

Coeficiente de variación

s V = -------- x 100

X

33

Page 34: 05 - analisis datos.pdf

Distribución de Gauss

Si se acepta que existe una distribución normal de las resistencias a la compresión, surgen varias implicancias:No se puede diseñar en base a la resistencia media, pues si se lo hace así, significaría que la mitad del hormigón colocado tendría resistencias que caerían por debajo del valor de diseño lo cual es inaceptable.

34

Page 35: 05 - analisis datos.pdf

Distribución de Gauss

Por otra parte, no se puede exigir que todas las resistencias estén por encimadel valor de diseño, porque todos los valores están distribuidos normalmente. Por eso, se debe decidir arbitrariamentequé constituye un porcentaje aceptable de probetas que caen por debajo de un valor de diseño mínimo.

35

Page 36: 05 - analisis datos.pdf

Distribución de Gauss

Usando ese porcentaje y conociendo o suponiendo, la desviación estándar de la resistencia que se puede esperar, se puede determinar la resistencia mediarequerida para la cual diseñar la mezcla de hormigón.

36

Page 37: 05 - analisis datos.pdf

Curva de Gauss

Cuando se realizan los ensayos del hormigón, se trata de evaluar la distribución de la resistencia de todo el hormigón de la estructura, basado en un tamaño de muestra limitado. Se deben recolectar suficientes datos para que los ensayos sean representativos del hormigón en la estructura, pero solamente se puede hacer una estimación.

37

Page 38: 05 - analisis datos.pdf

Resistencia a la compresión

Las variaciones posibles se deben a:

- Variaciones en los métodos de ensayo.

- Propiedades de la mezcla de hormigón o de sus componentes.

38

Page 39: 05 - analisis datos.pdf

Método de ensayo

Se determina mediante el cálculo de la variación de un grupo de cilindros preparados de una misma muestra, de una mezcla de hormigón determinada.

39

Page 40: 05 - analisis datos.pdf

Variaciones de mezcla a mezcla

Las diferencias en la resistencia a la compresión se pueden deber a:

- Las características y propiedades de los componentes.

- La dosificación, el mezclado y el muestreo.

40

Page 41: 05 - analisis datos.pdf

Resistencia a la compresión

Se debe recordar que las probetas de control durante la construcción proveen una buena base para la evaluación de la resistencia potencial del hormigón, colocado en la estructura pero no necesariamente del hormigón endurecido en dicha estructura, que puede ser de mejor o peor calidad.

41

Page 42: 05 - analisis datos.pdf

Calidad del hormigón

Se puede determinar mejor mediante el ensayo de, como mínimo, 30 ensayos normalizados de una mezcla, aunque existen métodos estadísticos para evaluar dicha calidad con un número de datos menor.Se ha demostrado por la gran cantidad de ensayos que se verifica una curva de Gauss alrededor del valor medio.

42

Page 43: 05 - analisis datos.pdf

Calidad del hormigón

En principio los valores de los resultados de los ensayos se grafican para formar un histograma, o distribución de frecuencias, que se puede ajustar a una curva de distribución normal.Se calcula el promedio para verificar que la f´c cae dentro de ciertos límites especificados.

43

Page 44: 05 - analisis datos.pdf

Calidad del hormigón

O sea, además del promedio X se determina también la desviación estándar s.Generalmente el inspector no está interesado en graficar el histograma, más bien podrá determinar el promedio, la desviación estándar o el coeficiente de variación para un determinado conjunto de resultados, sin recurrir a una gráfica.

44

Page 45: 05 - analisis datos.pdf

Calidad del hormigón

El productor determina la resistencia promedio del hormigón, f¨c de manera que la mezcla sea la adecuada para la obra y cumpla con las especificaciones establecidas.

45

Page 46: 05 - analisis datos.pdf

Análisis estadístico del hormigón en obra

Como consecuencia del control, se han de obtener una serie de resultados de los ensayos, correspondiendo cada uno de ellos al promedio de dos o tres probetas compañeras, procedentes de la misma muestra, generalmente a 28 días.Para que estos resultados tengan algún significado, es necesario proceder al análisis estadístico.

46

Page 47: 05 - analisis datos.pdf

Resistencia a la compresión promedio

El primer parámetro a obtener es una medida de tendencia central, es decir, el promedio de los resultados, pero aunque suministra información valiosa sobre el hormigón analizado, no resulta suficiente.Se debe disponer de información, de cómo ha sido la homogeneidad del hormigón, si los valores están alrededor de la media o se extienden por arriba y debajo de ella.

47

Page 48: 05 - analisis datos.pdf

Resistencia característica

Se la especifica en términos del ensayo de un cilindro normalizado de 15 x 30 cm, realizado a los 28 días.Se define como el valor de la resistencia por debajo de la cual, se espera que caiga el 5 % de la población de todas las determinaciones posibles, del volumen de hormigón en estudio.

48

Page 49: 05 - analisis datos.pdf

Resistencia característica

Es decir, significa que si se ensayara cada pastón, el 5 % de los resultados caería dentro de la cola ¨ más baja ¨ de la distribución normal que comienza 1,64 σ por debajo de la resistencia media real.Pero la resistencia media real no se conocerá hasta que el hormigón haya sido producido y ensayado, y por eso, la resistencia media buscada se fija generalmente en un valor ligeramente mayor para asegurar que el hormigón logra, como mínimo, la resistencia característica especificada.

49

Page 50: 05 - analisis datos.pdf

Resistencia característica

Cuando se establece una resistencia a lacompresión mínima, no quiere decir esto que sea mínima absoluta, pues siempre hay valores que seguramente están por debajo de ese límite, por lo que surge la necesidad de fijar una tolerancia o fracción defectuosa máxima.Se denomina valor característico.

50

Page 51: 05 - analisis datos.pdf

Resistencia característica

Se adopta de acuerdo con la tensión de rotura final o por las tensiones admisibles del hormigón. El ACI y el CIRSOC, aceptan un 10 % de defectuosos mientras que el CEB, solamente el 5 %.Para el segundo de los casos, es corriente aceptar un 20 %.

51

Page 52: 05 - analisis datos.pdf

Resistencia característica buscada

R buscada = f ck + k .σf ck = resistencia a la compresión, característicaσ = estimador de la desviación estándar de la población

k = constante estadísticak .σ = el margen

52

Page 53: 05 - analisis datos.pdf

Resistencia característica

fck = fcm – t.so

fck = fcm (1- t.V)

53

Page 54: 05 - analisis datos.pdf

Resistencia característica

54

Page 55: 05 - analisis datos.pdf

Resistencia característica

55

Page 56: 05 - analisis datos.pdf

Resistencia característica

Según el criterio que se adopte:fck = fcm – 0,84 s (20 %)

fck = fcm – 1,28 s (ACI, CIRSOC,

10%)

fck = fcm – 1,64 s (CEB,5%) 56

Page 57: 05 - analisis datos.pdf

Resistencia característica

Es muy valiosa pues además de referirse al valor medio de los resultados, incluye además una idea de la dispersión de ellos, al tener en cuenta el valor de la desviación estándar, s.O sea, dos hormigones con el mismo valor de resistencia media, pero valores diferentes de la dispersión, brindan hormigones de distinta calidad.

57

Page 58: 05 - analisis datos.pdf

Ejemplo

Característica H1 H2fcm (MPa) 34,0 34,0s (MPa) 2,7 8,5fc aceptable (%) 20 20fck = 34,0 – 0,84 x 2,7 = 31,7 fck = 34,0 – 0,84 x 8,5 = 26,9H1 es mejor que H2.

58

Page 59: 05 - analisis datos.pdf

Calificación de una obra (fck>20 MPa)

El ACI relaciona la desviación estándar s, con la calidad de una obra:

s (kg/cm2) Grado de control

< 28 Excelente

28 a 35 Muy bueno

35 a 42 Bueno

42 a 49 Regular

> 49 Pobre

59

Page 60: 05 - analisis datos.pdf

Error del ensayo

Se deben tener en cuenta siempre los errores que se cometen en el muestreo y en el ensayo de las probetas.En el caso del ensayo, surge de cuantificar la dispersión entre probetas compañeras pertenecientes a una misma muestra.Da una idea de la idoneidad del laboratorio de ensayos.

60

Page 61: 05 - analisis datos.pdf

Error de ensayo

Para determinarlo, se calculan los rangos individuales y el rango promedio:Rango individual = diferencia entre los valores mayor y menor de probetas compañeras. Rango promedio = promedio del conjunto de muestras, debiendo ser un número superior a 10.

61

Page 62: 05 - analisis datos.pdf

Error de ensayo

s1 = R . dEn este caso s1 representa la desviación estándar entre probetas compañeras o desviación estándar de ensayo.d es una constante que depende del número de probetas compañeras, o sea, vale 0,887 para dos probetas, 0,591 para tres probetas y 0,486 para cuatro probetas.

62

Page 63: 05 - analisis datos.pdf

Error de ensayo

s1

V1 = --------- x 100fcm

Es el coeficiente de variación entre probetas compañeras o del ensayo.

63

Page 64: 05 - analisis datos.pdf

Error de ensayo

Para evaluar el error, se puede emplear la consideración que hace el ACI:

Grado de control V1 entre probetas compañeras, %

Excelente Menor que 3,0

Muy bueno 3,0 a 4,0

Bueno 4,0 a 5,0

Regular 5,0 a 6,0

Deficiente Mayor que 6

64

Page 65: 05 - analisis datos.pdf

Ejemplo

Resistencias individuales de probetas:1 = 32,5 – 33,3 MPa 7 = 35,0 – 34,2 MPa2 = 34,0 – 32,1 MPa 8 = 35,0 – 36,2 MPa3 = 36,5 – 37,5 MPa 9 = 33,2 – 34,6 MPa4 = 38,0 – 37,0 MPa 10 = 38,1 – 36,9 MPa 5 = 38,5 – 36,5 MPa 6 = 37,2 – 35,8 MPa fc10 = 35,5 MPa

65

Page 66: 05 - analisis datos.pdf

Ejemplo

Resistencia de la muestra:1 = 32,9 MPa 7 = 34,6 MPa 2 = 33,0 MPa 8 = 35,6 MPa3 = 37,0 MPa 9 = 33,9 MPa4 = 37,5 MPa 10 = 37,5 MPa5 = 37,5 MPa6 = 35,5 MPa

66

Page 67: 05 - analisis datos.pdf

Rango de la muestra

1 = 0,8 MPa 7 = 0,8 MPa2 = 1,9 MPa 8 = 1,2 MPa3 = 1,0 MPa 9 = 1,4 MPa 4 = 1,0 MPa 10 = 1,2 MPa5 = 2,0 MPa6 = 1,4 MPa ¯ R = 1,27 MPa

67

Page 68: 05 - analisis datos.pdf

Cálculos

s1 = R . d Para dos probetas d = 0,887.s1 = 1,27 x 0,887 = 1,13 MPa.

s1 1,13V1 = ------ x 100 = --------- x 100 = 3,2 %

f10 35,6 Según la tabla anterior, el grado de controles muy bueno.

68

Page 69: 05 - analisis datos.pdf

Evaluación de la Resistencia mediante las Medias Móviles

Se lleva un registro cronológico de los resultados de los ensayos de resistencia de un lote de hormigón.

Se van evaluando por grupos iguales a medida que se van obteniendo nuevos resultados, de manera que siempre el grupo lo conforma un mismo número de ellos, agregando el nuevo valor y eliminando en más antiguo.

69

Page 70: 05 - analisis datos.pdf

Medias Móviles

Lo más común es que el grupo esté conformado por tres muestras y la serie de resultados serán:

fci = a, b, c, d, e …….La media móvil de tres muestras consecutivas se obtiene mediante la serie de los 3 promedios de las muestrasconsecutivas:

70

Page 71: 05 - analisis datos.pdf

Medias Móviles

a + b + c b + c + d c + d + efc3 = --------------- ; ------------- ; --------------

3 3 3

Se debe recordar que cada resultado, se obtiene como el promedio de 2 ó más probetas compañeras.

71

Page 72: 05 - analisis datos.pdf

Medias Móviles

Tiene la ventaja respecto de la resistencia característica en que se hace en forma continua, lo que permite tomar acciones correctivas cuando se observan resultados ajustados o defectuosos.La limitación es que sólo puede aplicarse a lotes de hormigón que estén representados por más de 10 muestras.

72

Page 73: 05 - analisis datos.pdf

Medias Móviles

Para verificar que cada parcialidad cumple con la resistencia especificada, se deben cumplir dos requisitos:

fc3 ≥ fc + kO sea debe superar la resistencia especificada más una constante.

fci ≥ fc - j

73

Page 74: 05 - analisis datos.pdf

Medias Móviles

¯ fc3 es la resistencia media de cualquier grupo de 3 probetas consecutivas, en MPa.fc es la resistencia especificada o de proyecto, en MPa.k, j son constantes de evaluación, que dependen de la fracción defectuosa aceptable y del tipo de hormigón, en MPa.

74

Page 75: 05 - analisis datos.pdf

Valores de j y k

75

Page 76: 05 - analisis datos.pdf

Medias Móviles

En caso contrario, se debe recurrir a la resistencia característica, que considera el total del lote, sin perjuicio de llevar paralelamente un control parcial por el criterio de las Medias Móviles a título informativo.

76

Page 77: 05 - analisis datos.pdf

CUSUM

Mide el comportamiento relativo a las intenciones de diseño. Compara los resultados con valores objetivos y determina si son consistentes con los niveles requeridos. Es excelente para detectar cambios y consiste simplemente en un gráfico de la suma de la característica de un proceso con el tiempo.

77

Page 78: 05 - analisis datos.pdf

Ventajas del CUSUM

Es más sensible en detectar cambios en las magnitudes que se experimentan durante la producción del hormigón.Se pueden tomar decisiones confiables con pocos resultados.La tendencia de los resultados se puede identificar a partir de la pendiente de un gráfico.

78

Page 79: 05 - analisis datos.pdf

Ventajas del CUSUM

Las pendientes de los gráficos se pueden utilizar para determinar las magnitudes de las propiedades, por ejemplo, resistencia media y desviación estándar.La ubicación de los cambios en las pendientes de los gráficos, indican aproximadamente cuándo ocurrieron los cambios.

79

Page 80: 05 - analisis datos.pdf

CUSUM

Las desviaciones de los resultados individuales de la media tienen una distribución normal. La desviación promedio de la media es aproximadamente cero para un proceso estable.

80

Page 81: 05 - analisis datos.pdf

CUSUM

Por eso, si εi es la diferencia entre la resistencia a la compresión promedio y el i - ésimo resultado de resistencia a la compresión,

εi = X - Xi

81

Page 82: 05 - analisis datos.pdf

CUSUM

∑ εi = ∑ (X – Xi) = 0

siempre que no cambie la resistencia a la compresión promedio y el número de ensayos (N) sea suficientemente grande.

82

Page 83: 05 - analisis datos.pdf

CUSUM

Si ocurre algún cambio en un material del hormigón, en la producción, la colocación, el ensayo, en variaciones estacionales, o cualquier otras causas asignables, las desviaciones de las variaciones de los resultados de ensayos alrededor de la media no son más al azar y εi no será más 0, en promedio.Si la causa asignable es constante, la suma de εicambiará en una forma lineal.

83

Page 84: 05 - analisis datos.pdf

CUSUM

Un cambio en la pendiente del gráfico indica una diferencia en la resistencia promedio a partir del valor supuesto. Una vez que se detecta la tendencia, se deben efectuar análisis posteriores para el gráfico del CUSUM y de los ensayos del hormigón, así como su manipulación, los materiales, su producción y el ambiente, para determinar la probable causa del cambio.

84

Page 85: 05 - analisis datos.pdf

Cálculos del CUSUM

Los datos previos de una mezcla de hormigón, producido para proveer un f´c de30 MPa, indican una resistencia promediode 35,8 MPa . Durante el proyecto, están disponibles los datos de resistencia a la compresión secuencial. La carta CUSUM se puede construir a partir de los datos.

85

Page 86: 05 - analisis datos.pdf

Cálculos del CUSUM

86

Page 87: 05 - analisis datos.pdf

Cálculos de CUSUM

Usando estos 19 resultados de ensayos solamente, la resistencia a la compresiónpromedio es 34,8 MPa y la desviaciónestándar de la muestra es 2,41 MPa.Se calcula para las primeras 3 entradas. También se provee la Media Móvil de 3 ensayos (MA3) porque la variable de control de calidad es comúnmente monitoreada.

87

Page 88: 05 - analisis datos.pdf

Conclusiones

La desviación estándar baja indica un control excelente aparente.La resistencia promedio es mayor que f´c > f´cr pero 1,0 MPa menor que la resistencia promedio determinada a partir de los datos previos.No se verifica que un promedio móvil de tres resultados es menor que f´c.

88

Page 89: 05 - analisis datos.pdf

Gráfico de CUSUM

89

Page 90: 05 - analisis datos.pdf

Gráfico de CUSUM

La figura indica claramente que ha ocurrido un desplazamiento. Una disminución en el nivel de la resistencia media se origina aparentemente no más allá del décimo ensayo de resistencia.Se puede hacer una simple estimación de la disminución en el nivel de resistencia que ha ocurrido a partir de la pendiente de la carta CUSUM.

90

Page 91: 05 - analisis datos.pdf

Gráfico de CUSUM

La pendiente del ensayo Nº 10 al ensayo Nº 19 se puede estimar como 18,9 (la suma acumulativa de las diferencias entre el Ensayo Nº 19 dividido por 9 (19 - 10 ensayos) o aproximadamente 2,1 MPa.

91

Page 92: 05 - analisis datos.pdf

Test de Q para detectar valores anómalos (Dean y Dixon)

Es la herramienta estadística más común para ser usada para detectar valores aberrantes. Se basa esto en la brecha y el rango, a un número n dado.

/O – X /Q = ----------

R92

Page 93: 05 - analisis datos.pdf

Valores críticos de Q

93

Page 94: 05 - analisis datos.pdf

Test de Q

Si el Qcalc < Qcrit (tabla) al nivel de probabilidad elegido, se debe aceptar la medición sospechosa.

Si Qcalc > Qcrit resulta descartable, se debe rechazar ese dato, con el nivel de probabilidad elegido.Se aconseja medir más veces para tener mayor confianza en el resultado.

94

Page 95: 05 - analisis datos.pdf

Ejemplo

Se obtuvieron los siguientes valores de NO2

- en una muestra de agua de río (ppm):

0,409 0,410 0,401 0,380Hay algún dato sospechoso? El último.Se ordenan, por ejemplo, los datos en forma creciente:

0,380 0,401 0,403 0,410Entre los valores extremos, se calcula el rango: 0,410 – 0,380 = 0,030 ppm 95

Page 96: 05 - analisis datos.pdf

Ejemplo

Cuál es la diferencia con el valor más cercano?

/ 0,380 – 0,401/ = 0,031

Qcalc = (0,380 – 0,401)/0,030 = 0,70

Qtab = 0,78Qcalc < Qcrit , debe aceptarse la medida discordante.

96

Page 97: 05 - analisis datos.pdf

Test de Grubbs

Es una manera alternativa para detectar resultados anómalos.Se basa en un valor de t aceptable a un n dado. Supone normalidad.

97

Page 98: 05 - analisis datos.pdf

Test de Grubbs

98

Page 99: 05 - analisis datos.pdf

Ejemplo

Se tienen los siguientes valores en una determinación de NO2

- en agua de río:0,403 ; 0,410 ; 0,401 ; 0,380 ; 0,400 ; 0,413 ; 0,411.¯ x = 0,4026 s = 0,01121

Gcal = / 0,380 – 0,4025/ / 0,01121 = 2,016Gcrit (p= 0,05) = 1,938

99