123B_1_EE 123B W 12 lect 2 chap 2

Embed Size (px)

Citation preview

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    1/33

    Lecture 2 continued

    Chapter 2January 12, 2012

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    2/33

    Homework #2

    due 1/19 Thursday Chapter 22.1 interplanar spacing

    2.2 primitive cell calculations volume,vectors, brillouin zone

    2.3 scattered radiation pattern, amplitude

    and width2.4 examine scattering linewidth F, K, G

    2.5 structure factor

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    3/33

    Diffraction We study the crystal structure using diffraction by

    electrons, neutrons, X-ray photons.

    E-beam elastically scatters from atomic lattice Reflected beams constructive interference

    10

    1 10 1000.1

    1

    Wavelength

    ()

    Photon energy, keV

    Neutron energy, 0.01eV

    Electron energy, 100eV

    X-ray photon

    Neutrons

    Electrons

    These particleshave appropriatewavelength toresolve atoms

    =5000 >> a=5

    E=hR=hc/PP=hc/E=

    X-rays: E=10 - 50 keVh ! 6.62x1034

    J s

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    4/33

    Scattering Amplitude, F=NSWhat do we know already?

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    5/33

    Scattering Amplitude

    X-Ray diffraction schematic and data

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    6/33

    Constructive Interference

    Constructive interference occurs when reflected beampath lengths differ by n

    2dsin=n Bragg Law

    dsin

    d

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    7/33

    Constructive Interference

    Constructive interference occurs when reflected beampath lengths differ by n

    2dsin=n Bragg Law

    dsin

    d

    cos(k(r d)) ! cos(kr)k(r d) ! kr kd! kr 2Tn

    kd! 2TP nd! nP

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    8/33

    Reciprocal Lattice Vectors

    Crystal has 2 lattices Crystal lattice, vectors have dimensions of [length]

    Reciprocal lattice, vectors have dimension of [1/length] every position in Fourier space may have a meaning as a

    description of a wave

    Microscope image is real space

    Diffraction pattern is reciprocal spaceaX

    n(x)

    x

    G

    a a aa

    0 a

    T2a

    T4

    a

    T4 a

    T2

    bX

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    9/33

    Diffraction Conditions

    reciprocal space

    v

    kvr| Difference in phase angle J

    P

    Tsin

    2r!

    |Jsinr Difference in path length over dV

    Incoming beam~ eikr Outgoing beam

    ~ eikr

    O

    r

    rsin Crystal specimen

    k

    X

    'kX

    dV

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    10/33

    Diffraction Conditions contd.

    For the diffracted wave, the difference in phase angleis: (vk vr! (N

    rkk XXX

    !( )'(J

    The total difference in phase angle is:

    ])'(exp[ rkkiXXX

    ! Phase factor

    of the wave scattered from dV at rrelative to the wave scatteredfrom a volume element at the origin O.

    'kX

    kX

    kX

    ('kkkXXX

    !(

    Scattering vector measures

    change in wavevector

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    11/33

    Diffraction Conditions Ewald SphereEwald sphere determines which lattice planes (represented by the grid points on

    the reciprocal lattice) will result in a diffracted signal for a given wavelength, , ofincident radiation.

    The incident wave on the crystal has a wavevectorKi =2 / .

    kGXX

    (!

    Bragg condition:

    The diffracted wave has a wave vector Kf.

    If no energy is gained or lost (it is elastic) then

    Kf has the same length as Ki. K = 0

    The difference between the wave-vectors ofdiffracted and incident wave is defined asscattering vectorK = Kf Ki.

    Since Ki and Kf have the same length thescattering vector must lie on the surface of asphere of radius 2 / . This sphere is called

    the Ewald sphere.

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    12/33

    Diffraction Conditions mapreal to reciprocal

    Reciprocal lattice vectors G determines possible reflection We want an expression to relate Bragg Condition to G.

    Next define G using reciprocal lattice vectors

    332211 bvbvbvGXXXX !

    321

    32

    1

    2

    aaa

    aa

    b XXX

    XXX

    vv

    !T

    Translates reciprocal to real

    321

    13

    2

    2

    aaa

    aa

    b XXX

    XXX

    vv

    !

    T

    321

    21

    3

    2

    aaa

    aa

    b XXX

    XXX

    vv

    !

    T

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    13/33

    Diffraction Conditions contd.

    F! dVn(

    vr) exp[i(

    v

    kv

    k') vr]! NS

    G

    (! )exp()( rkirdVn XXXIntegral volume Electron number Phase factor

    Specify n(r) for atomic lattice G dependence !G

    GrGinrn

    XX

    TTX)exp()(

    (! GG rkGidVnF XX

    XXX

    ])(exp[Reciprocal lattice vector

    Scattering vector:kX

    (

    :GX

    kGXX

    (!G

    VnF X!For

    Scattering Amplitude:

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    14/33

    Diffraction Conditions Ewald Sphere

    Now complete the description for diffraction Bragg Law Diffraction conditions

    k = incident wave intersect crystal @ lattice point Ewald sphere intersect lattice @ point

    k is reflected wave G connects

    kX

    GX

    'kX

    U U21

    2

    1 2

    1

    2

    We want to express these

    conditions in terms of d vs.

    crystal wave

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    15/33

    Elastic Scattering G vector

    Energy is conserved 'kk !

    GkXX

    !('kGkXXX

    !2'2

    )( kGk

    XXX

    !''2 kkGGGkkkXXXXXXXX

    !2'22 2 kGGkk !

    XX22

    02 ! GGkXX

    22 GGk !XX

    GG

    XX

    !Express G in terms of d, k in terms of

    Where d is distance between (hkl) planes normal to G 0!dGXX

    'ww JJ !

    'kkkXXX

    !(

    2'2 kk !

    2'2 kk !

    dG

    T2!

    P

    T2!k

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    16/33

    Elastic Scattering contd.

    321 blbkbhGXXXX

    !

    Ghkld

    T2)( !

    dG

    T2!

    Rewrite 22 GGk !XX

    2)2

    (sin22

    2dd

    TU

    TP

    T!

    d

    TU

    P

    T 2sin

    22 !

    PU !sin2d Bragg condition

    Here we considered diffraction conditions based on reciprocal lattice.

    Reciprocal lattice vector:

    Distance between (hkl) planes normal to G:

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    17/33

    Laue Equations also derive E.S.

    Laue equations relate to real lattice to reciprocal lattice

    321 ,aabTTT

    B

    ijji ab TH2!TT

    132,aabTTT

    B 213 ,aabTTT

    B

    332211 bvbvbvGTTTT

    !

    321

    321

    2

    aaa

    aab XXX

    XXX

    v

    v!

    T

    321

    132

    2

    aaa

    aab XXX

    XXX

    v

    v!

    T

    321

    21

    3

    2

    aaa

    aab XXX

    XXX

    v

    v!

    T

    Axis vectors of the reciprocal lattice:

    Each vector is orthogonal to two axis vectors of the crystal lattice:

    Thus: jiij !! if1H

    jiij {! if0H

    Points in the reciprocal lattice are:

    are integers, is a reciprocal lattice vector321 ,, vvv G

    T

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    18/33

    Laue condition contd.

    Thus can be rewritten in terms ofkGXX

    (,

    GakaXXXX

    !( 11

    13322111 2)( vbvbvbva T!XXXX

    23322112 2)( vbvbvbva T!XXXX

    33322113 2)( vbvbvbva T!XXXX

    Relates back to Ewald Sphere

    321 ,, aaaXXX

    kX

    GX

    'kX

    U U21

    2

    But why a.G?

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    19/33

    Brillouin Zone

    Provide geometrical, visual interpretation of

    Use Wigner-Seitz primitive cell in reciprocal space.

    22 GGk !XX

    1. Draw lines to connect central lattice point to surrounding lattice point.

    2. Draw new lines (planes) which bisect these connecting linesperpendicularly.

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    20/33

    Brillouin Zone contd.

    A similar construction describes the diffraction conditions

    1kX

    1 2

    OC

    D

    CGX

    2

    1

    DGX

    2

    1

    2kX

    CGX

    2

    1

    CGX

    O C

    Normal to plane 1 from O

    DGX

    O D

    2kX Satisfies

    1kX

    Incident vector satisfies *

    *

    *2)

    2

    1()

    2

    1( GGk

    XXX!

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    21/33

    Brillioun Zone Oblique lattice

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    22/33

    Brillouin Zone contd.

    All incident waves with wave vectork terminating onbisecting plane will satisfy Bragg condition

    The central square is:

    a primitive cell of thereciprocal lattice

    A Wigner-Seitz cell of thereciprocal lattice

    The first Brillouin zone

    the smallest volume entirelyenclosed by planes that arethe perpendicular bisectors ofthe reciprocal lattice vectorsdrawn from the origin.

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    23/33

    Reciprocal Lattice to sc Lattice

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    24/33

    Reciprocal Lattice to sc Lattice

    The primitive translation vectors of a sc lattice:

    ;1 xaa !X

    ;2

    yaa !X

    .3

    zaa !X

    lengthunitofvectorsorthogonalare,, zyx

    The volume of the cell:

    The primitive translation vectors of the reciprocal lattice:

    ;)/2(1 xab T!X

    ;)/2(2 yab T!X

    ;)/2(3

    zab T!X

    The reciprocal lattice is a sc lattice, with lattice constant 2/a.

    The first Brillouin zone of sc crystal lattice is a cube ofedge 2/a and of volume (2/a)3

    3

    321aaaaV !v! XXX

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    25/33

    BCC Real and Reciprocal

    'kk !'ww JJ ! 2'2 kk !

    va1

    va2

    v

    a3

    b1b2

    b3

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    26/33

    Reciprocal Lattice to bcc Lattice

    );(2

    12

    zyxaa !X

    );(2

    13

    zyxaa !X

    The primitive translation vectors of a bcc lattice:

    );(2

    11 zyxaa !X

    lengthunitofvectorsorthogonalare,, zyx

    cubealconventiontheofsidetheisa

    3

    3212

    1aaaaV !v!

    XXX The volume of the cell:

    The primitive translation vectors of the reciprocal lattice:

    );)(/2(1 zyab ! TX

    );)(/2(2 zxab ! TX

    );)(/2(3 yxab ! TX

    The reciprocal lattice is a fcc lattice.

    The general reciprocal lattice vector is:

    ];)()())[(/2(213132332211zvvyvvxvvabvbvbvG !! T

    XXXX

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    27/33

    Reciprocal Lattice to fcc Lattice

    );(2

    12 zxaa !X

    );(2

    13

    yxaa !X

    The primitive translation vectors of a fcc lattice:

    );(2

    11 zyaa !X

    lengthunitofvectorsorthogonalare,, zyx

    cubealconventiontheofsidetheisa

    The primitive translation vectors of the reciprocal lattice:

    vb1 !2T

    a( x y z); );(

    22 zyx

    ab ! TX );(2

    3zyx

    ab ! TX

    The reciprocal lattice is a bcc lattice.

    The volume of the cell: 3321

    4

    1aaaaV !v!

    XXX

    The volume of the

    primitive cell: V !

    vb

    1vb2v

    vb3

    !2T

    4

    a3

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    28/33

    FCC Real and Reciprocal

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    29/33

    Fourier Analysis of Basis Integrated contribution of electron density (over V) to

    scattering amplitude:

    G

    cell

    GNSrGirdVnNF XX

    XXX!! )exp()(

    Number of cells Amplitude Phase relation between crystaland scattering beam

    Structure factor

    Where n(r) is a superposition of electron concentrations nj from atom j in a cell

    !s

    j

    jj rrnrn1

    )()(XXX

    s: number of atoms in cell

    j

    O

    jrX

    rX

    Single cell

    Note that F and S include both real and reciprocal information.

    Real Space!!

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    30/33

    Structure Factor

    ! jjjG rGirrdVn

    S)exp()(

    XXXXStructure factor

    )exp()()exp( VVXXXXX

    ! GidVnrGi jj

    j

    jrrXXX

    !Vwhere

    )exp()( VVXXX

    !

    GidVnf

    jj

    !j

    jjGrGifS )exp(XX

    Atomic form factor

    Structure factor of the basis

    321 azayaxr jjjjXXXX

    !

    )()(321332211 azayaxbvbvbvrG jjjjXXXXXXXX

    ! )(2321 jjj zvyvxv ! T

    Describes a specificreflection condition

    Describes crystalin real space

    )](2exp[)(321321 jjj

    j

    jGzvyvxvifvvvS ! TXso

    Scattered intensity2

    GSXw can be complexGSX

    What does SG indicate? - it identifies crystal symmetries

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    31/33

    SG for bcc lattice

    bcc basis has identical atoms at3121111

    azayaxrXXXX

    !

    3222122 azayaxrXXXX

    !

    )](2exp[)( 3212,1

    321 jjj

    j

    jG zvyvxvifvvvS ! ! T)]

    2

    1

    2

    1

    2

    1(2exp[1

    32121 vvviff ! T

    )]}(exp[1{321vvvifSG ! T

    f1=f2 identical atoms

    )000(),,( 111 !zyx

    )2

    1

    2

    1

    2

    1(),,( 222 !zyx

    2rX

    j=2

    j=1O

    For bcc basis SG=0 when the exponential = -1

    integer;oddhenw0321

    !! vvvSGinteger;evenwhen2

    321!! vvvfSG

    J ! TVJ ! 2T

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    32/33

    SG for bcc lattice contd.

    Consider metallic Na bcc basis The diffraction pattern DOES NOT include

    Not (100), (300), (111), (221), Has (110), (200),

    TJ 2!(Constructive interference:In bcc, second atomic plane causes phase difference => destructive

    1st plane

    2nd plane

    3rd plane

    Total Phasedifference 2

    a

    (100), (200)

    (100)

    T2'!kkXX

    Howdoweanalyzea crystalgrownonthe(001) crystalplane?

    SG(001)

    ! f{1 exp[iT (v3

    ! 1)] ! 1 1}! 0

  • 8/3/2019 123B_1_EE 123B W 12 lect 2 chap 2

    33/33

    SG for fcc lattice