7
 Stu dy of CPW-fe d circ ula r disc mon opo le ant enn a for ultra wideband applications J. Liang, L. Guo, C.C. Chiau, X. Chen and C.G. Parini Abstract:  The paper presents a study of coplanar waveguide (CPW) fed circular disc monopole antenna for ultra-wideband (UWB) applications. A circular disc monopole printed on a dielectric substrate and fed by a 50 O CPW on the same layer can yield an ultra-wide  10 dB retur n los s bandwidth with satisfactory radiation patterns. The performance and characteristics of the antenna are investigated in order to understand its operation. Good agreement has been obtained between the simulation and experiment. 1 In tr od uc ti on Broadband monopole antennas have received considerable attention owing to their attractive merits, such as ultra-wide frequency band, good radiation properties, simple structure and ease of fabrication  [1–3]. However, they are not planar str uct ures bec aus e the y req uir e a gro und pla ne whi ch is perpendicular to the radiator. Although the ground plane can be min iat uri sed sig nican tly  [4] , th ey ar e st il l not suitable for integration with a printed circuit board. Recently, planar UWB monopoles have been realised by using either a microstrip-line [5]  or CPW feeds  [6–11]. In this paper, the CPW-fed circular disc monopole is investigated with an emphasis on the understanding of the mechanism wh ic h le ads to the UWB ch ar ac te ri st ic . Th e desi gn pa ra meters for op ti ma l op er ation of the an te nn a ar e analy sed exten sively . The perfo rmanc e and chara cteri stics of th e ante nn a are al so st ud ie d bo th nu me ri ca lly an d exp eri men tal ly. It wil l be demons tra ted tha t the opt ima l des ign of thi s type of ant enna can achi eve an ult ra wid e bandwidth with satisfactory radiation patterns. 2 Ant enna de sig n and pe rfo rmance The CPW-fed disc monopole antenna studied in this paper has a single layer metallic structure, as shown in Fig. 1. A circular disc monopole with a radius of  r  and a 50 O CPW are printed on the same side of a dielectric substrate.  W  f   is the width of the metal strip and  g  is the gap between the str ip and the cop lan ar gro und pla ne.  W  and  L ¼10mm de note th e wi dt h an d th e le ng th of th e gr ou nd pl ane, respectively,  h  is th e fe ed ga p be twee n th e di sc an d th e gro und plane . In thi s stu dy, a die lec tri c sub str ate with a thickness of  H ¼1.6 mm and a relat ive permitt ivity of  e r ¼3 is cho sen , so  W  f   an d  g  are xed at 4mm and 0.33mm, respectively, in order to achieve 50 O impedance. The simulations were performed using the CST Micro- wave Studiot package, which utilises the nite integration tec hni que for ele ctr oma gne tic com put ati on  [12]. The com ple te con gu rat ion of the ant enn a, inc lud ing a 50 O SMA feeding port, was simulated using this package, but this does lead to a substantial computing overhead. A pro tot ype of the pro pos ed cir cul ar dis c mon opo le antenna with optimal design, i.e.  r ¼12.5 mm, h ¼0. 3 mm and W ¼47 mm, as shown in Fig. 1, was built and tes ted in the Ant enn a Mea surement Lab ora tor y at Queen Mary, Uni ver sity of Lon don (QMUL) . The return los ses wer e measured in an anechoic chamber by using a HP 8720ES network analyser. Figure 2 illustrates the simulated and the measured return loss curves. The measured return loss curve agrees very well with the simulated one in most of the frequency band range ex ce pt betw ee n 7 GHz an d 10GHz. It is shown that th e third reson ance occurs at around 7.8 GHz in the simulat ion; this resonance also appears in the measurement, but it is not apparent, this could be due to the effect of the SMA port. Fo r th e ot he r th re e re so na nc es (a t ar ou nd 3. 2 GHz, 5.8 GHz and 11. 1 GHz ), the measu red ones are ver y clo se to those obtained in the simulation with differences less than 5%. Generally speaking, the  10 dB ban dwi dth span s an ext rem ely wid e fre que ncy ran ge in bot h simulation and me as ur ement. Th e simulate d ba nd wi dth ra ng es fr om 2.6 4 GHz to mor e tha n 12 GHz . Thi s UWB chara cte ris tic of the proposed CPW-fed circular disc monopole antenna is conrmed in the measurement, with only a slight shift of the lower frequ ency to 2.73 GHz. 3 Eff ec ts of de sig n par ame ter s It has been sho wn in the simula tio n that the opera tin g ban dwi dth of the CPW-fe d dis c mon opo le is cri tic all y dependent on the feed gap  h, the width of the ground plane W  and the radius of the disc  r. So these parameters should be optimised for maximum bandwidth. In this Section, the 50 O SMA feeding port is not taken in to ac co unt in al l of th e sim ul at io ns so as to ea se th e com put ati ona l req uir ements. It is not ice d tha t thi s SMA por t mai nly aff ects the thi rd and fou rth resonances by shifting their resonant frequencies. 3.1 The eff ect of f eed gap h Figure 3 plots the simulated return loss curves with different feed gaps (h ¼0.3 , 0.7 , 1 and 1.5 mm) when W  is xed at 47mm an d  r  at 12.5 mm, respe ctive ly; their corresp ondin g The authors are with the Department of Electronic Engineering, Queen Mary, University of London, London, E1 4NS, UK E-mail: [email protected] r IEE, 2005 IEE Proceedings online no. 20045179 doi:10.1049/ip-map:20045179 Paper rst received 20th December 2004 and in revised form 29th March 2005 520  IEE Proc.-Mic row. Antennas Propag., Vol. 152, No. 6, Decembe r 2005

10- 01561734 Study of CPW-fed Circular Disc Monopole

Embed Size (px)

DESCRIPTION

10- 01561734 Study of CPW-fed Circular Disc Monopole

Citation preview

  • Study of CPW-fed circular disc monopole antenna forultra wideband applications

    J. Liang, L. Guo, C.C. Chiau, X. Chen and C.G. Parini

    Abstract: The paper presents a study of coplanar waveguide (CPW) fed circular disc monopoleantenna for ultra-wideband (UWB) applications. A circular disc monopole printed on a dielectricsubstrate and fed by a 50O CPW on the same layer can yield an ultra-wide 10dB return lossbandwidth with satisfactory radiation patterns. The performance and characteristics of the antennaare investigated in order to understand its operation. Good agreement has been obtained betweenthe simulation and experiment.

    1 Introduction

    Broadband monopole antennas have received considerableattention owing to their attractive merits, such as ultra-widefrequency band, good radiation properties, simple structureand ease of fabrication [13]. However, they are not planarstructures because they require a ground plane which isperpendicular to the radiator. Although the ground planecan be miniaturised signicantly [4], they are still notsuitable for integration with a printed circuit board.Recently, planar UWB monopoles have been realised by

    using either a microstrip-line [5] or CPW feeds [611]. In thispaper, the CPW-fed circular disc monopole is investigatedwith an emphasis on the understanding of the mechanismwhich leads to the UWB characteristic. The designparameters for optimal operation of the antenna areanalysed extensively. The performance and characteristicsof the antenna are also studied both numerically andexperimentally. It will be demonstrated that the optimaldesign of this type of antenna can achieve an ultra widebandwidth with satisfactory radiation patterns.

    2 Antenna design and performance

    The CPW-fed disc monopole antenna studied in this paperhas a single layer metallic structure, as shown in Fig. 1. Acircular disc monopole with a radius of r and a 50O CPWare printed on the same side of a dielectric substrate. Wf isthe width of the metal strip and g is the gap between thestrip and the coplanar ground plane. W and L 10mmdenote the width and the length of the ground plane,respectively, h is the feed gap between the disc and theground plane. In this study, a dielectric substrate with athickness ofH 1.6mm and a relative permittivity of er 3is chosen, so Wf and g are xed at 4mm and 0.33mm,respectively, in order to achieve 50O impedance.The simulations were performed using the CST Micro-

    wave Studiot package, which utilises the nite integration

    technique for electromagnetic computation [12]. Thecomplete conguration of the antenna, including a 50OSMA feeding port, was simulated using this package, butthis does lead to a substantial computing overhead.A prototype of the proposed circular disc monopole

    antenna with optimal design, i.e. r 12.5mm, h 0.3mmandW 47mm, as shown in Fig. 1, was built and tested inthe Antenna Measurement Laboratory at Queen Mary,University of London (QMUL). The return losses weremeasured in an anechoic chamber by using a HP 8720ESnetwork analyser.Figure 2 illustrates the simulated and the measured return

    loss curves. The measured return loss curve agrees very wellwith the simulated one in most of the frequency band rangeexcept between 7GHz and 10GHz. It is shown that thethird resonance occurs at around 7.8GHz in the simulation;this resonance also appears in the measurement, but it is notapparent, this could be due to the effect of the SMA port.For the other three resonances (at around 3.2GHz,5.8GHz and 11.1GHz), the measured ones are very closeto those obtained in the simulation with differences less than5%. Generally speaking, the 10dB bandwidth spans anextremely wide frequency range in both simulation andmeasurement. The simulated bandwidth ranges from2.64GHz to more than 12GHz. This UWB characteristicof the proposed CPW-fed circular disc monopole antenna isconrmed in the measurement, with only a slight shift of thelower frequency to 2.73GHz.

    3 Effects of design parameters

    It has been shown in the simulation that the operatingbandwidth of the CPW-fed disc monopole is criticallydependent on the feed gap h, the width of the ground planeW and the radius of the disc r. So these parameters shouldbe optimised for maximum bandwidth.In this Section, the 50O SMA feeding port is not taken

    into account in all of the simulations so as to ease thecomputational requirements. It is noticed that this SMAport mainly affects the third and fourth resonances byshifting their resonant frequencies.

    3.1 The effect of feed gap hFigure 3 plots the simulated return loss curves with differentfeed gaps (h 0.3, 0.7, 1 and 1.5mm) when W is xed at47mm and r at 12.5mm, respectively; their corresponding

    The authors are with the Department of Electronic Engineering, Queen Mary,University of London, London, E1 4NS, UK

    E-mail: [email protected]

    r IEE, 2005

    IEE Proceedings online no. 20045179

    doi:10.1049/ip-map:20045179

    Paper rst received 20th December 2004 and in revised form 29th March 2005

    520 IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005

  • input impedance curves are plotted in Fig. 4. It can be seenin Fig. 3 that the return loss curves have similar shape forthe four different feed gaps, but the 10dB bandwidth ofthe antenna changes signicantly with the variation of h.From what we have learned in [35], the ground plane,

    serving as an impedance matching circuit, tunes the inputimpedance and hence the operating bandwidth while thefeed gap is varied, as shown in Fig. 4.It is also noticed that the lower edge of the 10dB

    bandwidth increases when h gets smaller. The optimisedfeed gap is found to be at h 0.3mm.

    3.2 The effect of the width of the groundplane WSimulations have shown that when the length L of theground plane is more than 4mm, the performance of theantenna is almost independent of L. The simulated returnloss curves with r 12.5mm and optimal feed gap h of

    substrateH r

    r

    50 coplanarwaveguide ground plane

    L

    h

    W

    z

    y

    g gwf

    x

    y

    Fig. 1 Geometry of the CPW-fed circular disc monopole

    40

    30

    20

    10

    0

    0 2 4 6 8 10 12frequency, GHz

    retu

    rn lo

    ss, d

    B

    measured simulated

    Fig. 2 Simulated and measured return loss curves with r 12.5mm,W 47mm and h 0.3mm

    40

    30

    20

    10

    0

    0 2 4 6 8 10 12frequency, GHz

    retu

    rn lo

    ss, d

    B

    h=0.3mm h=0.7mmh=1mm h=1.5mm

    Fig. 3 Simulated return loss curves for different feed gaps withW 47mm and r 12.5mm

    0

    25

    50

    75

    100

    125

    150

    h= 0.3mm h= 0.7mmh=1mm h=1.5mm

    h= 0.3mm h= 0.7mmh=1mm h=1.5mm

    a

    50

    25

    0

    25

    50

    75

    0 2 4 6 8 10 12frequency, GHz

    rea

    ctan

    ce,

    resi

    stan

    ce,

    b

    Fig. 4 Simulated input impedance for different feed gaps withW 47mm and r 12.5mma Resistance Rb Reactance X

    50

    40

    30

    20

    10

    0

    0 2 4 6 8 10 12frequency, GHz

    retu

    rn lo

    ss, d

    B

    w =40mm w =47mmw = 52mm w =60mm

    Fig. 5 Simulated return loss curves for different widths of theground plane with h 0.3mm and r 12.5mm

    IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005 521

  • 0.3mm for different widths W of the ground planes arepresented in Fig. 5. It is observed in Fig. 5 that the returnloss curves vary substantially and no longer have similarshapes for the four different W, unlike those for the fourdifferent h, as shown in Fig. 3. Again, this can be readilyunderstood while the ground plane is treated as animpedance matching circuit. The intrinsic impedance ofthe ground plane seems to be mostly inuenced by its widthW in this case. When W is changed, the rst resonantfrequency does not change much, however the higherresonant frequencies vary substantially, leading to thevariations of the operating bandwidth of the antenna, asshown in Fig. 5.

    It is also seen in Fig. 5 that, when W is equal to 47mm,the10dB bandwidth covers an ultra wide frequency band,from 2.27GHz to more than 12GHz (up to 20GHz in thesimulation); when W rises to 52mm and 60mm, the loweredge of the bandwidth decreases tardily to 2.19GHz and2.08GHz, respectively. However, the upper edge is reduceddramatically to 4.03GHz and 3.47GHz, respectively, leadingto a remarkable narrowing of the bandwidth; whenW 40mm, the bandwidth ranges from 2.54GHz to6.72GHz. The optimal width of the ground plane is foundto be at W 47mm.

    40

    30

    20

    10

    0

    0 2 4 6 8 10 12frequency, GHz

    retu

    rn lo

    ss, d

    B

    r =25mm r =15mmr =12.5mm r =7.5mm

    Fig. 6 Simulated return loss curves for different dimensions of thecircular disc with the optimal designsr 7.5mm with h 0.1mm and W 28mm; r 12.5mm withh 0.3mm and W 47mm; r 15mm with h 0.3mm andW 56mm; r 25mm with h 0.5mm and W 90mm

    Table 1: The relationships between the diameters and thefirst resonances

    Diameterr (mm)

    First resonancef1 (GHz)

    Wavelengthl at f1 (mm)

    2r/l

    25 1.52 197.4 0.25

    15 2.57 116.7 0.26

    12.5 3.01 99.7 0.25

    7.5 5.09 58.9 0.25

    5

    A / m

    0

    5

    A / m

    0

    5

    A / m

    0

    5

    A / m

    0

    z

    y

    z

    y

    z

    y

    z

    y

    a b

    c d

    Fig. 8 Simulated current distributions of the disc monopole with r 12.5mm, h 0.3mm and W 47mma At 3GHzb At 5.6GHzc At 7.8GHzd At 11GHz

    frequencyf1 f2 f3 f4

    Fig. 7 Overlapping of the multiple resonance modes

    522 IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005

  • 3.3 The effect of the dimension of the discThere is an important phenomenon in Figs. 3 and 5 that therst resonance f1 always occurs at around 3GHz fordifferent h and W when r equals 12.5mm. In fact, thequarter wavelength at this rst resonant frequency (25mm)just equals to the diameter of the disc. This implies that thisresonant frequency is mostly determined by the circular discand not much detuned by the ground plane.To conrm this, Fig. 6 shows the simulated return loss

    curves for different dimensions of the circular disc with theirrespective optimal designs (r 7.5mm with h 0.1mm andW 28mm; r 12.5mm with h 0.3mm andW 47mm;r 15mm with h 0.3mm and W 56mm; r 25mmwith h 0.5mm and W 90mm). It is observed fromFig. 6 that the rst resonant frequency decreases with theincrease of the dimension of the disc. The relationshipsbetween the diameters and the rst resonances are given inTable 1.Actually, as shown in Fig. 6, the circular disc is capable

    of supporting multiple resonance modes, the higher ordermodes (f2, f3,y, fn) being the harmonics of the funda-mental mode of the disc. So the wavelengths of the higherorder modes satisfy 2r n ln/4 l1/4, where n is the modenumber. Figure 6 also indicates that these higher ordermodes are closely spaced. Hence, the overlapping of thesehigher order modes leads to the UWB characteristic, asillustrated in Fig. 7.The simulated current distributions at different frequen-

    cies for the optimal design with r 12.5mm, h 0.3mmand W 47mm are presented in Fig. 8. Figure 8a showsthe current pattern near the rst resonance at 3GHz. Thecurrent pattern near the second resonance at 5.6GHz isgiven in Fig. 8b, indicating approximately a second orderharmonic. As mentioned in Section 2, the third and fourthresonances are shifted to 7.8GHz and 11GHz in themeasurement owing to the presence of the SMA port. It hasalso been demonstrated that the simulated current distribu-tions at these two frequencies will not change if the SMAport is removed in the simulation. So Fig. 8c and 8dillustrate two more complicated current patterns at 7.8GHzand 11GHz, corresponding to the third and fourth orderharmonics, respectively. The current distributions also verifythat the UWB characteristic of the antenna is attributed tothe overlapping of this sequence of resonance harmonics.As shown in Fig. 8, the current is distributed mainly

    along the edge of the disc. This is the reason why the rstresonant frequency is associated with the diameter of thecircular disc. On the ground plane, the current is distributedmainly on the upper edge along the y-direction, whichexplains why the performance of the antenna is criticallydependent on the width of the ground plane W.

    4 Radiation patterns

    The measured and simulated radiation patterns at 3GHz, 5.6GHz, 7.8GHz and 11GHz are plotted in Figs. 912,respectively. The measured co-polarisation patterns are veryclose to those obtained in the simulation.In the zy plane (Figs. 9a12a), the co-polarisation

    patterns have large back lobes at lower frequencies. Withthe increase of the frequency, the back lobes becomesmaller, splitting into many minor ones, while the frontlobes start to form notches and get more directional. Theco-polarisation patterns correspond well to the currentdistributions, as shown in Fig. 8. The cross-polarisationpattern is lower than 15dB in most of the directions at3GHz; with the increase of frequency, it is getting high, butstill lower than 10dB at 11GHz. Additionally, there is a

    signicant discrepancy between the simulated and measuredcross-polarisation patterns. This is because in cross-polarisation the signal is weak. Hence, the effects of thenoise in the chamber and the SMA port become morenotable in the measurement.

    z

    y

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    x

    y

    z

    x

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    a

    c

    b

    Fig. 9 Simulated (solid line) and measured (dotted line)co-polarisation (thick line) and cross-polarisation (thin line) radiationpatterns with r 12.5mm, W 47mm and h 0.3mm at 3GHza In zy planeb In xy planec In zx plane

    IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005 523

  • It is noticed that in the xy plane (Figs. 9b12b), the co-polarisation pattern is omni-directional at lower frequencies(3GHz and 5.6GHz) and only distorted slightly at higherfrequencies (the gain relative to the peak radiated signal

    direction being reduced less than 10dB in the x-direction at11GHz). So the patterns are generally omni-directionalover the entire bandwidth, like a conventional monopoleantenna. The cross-polarisation pattern is getting stronger

    z

    y

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    x

    y

    a

    b

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    c

    z

    x

    Fig. 10 Simulated (solid line) and measured (dotted line)co-polarisation (thick line) and cross-polarisation (thin line) radiationpatterns with r 12.5mm, W 47mm and h 0.3mm at 5.6GHza In zy planeb In xy planec In zx plane

    z

    y

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    x

    y

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    c

    b

    a

    z

    x

    Fig. 11 Simulated (solid line) and measured (dotted line)co-polarisation (thick line) and cross-polarisation (thin line) radiationpatterns with r 12.5mm, W 47mm and h 0.3mm at 7.8GHza In zy planeb In xy planec In zx plane

    524 IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005

  • with the increase of frequency, and is lower than 8dBin most of the directions at 11GHz, compared to theco-polarisation one.In the zx plane (Fig. 9c12c), the co-polarisation

    patterns are similar to those in the zy plane. The simulatedcross-polarisation pattern curves are not visible in the

    Figures. This is because the disc monopole performs like aconventional wire monopole in the zx plane. Conse-quently, the cross-polarisation patterns are extremely low(less than 100dB in all of the directions at all of the fourfrequencies). However, the measured ones are prominentowing to the noise and the presence of the SMA port.Figure 13 illustrates the simulated peak gain of the

    proposed antenna with r 12.5mm, h 0.3mm andW 47mm. It is shown that when the frequency increasesfrom 3GHz to 7GHz, the gain rises from 0.88dBi to5.76dBi; with the further increase of frequency from 7GHzto 11GHz, the gain does not change much and is xed ataround 6dBi. This is because of the more directionalradiation properties at higher frequencies, as shown inFigs. 912.

    5 Conclusion

    This paper has provided further insights into the operationof the CPW-fed circular disc monopole antenna. It has beenshown that the feed gap h, the width of the ground planeW,and the dimension of the CPW-fed circular disc monopoleantenna are the most important parameters that determinethe performance of the antenna. The ground plane, servingas an impedance matching circuit, tunes the inputimpedance and hence the operating bandwidth by changingh andW. The rst resonant frequency is determined directlyby the dimension of the circular disc because the currentis distributed mainly along the edge of the disc. Theoverlapping of multiple resonant harmonics leads to theUWB characteristic. Both simulation and measurementhave demonstrated that the CPW-fed circular disc mono-pole can achieve an ultra wide bandwidth, covering theFCC dened UWB frequency band. It is also observed thatthe radiation patterns are nearly omni-directional over theentire operating bandwidth. The results have proved thatthis antenna is very suitable for future UWB applications.

    6 Acknowledgments

    The authors would like to thank Mr. John Dupuy of theDepartment of Electronic Engineering, QMUL for his helpin the fabrication and measurement of the antenna. Theauthors would like to acknowledge Computer SimulationTechnology (CST), Germany, for the complimentary license

    of the Microwave Studiot package. One of the authors(J. Liang) would also like to acknowledge the nancialsupport provided by the K.C. Wong Education Founda-tion.

    z

    y

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    x

    y

    40 30 20 10 0

    30

    210

    60

    240

    90270

    120

    300

    150

    330

    180

    0

    c

    b

    a

    z

    x

    Fig. 12 Simulated (solid line) and measured (dotted line)co-polarisation (thick line) and cross-polarisation (thin line) radiationpatterns with r 12.5mm, W 47mm and h 0.3mm at 11GHza In zy planeb In xy planec In zx plane

    0

    1

    2

    3

    4

    5

    6

    7

    3 4 5 6 7 8 9 10 11frequency, GHz

    gain

    , dBi

    Fig. 13 Simulated peak gain with r 12.5mm, W 47mm andh 0.3mm

    IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005 525

  • 7 References

    1 Ammann, M.J., and Chen, Z.N.: Wideband monopole antennas formulti-band wireless systems, IEEE Antennas Propag. Mag., 2003, 45,(2), pp. 146150

    2 Agrawall, N.P., Kumar, G., and Ray, K.P.: Wide-band planarmonopole antennas, IEEE Trans. Antennas Propag., 1998, 46, (2),pp. 294295

    3 Liang, J., Chiau, C.C., Chen, X., and Yu, J.: Study of a circular discmonopole antenna for ultra wideband applications. 2004 Int. Symp.Antennas Propag., Sendai, Japan, 1721 Aug. 2004

    4 Liang, J., Chiau, C.C., Chen, X., and Parini, C.G.: Analysis anddesign of UWB disc monopole antennas. IEE Seminar on UltraWideband Commun. Technol. Syst. Design, Queen Mary, Universityof London, 8 July 2004, pp. 103106

    5 Liang, J., Chiau, C.C., Chen, X., and Parini, C.G.: Printed circulardisc monopole antenna for ultra wideband applications, Electron.Lett., 2004, 40, (20), pp. 12461248

    6 Kim, Y., and Kwon, D.-H.: CPW-fed planar ultra wideband antennahaving a frequency band notch function, Electron. Lett., 2004, 40,(7), pp. 403405

    7 Wang, W., Zhong, S.S., and Chen, S.-B.: A novel wideband coplanar-fedmonopole antenna, Microw. Opt. Technol. Lett., 2004, 43, (1), pp. 5052

    8 Suh, S.-Y., Shutzman, W., Davis, W., Waltho, A., and Schiffer, J.: Anovel CPW-fed disc antenna. IEEE Antennas Propag. Soc. Symp.,2025 June 2004, Vol. 3, pp. 29192922

    9 Yang, T., and Davis, W.A.: Planar half-disk antenna structures forUWB communications. IEEE Antennas Propag. Soc. Symp., 2025June 2004, Vol. 3, pp. 25082511

    10 Yoon, H., Kim, H., Chang, K., Yoon, Y.J., and Kim, Y.-H.: A studyon the UWB antenna with band-rejection characteristic. IEEEAntennas Propag. Soc. Symp., 2025 June 2004, Vol. 2, pp. 17841787

    11 Chung, K., Yun, T., and Choi, J.: Wideband CPW-fed monopoleantenna with parasitic elements and slots, Electron. Lett., 2004, 40,(17), pp. 10381040

    12 CST-Microwave Studio, Users Manual, 4, 2002

    526 IEE Proc.-Microw. Antennas Propag., Vol. 152, No. 6, December 2005