35
1 Synthesis and Structural Characteriz ation, of Nickel(II) Complexs Suppor ted by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioace talization of Aldehyde 學學 學學學 學學學學 學學學 學學 Thioacetalization HO N H P O N N Ni Br Br

1 Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • Slide 1
  • 1 Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization of Aldehyde Thioacetalization
  • Slide 2
  • 2 Corey-Seebach Reaction Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, 300-105. n=2-6 Base
  • Slide 3
  • 3 Acetalization and Thioacetalization of Carbonyl Compounds
  • Slide 4
  • 4 The Earlier Catalyst for Thioacetalization J.W. Ralls, et. al., J. Am.Chem. Soc. 1949, 71, 3320-3325
  • Slide 5
  • 5 HCl Catalyzed Thioacetalization Robert Ramage, et. al., J. Chem. Soc., Perkin Trans. 1 1984, 71, 1547-1553.
  • Slide 6
  • 6 Lewis Acid Catalyzed Thioacetalization Conventional Lewis Acids BF 3 -Et 2 O ZnCl 2 AlCl 3 SiCl 4 LiOTf InCl 3 Nakata, T. et. al., Tetrahedron Lett. 1985, 26, 6461-6464. Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, 5009-5017. Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn. 2001, 74, 2401-2406. Transition Metal Lewis Acids TiCl 4 WCl 6 CoCl 2 Sc(OTf) 3 MoCl 5 NiCl 2 Kumar, V. et. al., Tetrahedron Lett. 1983, 24, 1289-1292. Firouzabadi, H. et., al. Synlett 1998, 739-741. Goswami, S. et. al., Tetrahedron Lett. 2008, 49, 3092-3096. Lanthanide Metal Lewis Acids Lu(OTf) 3 Nd(OTf) 3 Kanta, D. S. J. Chem. Res. Synop. 2004,230-231. Kanta, D. S. Synth. Commun. 2004, 34, 230-231.
  • Slide 7
  • 7 BF 3 -Et 2 O Catalyzed Thioacetalization One use only Paulo J.S. Moran. J. Organomet. Chem., 2000, 603, 220-224
  • Slide 8
  • 8 MoCl 5 or MoO 2 Cl 2 Catalyzed Thioacetalization S. Goswami, A. C. Maity. Tetrahedron Letters, 2008, 49, 30923096 One use only
  • Slide 9
  • 9 CoCl 2 Catalyzed Thioacetalization 1hr 91 % One use only 5 mole% CoCl 2 Surya Kanta De. Tetrahedron Letters, 2004, 45, 10351036
  • Slide 10
  • 10 Nickel(II) Chloride Catalyzed Thioacetalization 2.5 hour 96 % A. T. Khan et al., Tetrahedron Lett. 2003, 44, 919922 One use only 10 mole % NiCl 2
  • Slide 11
  • 11 Motivation 1.Traditional high valent metal halide Lewis acids are difficult to handle ex. MCl n,M=Zn W Co Mo.. 2.Nickel is less expensive than other transition metal NiCl 2 50g $ 29.2 WCl 6 100g $ 152.5 PdCl 2 25g $ 849 NIBr 2 50g $ 72.2 W(CO) 6 50g $ 176 3.(DME)NiBr 2 as preferable precursor not (DME)NiCl 2 [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 & [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiCl 2 4.Use HO(CH 2 ) 11 N(H)P(O)(2-py) 2 as chelate ligand [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2
  • Slide 12
  • 12 Ni => small o => tetrahedral & square planar Pd & Pt => large o => square planar Ligands => large, weak-field => tetrahedral Ligands => small, strong-field => square planar Comparison of M 2+ (d 8 species) Square Planar vs. Tetrahedral Complexes
  • Slide 13
  • 13 R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706. The tetrahedral structure is increasingly favored in the orders PPh 2 R P(C 2 H 5 ) 3 < P(C 2 H 5 ) 2 C 6 H 5 < PC 2 H 5 (C 6 H 5 ) 2 < P(C 6 H 5 ) 3 X Cl < Br < I Square Planar - Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh 2 R) 2 X 2
  • Slide 14
  • 14 Preparation of Aminodipyridylphosphine Oxide Ligand 75 % 1 93 % 2
  • Slide 15
  • 15 Preparation of Nickel(II) Complex Catalyst 76 % Paramagnetic 3 2
  • Slide 16
  • 16 Chemical Shift of Paramagnetic Compounds for NMR observed = diamagnetic + hyperfine diamagnetic = diamagnetic shift corresponds to the values for the free ligand. hyperfine = contact + dipolar contact = contact shifts are caused by spin delocalization of the unpaired electrons through chemical bonds (through bond) dipolar = dipolar shifts, between the paramagnetic center and the nucleus of interaction (through space) due to the paramagnetic center presence Major Broad signal J. Phys. Chem. A, 2003, 107, 5821-5825
  • Slide 17
  • 17 Square planar Tetrahedral
  • Slide 18
  • 18 IR of [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 1569 cm -1 1428 cm -1 1593 cm -1 1430 cm -1 [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2
  • Slide 19
  • 19 EPR of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 g=2 g = 2.18
  • Slide 20
  • 20 SUQID of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 = m / H m = ( / W) M eff = (3k / N2)1/2(mT)1/2 = 2.828( m T) 1/2 m , H (10000 guess), m , W , M eff , T , K , N 6.02 x 1023 slope = 1/( m T) = 0.936 m T = 1/0.936 eff = 2.828 ( m T) 1/2 eff = 2.92
  • Slide 21
  • 21 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 Tetrahedral eff = 2.92 The Organometallic Chemistry of The Transition Metals. 2005
  • Slide 22
  • 22 FAB-MS of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr + = 528 m + /Z
  • Slide 23
  • 23 Nickel Lewis Acids Complex Catalyzed Thioacetalization Thiol = =
  • Slide 24
  • 24 Entry Time Yield (%)Paper Reported cat. (NiCl 2 ) Time Yield (%) 1 1.5 hr922.75 hr96 22 min>998 min96 410 min9945 min90 65 hr9220 hr82
  • Slide 25
  • 25 Entry Time Yield (%) 2 2 min>99 340 min90 410 min99 52 hr90 Entry Time Yield (%) 6 5 hr92 715 hr80 83 hr92
  • Slide 26
  • 26 Entry Time Yield (%) 10 2 hr91 1160 min95 124.5 hr87 1360 min92 Entry Time Yield (%) 14 60 min/ 4.5 hr 79 / 70 60 min94
  • Slide 27
  • 27 Entry Time Yield (%)Paper Reported cat. (NiCl 2 ) Time Yield (%) 15 2.5 hr892.5 hr94 165 min>9930 min93 1830 min941.15 hr89 2018 hr93
  • Slide 28
  • 28 Entry Time Yield (%) 16 5 min>99 172.5 hr91 1830 min94 194.5 hr92 Entry Time Yield (%) 20 18 hr93 2118 hr61 226.5 hr82
  • Slide 29
  • 29 Entry Time Yield (%) 24 2 hr91 2530 min91 265.5 hr79 2750 min97 Entry Time Yield (%) 28 30 min/ 5.5 hr 75/ 82 30 min93
  • Slide 30
  • 30 EntryRThiol 40 o C25 o C Time Yield (%) 29 10 min881.5 hr (1) 92 3015 min872.5 hr (15) 89 311.5 hr865 hr (6) 92 323 hr9018 hr (20) 93
  • Slide 31
  • 31 Comparison of Catalytic Activity Amoung Various Different Catalyst EntryCat.TimeYield (%) APaper ( NiCl 2 anhydrous)30 min93 BNONE24 hour96 CHO(CH 2 ) 11 N(H)P(O)(2-py) 2 190 hour34 D(DME)NiCl 2 5 min90 E[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiCl 2 35 min93 F(DME)NiBr 2 5 min95 G[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 5 min>99
  • Slide 32
  • 32 Proposed Mechanism (3)(3)
  • Slide 33
  • 33 Recyclable Nickel(II) Complex Catalyst for Thioacetalization of Aldehyde 1 H NMR Solvent= CDCl 3 (0.01478M 4-Iodoanisole) Recycling NO.Reaction Time Yield 15 min94 % 25 min99 % 35 min99 % 45 min99 % 55 min99 % 6.5 min99% 7.5 min99 % 8.5 min99 %
  • Slide 34
  • 34 Near Future Work for Nickel(II) Complex Immobilization onto AuNPs surfaces NiBr 2 (DME) Cat.
  • Slide 35
  • 35 Conclusions 1.We have successfully synthesized an air- and water-stable and efficient catalyst { [HO(CH 2 ) 11 NHPOpy 2 ]NiBr 2 }. 2. We use 1 H NMR FT-IR EPR SQUID and FAB-MS for structural characterization of Nickel(II) complex, we have proved the compound demonstrated that it is a paramagnetic tetrahedral compound, and we will proceed detection of Elemental Analysis (EA). 3.In Ni-catalyst series, the Nickel(II) complex only can be reused for catalytic of thioacetalization of aldehyde many times without any loss of reactivity.
  • Slide 36
  • 36 Chemoselectivities in Acetalization, and Thioacetalization J. Phys. Chem. A 2006, 110, 2181-2187
  • Slide 37
  • 37 (DME)NiCl 2 5g 3549 (DME)NiBr 2 5g 4060 $ 77.3 CoCl 5 100g $ 75 MoCl 5 100g $ 130 MoO 2 Cl 2 10g $ 120
  • Slide 38
  • 38 EPR of [Ni(CTH)DTBSQ]PF 6 at B = 3.2 Tesla g = 2 g 1 = 5.8 g 1 = 2.4 g 1 = 1.7 Inorganic Chemistry, 1988, 27, 2831-2836 Zero-field spectra and Kramers degeneracy (Kramers doublet)