122 Ch 4 Aromatic

Embed Size (px)

Citation preview

  • 8/13/2019 122 Ch 4 Aromatic

    1/112

    Aromatic Compounds

  • 8/13/2019 122 Ch 4 Aromatic

    2/112

    Discovery of Benzene

    Isolated in 1825 by Michael Faraday who

    determined C:H ratio to be 1:1.

    Synthesized in 1834 by Eilhard Mitscherlich

    who determined molecular formula to be

    C6H6.

    Other related compounds with low C:H ratios

    had a pleasant smell, so they were classified

    as aromatic.

  • 8/13/2019 122 Ch 4 Aromatic

    3/112

    Kekul Structure

    Proposed in 1866 by Friedrich Kekul, shortly

    after multiple bonds were suggested.

    Failed to explain existence of only one isomer

    of 1,2-dichlorobenzene.

    CC

    CC

    C

    C

    H

    H

    H

    H

    H

    H

  • 8/13/2019 122 Ch 4 Aromatic

    4/112

    Resonance Structure

    Each sp2hybridized C in the ring has an

    unhybridizedporbital perpendicular to the

    ring which overlaps around the ring.

    =>

  • 8/13/2019 122 Ch 4 Aromatic

    5/112

    Unusual Reactions

    Alkene + KMnO4diol (addition)

    Benzene + KMnO4 no reaction.

    Alkene + Br2

    /CCl4

    dibromide (addition)

    Benzene + Br2/CCl4no reaction.

    With FeCl3catalyst, Br2reacts with benzene to

    form bromobenzene + HBr

    (substitution!). Double bonds remain.

  • 8/13/2019 122 Ch 4 Aromatic

    6/112

    Unusual Stability

  • 8/13/2019 122 Ch 4 Aromatic

    7/112

    Annulenes

    All cyclic conjugatedhydrocarbons wereproposed to bearomatic.

    However,cyclobutadiene is soreactive that it

    dimerizes before it canbe isolated.

    And cyclooctatetraeneadds Br2readily.

  • 8/13/2019 122 Ch 4 Aromatic

    8/112

    What Does It Take to Be Aromatic?

    Alternating double and single bonds

    A magic number of pi electrons

    Resonance structures must be able to movethe pi electrons in a circular manar.

    Non bonding electrons can also participate in

    the resonance structures.

  • 8/13/2019 122 Ch 4 Aromatic

    9/112

    Hckels Rule

    Hckels Rule is used to generate the magic

    number of pi electrons.

    If the compound has a continuous ring of

    overlappingporbitals and has 4N+ 2 pi

    electrons, it is aromatic.

    If the compound has a continuous ring of

    overlappingporbitals and has 4N electrons, it

    is antiaromatic.

    Nis any integer, starting at zero

  • 8/13/2019 122 Ch 4 Aromatic

    10/112

    Generation of Magic Pi Electrons

    Value of N 4N+ 2

    0 2

    1 62 10

    3 14

  • 8/13/2019 122 Ch 4 Aromatic

    11/112

    [N]Annulenes

    [4]Annulene is antiaromatic (4Ne-s)

    [8]Annulene would be antiaromatic, but its

    not planar, so its nonaromatic.

    [10]Annulene is aromatic except for the

    isomers that are not planar.

    Larger 4Nannulenes are not antiaromatic

    because they are flexible enough to become

    nonplanar.

  • 8/13/2019 122 Ch 4 Aromatic

    12/112

    Tropylium Ion

    The cycloheptatrienyl cation has 6pelectronsand an emptyporbital.

    Aromatic: more stable than open chain ion.

    H OH

    H+, H2O

    H

    +

  • 8/13/2019 122 Ch 4 Aromatic

    13/112

    Which of the Following are Aromatic?

    a. b. c. d.

    e. f. g. h.

  • 8/13/2019 122 Ch 4 Aromatic

    14/112

    Disubstituted Benzenes The prefixes ortho-, meta-, and para- are

    commonly used for the 1,2-, 1,3-, and 1,4-

    positions, respectively.

    =>

  • 8/13/2019 122 Ch 4 Aromatic

    15/112

    3 or More Substituents

    Use the smallest possible numbers, but

    the carbon with a functional group is #1.

    NO2

    NO2

    O2N

    1,3,5-trinitrobenzen

    NO2

    NO2

    O2N

    OH

    2,4,6-trinitrophenol

  • 8/13/2019 122 Ch 4 Aromatic

    16/112

    Common Names of Benzene

    Derivatives

    OH OCH3NH2CH3

    phenol toluene aniline anisole

    C

    H

    CH2 C

    O

    CH3C

    O

    HC

    O

    OH

    styrene acetophenone benzaldehyde benzoic acid

  • 8/13/2019 122 Ch 4 Aromatic

    17/112

    Phenyl and Benzyl

    Phenyl indicates the benzene ring

    attachment. The benzyl group has

    an additional carbon.Br

    phenyl bromide

    CH2Br

    benzyl bromide

  • 8/13/2019 122 Ch 4 Aromatic

    18/112

    Fused Ring Hydrocarbons Naphthalene

    Anthracene

    Phenanthrene

  • 8/13/2019 122 Ch 4 Aromatic

    19/112

    Larger Polynuclear

    Aromatic Hydrocarbons

    Formed in combustion (tobacco smoke).

    Many are carcinogenic.

    Epoxides form, combine with DNA base.

    pyrene =>

  • 8/13/2019 122 Ch 4 Aromatic

    20/112

    Physical Properties

    Melting points: More symmetrical thancorresponding alkane, pack better intocrystals, so higher melting points.

    Boiling points: Dependent on dipole moment,so ortho> meta>para, for disubstitutedbenzenes.

    Density: More dense than nonaromatics, lessdense than water.

    Solubility: Generally insoluble in water.

  • 8/13/2019 122 Ch 4 Aromatic

    21/112

    Chapter 17 21

    Electrophilic Aromatic Substitution

    Electrophile substitutes for a hydrogen onthe benzene ring.

  • 8/13/2019 122 Ch 4 Aromatic

    22/112

    Chapter 17 22

    Mechanism

    Step 1:Attack on the electrophile forms the sigma complex.

    Step 2:Loss of a proton gives the substitution product.

  • 8/13/2019 122 Ch 4 Aromatic

    23/112

    Chapter 17 23

    Bromination of Benzene

    Requires a stronger electrophile than Br2.

    Use a strong Lewis acid catalyst, FeBr3.

    Br

    HBr+

    Br Br FeBr3 Br Br FeBr3+ -

    Br Br FeBr 3

    HH

    H

    H

    H

    H

    H

    H

    H

    H

    H H

    Br+ + FeBr4

    _+ -

  • 8/13/2019 122 Ch 4 Aromatic

    24/112

    Chapter 17 24

    Comparison with Alkenes

    Cyclohexene addsBr2, H = -121 kJ

    Addition to benzene is endothermic, not

    normally seen.

    Substitution of Br for H retains aromaticity, H

    = -45 kJ.

    Formation of sigma complex is rate-limiting.

  • 8/13/2019 122 Ch 4 Aromatic

    25/112

    Chapter 17 25

    Energy Diagram for Bromination

  • 8/13/2019 122 Ch 4 Aromatic

    26/112

    Chapter 17 26

    Chlorination and Iodination

    Chlorination is similar to bromination. Use

    AlCl3as the Lewis acid catalyst. Iodination requires an acidic oxidizing

    agent, like nitric acid, which oxidizes the

    iodine to an iodonium ion.

    H+

    HNO3 I21/2 I+

    NO2 H2O+ ++ +

  • 8/13/2019 122 Ch 4 Aromatic

    27/112

    Chapter 17 27

    Nitration of Benzene

    Use sulfuric acid with nitric acid to form the

    nitronium ion electrophile.

    H O N

    O

    O

    H O S O H

    O

    O

    + HSO4

    _H O N

    OH

    O+

    H O N

    OH

    O+

    H2O + N

    O

    O

    +

    NO2+then forms a sigma complex with

    benzene, loses H+to form nitrobenzene.

  • 8/13/2019 122 Ch 4 Aromatic

    28/112

    Chapter 9 28

    Sulfonation

    Sulfur trioxide, SO3, in fuming sulfuric

    acid is the electrophile.

    S

    O

    O O

    S

    O

    O O

    S

    O

    O O

    S

    O

    O O

    + + +

    _

    _ _

    S

    O

    O O

    H

    S

    O

    O

    OH

    +

    _

    S

    HOO

    O

    benzenesulfonic a

  • 8/13/2019 122 Ch 4 Aromatic

    29/112

    Chapter 17 29

    Desulfonation

    All steps are reversible, so sulfonic

    acid group can be removed by heating in

    dilute sulfuric acid.

    This process is used to place deuterium in

    place of hydrogen on benzene ring.

    Benzene-d6

    D

    D

    D

    D

    D

    D

    D2SO4/D2O

    large excess

    H

    H

    H

    H

    H

    H

  • 8/13/2019 122 Ch 4 Aromatic

    30/112

    Chapter 17 30

    Nitration of Toluene

    Toluene reacts 25 times faster than benzene.

    The methyl group is an activating group.

    The product mix contains mostly ortho and para

    substituted molecules.

  • 8/13/2019 122 Ch 4 Aromatic

    31/112

    Chapter 17 31

    Sigma Complex

    Intermediate is

    more stable if

    nitrationoccurs at the

    ortho

    orpara

    position.

    =>

  • 8/13/2019 122 Ch 4 Aromatic

    32/112

    Chapter 17 32

    Energy Diagram

  • 8/13/2019 122 Ch 4 Aromatic

    33/112

    Chapter 17 33

    Activating, O-, P-Directing Substituents

    Alkyl groups stabilize the sigma complex byinduction, donating electron density throughthe sigma bond.

    Substituents with a lone pair of electrons

    stabilize the sigma complex by resonance.

    OCH3

    H

    NO2

    +

    OCH3

    H

    NO2

    +

    b l

  • 8/13/2019 122 Ch 4 Aromatic

    34/112

    Chapter 17 34

    Substitution on Anisole

  • 8/13/2019 122 Ch 4 Aromatic

    35/112

    Chapter 17 35

    The Amino Group

    Aniline, like anisole, reacts with bromine water

    (without a catalyst) to yield the tribromide.

    Sodium bicarbonate is added to neutralize

    the HBr thats also formed.

  • 8/13/2019 122 Ch 4 Aromatic

    36/112

    Chapter 17 36

    Summary of Activators

  • 8/13/2019 122 Ch 4 Aromatic

    37/112

    Chapter 17 37

    Deactivating Meta-Directing Substituents

    Electrophilic substitution reactions fornitrobenzene are 100,000 times slowerthan for benzene.

    The product mix contains mostly the meta

    isomer, only small amounts of the orthoand para isomers.

    Meta-directors deactivate all positions onthe ring, but the meta position is lessdeactivated.

  • 8/13/2019 122 Ch 4 Aromatic

    38/112

    Chapter 17 38

    Ortho Substitutionon Nitrobenzene

  • 8/13/2019 122 Ch 4 Aromatic

    39/112

    Chapter 17 39

    Para Substitution on Nitrobenzene

  • 8/13/2019 122 Ch 4 Aromatic

    40/112

    Chapter 17 40

    Meta Substitution on Nitrobenzene

  • 8/13/2019 122 Ch 4 Aromatic

    41/112

    Chapter 17 41

    Energy Diagram

  • 8/13/2019 122 Ch 4 Aromatic

    42/112

    Chapter 17 42

    Structure of Meta-Directing Deactivators

    The atom attached to the aromatic ring will

    have a partial positive charge.

    Electron density is withdrawn inductively

    along the sigma bond, so the ring is less

    electron-rich than benzene.

  • 8/13/2019 122 Ch 4 Aromatic

    43/112

    Chapter 17 43

    Summary of Deactivators

  • 8/13/2019 122 Ch 4 Aromatic

    44/112

    Chapter 17 44

    More Deactivators

  • 8/13/2019 122 Ch 4 Aromatic

    45/112

    Chapter 17 45

    Halobenzenes

    Halogens are deactivating toward

    electrophilic substitution, but are ortho,

    para-directing!

    Since halogens are very electronegative, they

    withdraw electron density from the ringinductively along the sigma bond.

    But halogens have lone pairs of electrons that

    can stabilize the sigma complex byresonance.

  • 8/13/2019 122 Ch 4 Aromatic

    46/112

    Chapter 17 46

    Sigma Complex for Bromobenzene

    Ortho and para attacks produce a bromonium ion

    and other resonance structures.

    No bromonium ion

    possible with meta attack.

  • 8/13/2019 122 Ch 4 Aromatic

    47/112

    Chapter 17 47

    Energy Diagram

  • 8/13/2019 122 Ch 4 Aromatic

    48/112

    Chapter 17 48

    Summary of Directing Effects

    l i l S b i

  • 8/13/2019 122 Ch 4 Aromatic

    49/112

    Chapter 17 49

    Multiple Substituents

    The most strongly activating substituent will

    determine the position of the next

    substitution. May have mixtures.

    OCH3

    O2N

    SO3

    H2SO4

    OCH3

    O2N

    SO3H

    OCH3

    O2N

    SO3H

    +

    F i d l C f Alk l i

  • 8/13/2019 122 Ch 4 Aromatic

    50/112

    Chapter 17 50

    Friedel-Crafts Alkylation

    Synthesis of alkyl benzenes from alkyl

    halides and a Lewis acid, usually AlCl3.

    Reactions of alkyl halide with Lewis acid

    produces a carbocation which is the

    electrophile. Other sources of carbocations:

    alkenes + HF, or alcohols + BF3.

    l fC b i i

  • 8/13/2019 122 Ch 4 Aromatic

    51/112

    Chapter 17 51

    Examples ofCarbocation Formation

    CH3 CH CH3

    Cl

    + AlCl3

    CH3C

    H3C H

    Cl AlCl3+ _

    H2C CH CH3

    HF

    H3C CH CH3

    F+

    _

    H3C CH CH3

    OHBF3

    H3C CH CH3

    OH BF3+

    H3C CH CH3+

    + HOBF3

    _

    F i f Alk l B

  • 8/13/2019 122 Ch 4 Aromatic

    52/112

    Chapter 17 52

    Formation of Alkyl Benzene

    C

    CH3

    CH3

    H+

    H

    H

    CH(CH3)2+

    H

    H

    CH(CH3)2

    B

    F

    F

    F

    OHCH

    CH3

    CH3

    +HF

    BF

    OHF

    +

    -

    Li it ti f F i d l C ft

  • 8/13/2019 122 Ch 4 Aromatic

    53/112

    Chapter 17 53

    Limitations of Friedel-Crafts

    Reaction fails if benzene has a substituent that

    is more deactivating than halogen.

    Carbocations rearrange. Reaction of benzene

    with n-propyl chloride and AlCl3produces

    isopropylbenzene.

    The alkylbenzene product is more reactive

    than benzene, so polyalkylation occurs.

    F i d l C ft A l ti

  • 8/13/2019 122 Ch 4 Aromatic

    54/112

    Chapter 17 54

    Friedel-CraftsAcylation

    Acyl chloride is used in place of alkyl

    chloride.

    The acylium ion intermediate is resonance

    stabilized and does not rearrange like a

    carbocation. The product is a phenyl ketone that is less

    reactive than benzene.

    M h i f A l ti

  • 8/13/2019 122 Ch 4 Aromatic

    55/112

    Chapter 17 55

    Mechanism of Acylation

    C

    O

    R

    +

    H

    C

    H

    O

    R

    +

    Cl AlCl3

    _C

    O

    R +

    HCl

    AlCl3

    C t l ti H d ti

  • 8/13/2019 122 Ch 4 Aromatic

    56/112

    Chapter 17 56

    Catalytic Hydrogenation

    Elevated heat and pressure are required.

    Possible catalysts: Pt, Pd, Ni, Ru, Rh.

    Reduction cannot be stopped at an

    intermediate stage.

    CH3

    CH3Ru, 100C

    1000 psi3H2,

    CH3

    CH3

    Sid Ch i O id ti

  • 8/13/2019 122 Ch 4 Aromatic

    57/112

    Chapter 17 57

    Side-Chain Oxidation

    Alkylbenzenes are oxidized to benzoic acid by

    hot KMnO4or Na2Cr2O7/H2SO4.

    CH(CH3)2

    CH CH2

    KMnO4, OH-

    H2O, heat

    COO

    COO_

    _

    Sid Ch i H l ti

  • 8/13/2019 122 Ch 4 Aromatic

    58/112

    Chapter 17 58

    Side-Chain Halogenation

    Benzylic position is the most reactive.

    Chlorination is not as selective as

    bromination, results in mixtures.

    Br2reacts only at the benzylic position.

    CHCH2CH3

    Br

    hBr2,

    CH2CH2CH3

  • 8/13/2019 122 Ch 4 Aromatic

    59/112

    AROMATIC REVIEW

  • 8/13/2019 122 Ch 4 Aromatic

    60/112

    Give the shape of benzene.

    a. Tetrahedral

    b. Bent

    c. Trigonal pyramidal

    d. Planar

  • 8/13/2019 122 Ch 4 Aromatic

    61/112

    Answer

    a. Tetrahedral

    b. Bent

    c. Trigonal pyramidal

    d. Planar

    All six carbons and six hydrogens are inthe same plane.

    Give the hybridization of each carbon

  • 8/13/2019 122 Ch 4 Aromatic

    62/112

    Give the hybridization of each carbon

    in benzene.

    a. sp

    b. sp2

    c. sp3

    d. sp4

  • 8/13/2019 122 Ch 4 Aromatic

    63/112

    Answer

    a. sp

    b. sp2

    c. sp3

    d. sp4

    Each carbon in benzene is sp2hybridized.

    Give the bond angle of the atoms in

  • 8/13/2019 122 Ch 4 Aromatic

    64/112

    Give the bond angle of the atoms in

    benzene.

    a. 45

    b. 60

    c. 90

    d. 109.5

    e. 120

  • 8/13/2019 122 Ch 4 Aromatic

    65/112

    Answer

    a. 45

    b. 60

    c. 90

    d. 109.5

    e. 120

    The carbons are 120oapart in benzene.

  • 8/13/2019 122 Ch 4 Aromatic

    66/112

    Classify .

    a. Aromatic

    b. Antiaromaticc. Nonaromatic

    d. Acyclic

  • 8/13/2019 122 Ch 4 Aromatic

    67/112

    Answer

    a. Aromatic

    b. Antiaromatic

    c. Nonaromatic

    d. Acyclic

    The compound gives a whole number forNin Hckels rule (4N+ 2 = 6, N= 1).

  • 8/13/2019 122 Ch 4 Aromatic

    68/112

    Classify .

    a. Aromatic

    b. Antiaromaticc. Nonaromatic

    d. Acyclic

  • 8/13/2019 122 Ch 4 Aromatic

    69/112

    Answer

    a. Aromatic

    b. Antiaromatic

    c. Nonaromatic

    d. Acyclic

    The compound is cyclic and hascontinuous delocalized electrons, butdoes not give a whole number forHckels rule (4N+ 2 = 8, N= 3/2).

  • 8/13/2019 122 Ch 4 Aromatic

    70/112

    Classify .

    a. Aromatic

    b. Antiaromatic

    c. Nonaromatic

    d. Acyclic

  • 8/13/2019 122 Ch 4 Aromatic

    71/112

  • 8/13/2019 122 Ch 4 Aromatic

    72/112

  • 8/13/2019 122 Ch 4 Aromatic

    73/112

    Answer

    a. Anthracene

    b. Naphthalene

    c. Phenanthrene

    d. Benzene

    Naphthalene contains two benzenerings fused together.

  • 8/13/2019 122 Ch 4 Aromatic

    74/112

    Name

    a. Anthracene

    b. Naphthalenec. Phenanthrene

    d. Benzene

  • 8/13/2019 122 Ch 4 Aromatic

    75/112

    Answer

    a. Anthracene

    b. Naphthalene

    c. Phenanthrene

    d. Benzene

    Anthracene contains three benzene ringsfused together.

    Identify how carbon diamond and

  • 8/13/2019 122 Ch 4 Aromatic

    76/112

    Identify how carbon, diamond, and

    graphite are related.

    a. They are enantiomers of carbon.

    b. They are diastereomers of carbon.

    c. They are allotropes of carbon.

    d. They have the same properties.

  • 8/13/2019 122 Ch 4 Aromatic

    77/112

    Answer

    a. They are enantiomers of carbon.

    b. They are diastereomers of carbon.

    c. They are allotropes of carbon.

    d. They have the same properties.

    NH2Cl

  • 8/13/2019 122 Ch 4 Aromatic

    78/112

    Name

    a. 4-Bromo-3-

    chloroanilineb. 4-Bromo-3-

    chlorophenol

    c. 4-Bromo-3-chloroanisole

    d. 1-Bromo-2-chloro-4-

    anilinee. 1-Bromo-2-chloro-4-

    phenol

    Br

  • 8/13/2019 122 Ch 4 Aromatic

    79/112

    Answer

    a. 4-Bromo-3-

    chloroaniline

    b. 4-Bromo-3-

    chlorophenol

    c. 4-Bromo-3-

    chloroanisole

    d. 1-Bromo-2-chloro-4-

    aniline

    e. 1-Bromo-2-chloro-4-

    phenol

    Aniline is the parent compound. The NH2isat position one.

    CH3

  • 8/13/2019 122 Ch 4 Aromatic

    80/112

    Name

    a. p-Methylphenol

    b. m-Methylphenol

    c. o-Methylphenol

    d. 4-Methylphenol

    e. 3-Methylphenol

    OH

  • 8/13/2019 122 Ch 4 Aromatic

    81/112

    Answer

    a. p-Methylphenol

    b. m-Methylphenol

    c. o-Methylphenol

    d. 4-Methylphenol

    e. 3-Methylphenol

    The groups are on adjacent carbons,

    which is ortho.

  • 8/13/2019 122 Ch 4 Aromatic

    82/112

    Name

    a. 3-Amino-5-

    benzaldehydeb. 5-Amino-3-

    benzaldehyde

    c. 3-Amino-benzaldehyde

    d. 5-Nitro-3-

    benzaldehydee. 3-Nitro-

    benzaldehyde

    NO2C

    O

    H

    A

  • 8/13/2019 122 Ch 4 Aromatic

    83/112

    Answer

    a. 3-Amino-5-benzaldehyde

    b. 5-Amino-3-

    benzaldehyde

    c. 3-Amino-

    benzaldehyde

    d. 5-Nitro-3-benzaldehyde

    e. 3-Nitro-

    benzaldehyde

    Benzaldehyde is the parent compound.

  • 8/13/2019 122 Ch 4 Aromatic

    84/112

    Name

    a. o-Amino-

    benzaldehydeb. m-Amino-

    benzaldehyde

    c. p-Amino-benzaldehyde

    d. o-Nitro-

    benzaldehydee. m-Nitro-

    benzaldehyde

    NO2C

    O

    H

    A

  • 8/13/2019 122 Ch 4 Aromatic

    85/112

    Answer

    a. o-Amino-benzaldehyde

    b. m-Amino-

    benzaldehyde

    c. p-Amino-

    benzaldehyde

    d. o-Nitro-benzaldehyde

    e. m-Nitro-

    benzaldehyde

    Benzaldehyde is the parent compound.

  • 8/13/2019 122 Ch 4 Aromatic

    86/112

    A

  • 8/13/2019 122 Ch 4 Aromatic

    87/112

    Answer

    a. 1-Phenyl-3-pentyne

    b. 5-Phenyl-2-pentyne

    c. 4-Phenyl-2-pentyne

    d. 1-Phenyl-2-butyne

    e. 1-Phenyl-3-butyne

  • 8/13/2019 122 Ch 4 Aromatic

    88/112

    Identify the slow step in

    electrophilic aromatic substitution.a. Formation of a stronger nucleophile.

    b. Formation of the benzenonium ion.

    c. Deprotonation to regain aromaticity.

    d. Formation of a carbanion.

    A

  • 8/13/2019 122 Ch 4 Aromatic

    89/112

    Answer

    a. Formation of a stronger nucleophile.

    b. Formation of the benzenonium ion.

    c. Deprotonation to regain aromaticity.

    d. Formation of a carbanion.

    Benzene attacking the electrophile to formthe benzenonium ion is the slow step.

  • 8/13/2019 122 Ch 4 Aromatic

    90/112

    a. Hexachlorobenzene

    b. Hexachlorocyclohexanec. 5,6-Dichloro-1,3-cyclohexadiene

    d. Chlorobenzene

    Cl2

    AlCl3

    A

  • 8/13/2019 122 Ch 4 Aromatic

    91/112

    Answer

    a. Hexachlorobenzene

    b. Hexachlorocyclohexane

    c. 5,6-Dichloro-1,3-cyclohexadiene

    d. Chlorobenzene

    One chlorine atom substitutes on thebenzene.

  • 8/13/2019 122 Ch 4 Aromatic

    92/112

    a. Nitrobenzene

    b. Anilinec. Chlorobenzene

    d. Benzenesulfonic acid

    1. HNO3, H2SO4

    2. Zn, aq. HCl

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    93/112

    Answer

    a. Nitrobenzene

    b. Aniline

    c. Chlorobenzene

    d. Benzenesulfonic acid

    A nitro group is added, which is thenreduced to an amino group.

  • 8/13/2019 122 Ch 4 Aromatic

    94/112

    a. Nitrobenzene

    b. Anilinec. Chlorobenzene

    d. Benzenesulfonic acid

    SO3

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    95/112

    Answer

    a. Nitrobenzene

    b. Aniline

    c. Chlorobenzene

    d. Benzenesulfonic acid

    A sulfonic acid group is added to thebenzene.

    CH CH

  • 8/13/2019 122 Ch 4 Aromatic

    96/112

    a. 2- and 4-nitroethylbenzene

    b. 3-Nitroethylbenzenec. 2- and 4-ethylbenzenesulfonic acid

    d. 3-Ethylbenzenesulfonic acid

    CH2CH3

    HNO3

    H2SO4

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    97/112

    Answer

    a. 2- and 4-nitroethylbenzene

    b. 3-Nitroethylbenzene

    c. 2- and 4-ethylbenzenesulfonic acid

    d. 3-Ethylbenzenesulfonic acid

    The ethyl group is an ortho and paradirector.

    Classify a bromide

  • 8/13/2019 122 Ch 4 Aromatic

    98/112

    Classify a bromide.

    a. Meta, activating group

    b. Meta, deactivating group

    c. Ortho and para, deactivating groupd. Ortho and para, activating group

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    99/112

    Answer

    a. Meta, activating group

    b. Meta, deactivating group

    c. Ortho and para, deactivating group

    d. Ortho and para, activating group

    The electrons can delocalize into thebromide, making another benzenoniumion intermediate.

    Classify a nitro group

  • 8/13/2019 122 Ch 4 Aromatic

    100/112

    Classify a nitro group.

    a. Meta, activating group

    b. Meta, deactivating group

    c. Ortho and para, deactivating groupd. Ortho and para, activating group

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    101/112

    Answer

    a. Meta, activating group

    b. Meta, deactivating group

    c. Ortho and para, deactivating group

    d. Ortho and para, activating group

    OCH3

  • 8/13/2019 122 Ch 4 Aromatic

    102/112

    a. 3-Propylanisole

    b. 2- and 4-propylanisolec. 3-Isopropylanisole

    d. 2- and 4-isopropylanisole

    AlCl3

    CH3CH2CH2Cl

  • 8/13/2019 122 Ch 4 Aromatic

    103/112

    Give the intermediate in a Friedel

  • 8/13/2019 122 Ch 4 Aromatic

    104/112

    Crafts acylation.

    a. Carbocation

    b. Carbanion

    c. Radicald. Acylium ion

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    105/112

    Answer

    a. Carbocation

    b. Carbanion

    c. Radical

    d. Acylium ion

    An RCO+is an intermediate in aFriedelCrafts acylation.

  • 8/13/2019 122 Ch 4 Aromatic

    106/112

    a. Chlorobenzene

    b. Benzoic acid

    c. Benzaldehyde

    d. Benzene

    CO, HCl

    AlCl3, CuCl

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    107/112

    Answer

    a. Chlorobenzene

    b. Benzoic acid

    c. Benzaldehyded. Benzene

    The GattermanKoch formylation formsbenzaldehyde.

    CH2CH2CH3

  • 8/13/2019 122 Ch 4 Aromatic

    108/112

    a. 2-Bromo-

    propylbenzeneb. 3-Bromo-

    propylbenzene

    c. 4-Bromo-propylbenzene

    d. -Bromo-

    propylbenzenee. -Bromo-

    propylbenzene

    Br2

    light

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    109/112

    Answer

    a. 2-Bromo-propylbenzene

    b. 3-Bromo-

    propylbenzenec. 4-Bromo-

    propylbenzene

    d. -Bromo-propylbenzene

    e. -Bromo-

    propylbenzene

    Bromine substitutes on the benzylic

    carbon.

    OH

  • 8/13/2019 122 Ch 4 Aromatic

    110/112

    a. 2-Isopropylphenol

    b. 3-Isopropylphenolc. 4-Isopropylphenol

    d. 2-Isopropylphenol and 4-isopropylphenol

    e. 2-Isopropylphenol and 3-isopropylphenol

    (CH3)2CHOH

    HF

    Answer

  • 8/13/2019 122 Ch 4 Aromatic

    111/112

    Answer

    a. 2-Isopropylphenol

    b. 3-Isopropylphenol

    c. 4-Isopropylphenold. 2-Isopropylphenol and 4-isopropylphenol

    e. 2-Isopropylphenol and 3-isopropylphenol

    Phenols are highly reactive substrates

    for electrophilic aromatic substitution.

  • 8/13/2019 122 Ch 4 Aromatic

    112/112

    End of Chapter 9