261
ISSN 1342-0852 「福島第一原発事故による周辺生物への影響に関 する研究会」報告書 Proceedings of the Specialists' Meeting on Effects of the Fukushima-1 Accident on Organisms around the Nuclear Power Plant Site 平成28年8月3日~4日 開催 (August 3 - 4, 2016) 編集: 齊藤 剛 福本 学 今中哲二 Edited by : Saito T. Fukumoto M. Imanaka T. Research Reactor Institute, Kyoto University KURRI-EKR-15

16 京大原子炉専門研究会プログラム160726(最終版)

Embed Size (px)

Citation preview

  • ISSN 1342-0852

    Proceedings of the Specialists' Meeting on

    Effects of the Fukushima-1 Accident on Organisms around the Nuclear Power Plant Site

    (August 3 - 4, 2016)

    Edited by : Saito T. Fukumoto M. Imanaka T.

    Research Reactor Institute, Kyoto University

    KURRI-EKR-15

  • i

    2011 3

    2 2014 40 12 2015 70 24 2016 8 3 4 2 74 23 2016 23 3

    2016

    5 2016

  • ii

    Preface

    The Fukushima-1 accident in March of 2011 released a large quantity of radioactive substances

    and caused significant radioactive environmental contamination. The current research on the effects

    of the radioactive contamination on humans has numerous problems, although it has been conducted

    on a relatively large scale because of the great deal of interest in the topic. On the other hand,

    systematic research on the effects of the radiation around the nuclear power plant site on organisms

    exposed to a wide range of radiation from low to high doses compared to humans has apparently

    lagged behind. Understanding the radiation effects on organisms around the nuclear power plant site

    would provide important information for us to consider regarding the effects of the accident on

    humans and their environments.

    After the Fukushima-1 accident, many scientists voluntarily began studies and surveys to clarify

    the effects of the accident and of the radioactive contamination on many types of organisms. Two

    workshops were held as opportunities for the scientists conducting these studies and surveys to

    discuss the issues. In these workshops, meaningful discussions ensued, about 40 participants attended

    the 12 presentations in 2014, and more than 70 participants attended the 24 presentations in 2015.

    Based on the outcomes of first two workshops, the third workshop, entitled Effects of the

    Fukushima-1 Accident on Organisms around the Nuclear Power Plant Site, was held on August 3

    and 4, 2016, at the Research Reactor Institute, Kyoto University. There were 23 presentations and 74

    participants at the third workshop. This paper reports the proceedings of the third workshop.

    The three workshops were successful because a great deal of information was exchanged among

    the various scientists and their understanding of other fields of research increased. Because of the

    active discussions at the 2016 workshop, a consensus was developed on the future direction for this

    research. It is truly meaningful that the 2016 workshop was a success because five years had passed

    since the accident, making 2016 a milestone year as the early stage of research on the effects of the

    accident.

    Despite this progress, the effects of the accident on organisms around the nuclear power plant site

    and the ecosystem are complex. Therefore, it is important to continue collecting, integrating, and

    preserving phenomena, and it is vital to continue long-term research projects using these data; sharing

    obtained results is extremely important. We hope that the 2016 workshop will contribute to the

    development of future research.

    December 2016

    SAITO Takeshi

  • iii

    1. 1

    2.

    13

    3. 21

    4.

    33

    5. 37

    6. EGS5

    47

    7. EPMA 54

    8.

    65

    9. 70

    10. 20132015

    77

    11. Transcriptomic, proteomic and metabolomic profiling of low-level gamma irradiated rice at Iitate village, Fukushima

    Randeep Rakwal 94

    12. 119

  • iv

    13.

    130

    14. 132

    15.

    134

    16. 141

    17.

    157

    18. 90Sr238Pu,239240Pu 1

    172

    19. 190

    20.

    195

    21. 204

    22. Cs

    220

    23. 233

  • 1,2, 1 1,3 1

    1 2 3

    DNA

    DNA

    1

  • 1

    1,2, 1 1,3 14 5 G

    1 2 3 4 5

    2016.07.06 325 (20 + 5

    3.6mSv/

    2

  • 203

    4ICRP pub 41 (1984)

    3

  • 10-4 10-3 10-2 0.1 1 10 100 103 104 105

    mSv/

    Gy/

    6 mGy/ *

    1mSv/

    1.8-3.7mSv/

    20mSv/

    10 200 4000400

    4

  • 0.05 mGy/ 20 mGy)1 mGy/ 400 mGy)20 mGy/ 8000 mGy) (Tanaka, S. et al., Radiat. Res. 160:376-9, 2003)

    1

    2

    3,4

    3,5

    3,6

    7

    8,9

    10

    (-)3

    1. Radiat Res 160: 376 (2003) 2. Radiat Res 167: 417 (2007) 3. Unpublished results4. Int J Radiat Biol 87:729 (2011)5. Radiat Res 173: 333 (2010)

    6. Radiat Res 171: 290 (2009)7. Radiat Res 173: 138 (2010)8. Radiat Res 174: 611 (2010)9. J Radiat Res 50: 241 (2009)10. J Radiat Res 49: 661 (2008)

    5

  • (238U, 232Th)

    (222Rn)

    (232Th)

    (226, 228Ra)

    (137Cs)131I

    (Memorial University HP)

    The Radium Girls

    (Asahi-com.or.jp)

    (224Ra)

    239Pu)

    (Harrison JD & Muirhead CR, Int J Radiat Biol 79:1, 2003; Brenner AV et al, Environ Health Perspect, 119:933, 2011.)

    (134, 137Cs)

    6

  • 43.5 32.335.6 26.015.4 35.431.3 6.3

    9.60.2

    81.58.6

    (%)

    (Andersson M et al. Rad Res 1994)(Mori T et al. Ibid 1999)

    11

    12Preston, Radiat Res 2007Fukumoto M. Pathol Int 64:doi:10.1111/pin.121, 2014

    20

    7

  • 8

  • 1st hit

    Mf

    Yamamoto Y et al. Health Phys 99:388, 2010.80

    16

    9

  • 134Cs 137Cs (mGy)

    1 1960.7-1.2 0.4-0.6

    3.9-4.42 0.8

    2 3153.2-6.1 1.8-3.4

    6.9-11.41.3 0.6

    Yamashiro H et al. Sci Rep 8(3): 2850, 201317

    0.1 Gy

    18

    MDA

    SOD

    H2O2

    H2O

    GPx

    MDA Puthran et al, 20093.5mSv MDA Serhatlioglu et al, 2003

    Klucinski et al, 2008

    Urushihara et al PlosOne 2016

    10

  • 10

    DNA / RNA 2D barcode tubes

    (-80oC)

    Electron Probe Microanalyzer

    Lazar microdissection

    / (-

    2016.02.24

    11

  • 2D barcode tubes

    (-80oC)

    Electron Probe Microanalyzer

    Lazar microdissection

    / (-

    2016.02.24

    12

  • 13

  • 14

  • 10 100 1000 10000

    (Gy)

    15

  • 16

  • Lethal Zone

    (4 km2)

    Medium damage Zone

    (120 km2)

    Sublethal Zone

    (38 km2)

    Minor damage Zone

    >80-100 Gy10-20 Gy4-5 Gy0.5-1.2 Gy

    (

    (

    17

  • 18

  • **

    **

    **

    19

  • 20

  • 2011 3 11 1F

    1F137Cs

    2011 12 14 1F 20km16

    1) ( ) 2011 122011 12 14 1F 20km 16

    2) 2012 4 82012 4 7 8 43 1F20km 10 33

    1

    3) 2013 5 62013 5 61F 20km 7 2012

    1F

    50cm 101m2

    1) ( ) 2011 122011 12 14 16

    1 1

    2) 2012 4 82012 4 8 43

    1F P

  • 30km1F

    30km

    3) 2013 5 62013 5 6

    7 50cm1F

    P

  • 23

  • 35.0 Sv/h 20.0 Sv/h

    1.54 Sv/h

    24

  • 25

  • Cellana grata

    T. clavigera

    26

  • 27

  • 28

  • 29

  • 30

  • /

    2012 4

    2014 4

    2015 4

    31

  • P

    P

    32

  • 2011 3 1F

    30m2012 10 2013 1 2 3

    2012 10 1F 30km 66

    1F 10m, 20m, 30m2012 10 2013 1 7 9/10 2014 1 7 2015 1 7 30m

    10m 20m

    134Cs 137Cs15 20

    2013 2015

    2012 10 66 1F1,650 Bq/kg

    TOC T-N2014 1 30m 10 30 Bq/kg

    30 50 Bq/kg 500 100 Bq/kg 10 40 mBq/L 2013 7 230

    57.6 100 Bq/kg wet137Cs 102

    100A 10~20m

    B 10m C 10m~20m D 20m 30m 4 A1F B

    CD

    B C D 20132014

    33

  • 34

  • 35

  • 36

  • 2011

    wIV 2011 2 6 27.3

    2012 wV VI 2011 1 10

    Dic ring

    Dic ring Dic ring

    ctg ctb csb

    PLD

    10cm

    10cm

    PLD

    PLD 5%

    37

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    38

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    November 2, 2014

    39

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    40

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki

    NamieFields

    Distancefrom

    F1-NPP(km)

    Dose rate in the air ( Gy/h)

    2011 2012 2013

    Autumn Spring Autumn Spring

    Namie

    Tsushima 28.5 20.2 - - -

    Akogi 22.8 29.1 28.9 26.9 15.2

    Murohara 15.3 - 15.6 14.2 9.7Tatsuno 12.6 8.79 - - -

    Tanashio 8.8 0.59 0.55 0.52 0.66

    Ide 8.4 - 25.3 24.5 16.4

    Ukedo 6.8 - 0.45 - -

    Hirosaki

    Owasawa 352.1 0.05 0.05 0.05 -

    Sakamoto 349.2 0.06 0.06 0.06 -

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    41

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    FragmentDIC

    Ring

    Chromatid gap Chromatid break Chromosome break

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    42

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    43

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    44

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    45

  • Hirosaki University, Chromosome Research Group Tomisato Miura, Ph.D.

    46

  • EGS5

    ICRP 12

    ICRPDerived Consideration

    Reference Levels 0.1 mGy/dGarnier-Laplace

    J, et. al. (2011) 30 3.9 mGy/dICRP

    20112012 2014

    Apodemus speciosus

    EGS5ICRP

    47

  • 1

    EGS5

    2

    3.9 mGy/day (1.4 Gy/year)

    1.0 10 mGy/day :

    30 Garnier-Laplace J, et. al. (2011)

    48

  • 3

    International Commission of Radiological Protection and Environmental Protection. The Concept and Use of Reference Animals and Plants; Annals of ICRP; Publication 108;

    0.1 1.0 mGy/day:

    1.0 10 mGy/day :

    0.01 0.1 mGy/day :

    10 100 mGy/day :

    100 1000 mGy/day :

    >1000 mGy/day : 6-10 Gy LD50/30 1Gy LD50

  • 5

    ( Sv/hr)

    6

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    2012 2013 2014 2015

    Sv/hr

    year

    50

  • Cs134 Cs137

    7

    0.0

    100000.0

    200000.0

    300000.0

    400000.0

    500000.0

    600000.0

    700000.0

    2012 2013 2014 2015

    Bq/kg

    (Bq/kg)

    8

    (Cs134 Cs137)

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    900000

    2011 2012 2013 2014 2015

    51

  • Cs137 Cs134

    Cs137 CsCs1

    Cs137 * EGS5** ***

    * **Hirayama, Namito, Bielajew, Wilderman and Nelson (2005),SLAC-R-730/UC-407and KEK Report 2004-5 ***Cs137

    9

    HANDY SURVEYMETER Type NHE20CY3-131BY-S (Fuji Electric)

    2012 n=27 15 12 2013 n=19 13 62014 n=16 10 6 2015n=11 8 3

    (

    30g * 20mm 122mm 23g 17mm 104mm

    merge

    (* (1980))

    52

  • 11

    n=19 n=20 n=27 n=15 n=5 n=5

    . .

    100

    53

  • 54

  • EPMA

    55

  • Kubota et al., J Environ Radioact 2015;142:12431.

    24

    http://www.env.go.jp/jishin/monitoring/results_wl_d130314.pdf

    122 mGy/Year Okano et al., Scientific Reports, 6:23601, 2016

    56

  • (EPMA)Cs

    2012 11 2013 4 2016 4

    57

  • Seq150 2012/5/29 2012/5/29 36.962721 2015/11/20 2015/11/20 34.15 2072811 2016/4/18 2016/4/18 42.75 223

    Seq215 2012/11/6 2012/11/6 23.53 189 26.9 Gy/h

    260 2013/4/19 2013/4/19 32.42 195 Gy/h572 2016/4/12 2016/4/12 36.21 202 12.3 Gy/h575 2016/4/13 2016/4/13 29.17 204 12.3 Gy/h

    2016/4/14 2016/4/14 10.81 145 12.3 Gy/h594 2016/4/15 2016/4/15 28.08 215 12.3 Gy/h595 2016/4/16 2016/4/16 44.45 248 12.3 Gy/h257 2013/4/19 2013/4/19 30.2 295 16.4 Gy/h596 2016/4/14 2016/4/14 50.09 245 5.3 Gy/h597 2016/4/14 2016/4/14 43.52 223 5.3 Gy/h

    3 mH E

    EPMA

    58

  • X

    EPMA

    Shimazdu EPMA 1720

    Electron Probe Microanalysis :

    www.ube ind.co.jp

    59

  • 1 8 2 1

    Seq150 2012/5/29 2012/5/29 36.96

    Seq215 2012/11/6 2012/11/6 23.53 189 26.9 Gy/h

    260 2013/4/19 2013/4/19 32.42 195 Gy/h257 2013/4/19 2013/4/19 30.2 295 16.4 Gy/h

    EPMA

    150 ( )

    Cs

    NS NS

    Cs

    60

  • EPMA

    Cs

    S NNS

    Cs

    5

    Seq2811 2016/4/18 2016/4/18 42.75 2232721 2015/11/20 2015/11/20 34.15 207

    Seq572 2016/4/12 2016/4/12 36.21 202 12.3 Gy/h575 2016/4/12 2016/4/12 29.17 204 12.3 Gy/h

    2016/4/13 2016/4/13 10.81 145 12.3 Gy/h594 2016/4/14 2016/4/14 28.08 215 12.3 Gy/h595 2016/4/14 2016/4/14 44.45 248 12.3 Gy/h596 2016/4/14 2016/4/14 50.09 245 5.3 Gy/h597 2016/4/14 2016/4/14 43.52 223 5.3 Gy/h

    61

  • 2 EPMA

    S N

    Cs

    NS

    Cs

    EPMA

    S N

    Cs

    NS

    Cs

    62

  • EPMA

    Cs

    S N

    Cs

    NS

    EPMA

    S N

    Cs

    NS

    Cs

    NS

    Cs

    63

  • HE

    EPMA S N

    EPMACs

    1 2 5

    Cs

    64

  • 2011

    27km

    3.6 Sv/hr 2011 10 70km

    0.2 Sv/hr 12

    29km

    4.5 Sv/hr 2014 9 2015

    9 11 80-120 3 4

    2014

    0-5cm

    65

  • 1 2 1 1 1

    2016 8 3 4590 0494

    66

  • 3.6 uSv/hr2011

    0.2uSv/hr2011

    7 10 uSv/hr2012

    67

  • Cs134+137

    Cs137

    Cs134

    SE

    Bq/kg

    134137

    2015

    Bq/kg

    Cs134+137

    Cs137

    Cs134

    Cs134+137

    Cs137

    Cs134

    SE

    134137

    2015

    68

  • 69

  • 20132016 7 10

    349

    1/5

    2013 20145 4

    2013 9 18

    70

  • 71

  • 72

  • 73

  • 74

  • 75

  • 76

  • 2013 2014 8 9

    1372013

    MMC2014

    2015 105

    2014 20132015

    MMC

    3

    1

    77

  • 2013-2015

    1.5 2016.6.18.

    78

  • 2013 2014

    134Cs + 137C Bq/m 2

    TG13, 14KW14

    NG14

    MD13, 14

    WD13

    KM13MS14

    2011 11 5

    MD13, 14 KM13 WD13:NG14 MS14 KW14TG13,14:

    79

  • 4 5

    May-Grunwald Giemsa

    5 mH.E

    NPO

    80

  • uSvBq/kg 137Cs

    Bq/kg134 137

    2013

    MD13 2.5 5 8200

    KM13 2.5 4 53000

    WD13 3.6 5 21000

    TG13 0.04 4 55

    2014

    MD14 1.5 5 12000

    NG14 3.3 5 57000/66000

    MS14 0.9 4 38000

    KW14 0.2 5 4100

    TG14 0.03 5 - 11

    Cs Cs Cs total

    402 921 1323 731

    1540 3493 5033 1157

    1818 4168 5986 2619

    3 10 13 5.5

    100 328 438 214

    306 1004 1310 532

    243 815 1058 29421 69 90 42

    6 6 1

    81

  • T

    MMCMMC

    82

  • MMC

    2013

    83

  • 2014

    2014

    3

    BT T

    TT

    84

  • 0

    500

    1000

    1500

    2000

    2500

    3000

    0

    500

    1000

    1500

    2000

    2500

    3000

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    45000

    50000

    /mm3 /mm3

    /mm3 /mm3

    (Neutrophil)

    (Basophil)

    (Monocyte)

    (Lymphocyte)

    0

    1000

    2000

    3000

    4000

    1 10 100 1000 10000

    0

    1000

    2000

    3000

    4000

    1 10 100 1000 10000137Cs Bq/kg

    /mm

    3

    NG14WD13:MS14KM13MD13, 14KW14TG13,14:

    2013

    2014

    2014

    85

  • 0

    1000

    2000

    3000

    4000

    1 10 100 1000 10000

    0

    1000

    2000

    3000

    4000

    1 10 100 1000 10000137Cs Bq/kg

    /mm

    3

    NG14WD13:MS14KM13MD13, 14KW14TG13,14:

    2013

    2014

    2014

    0

    500

    1000

    1500

    2000

    1 10 100 1000 10000

    137Cs Bq/kg

    /mm

    3

    NG14WD13:MS14KM13MD13, 14KW14TG13,14:

    2013

    0

    500

    1000

    1500

    2000

    1 10 100 1000 10000

    2014

    2014

    86

  • 0

    20000

    40000

    60000

    80000

    100000

    1 10 100 1000 10000

    0

    20000

    40000

    60000

    80000

    100000

    1 10 100 1000 10000137Cs Bq/kg

    /mm

    3

    NG14WD13:MS14KM13MD13, 14KW14TG13,14:

    2013

    2014

    2014

    2013

    20132014

    87

  • 2015

    88

  • 89

  • 137Cs 2015.10.7.

    0

    1000

    2000

    3000

    0 10 20 30 40 50 600 10 20 30 40 50 60cm

    3000

    2000

    1000

    0

    137Cs

    Bq/k

    g)

    22013

    Cs

    90

  • 91

  • 1

    92

  • 1

    2016 9 2

    IISORA IISORA

    NPONPO

    93

  • Transcriptomic, proteomic and metabolomic profiling of low-level gamma irradiated rice at Iitate village, Fukushima Randeep Rakwal Faculty of Health and Sport Sciences, and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba

    E-mail: [email protected]

    We have been investigating the effects of low dose of gamma radiation in rice, following the 2011-3.11 Great Tohoku Earthquake and the subsequent nuclear accident at Fukushima Daiichi Nuclear Power Plant. To do so, the contaminated Iitate Farm field (hereafter ITF) located in Iitate village, 31 km from the damaged nuclear power plant having an ambient radiation level of ~ 5 Sv/h, around 100 times higher than natural background radiation for Japan (~ 0.05 Sv/h), was used for investigating low-level gamma radiation experiments using Japonica-type rice (Oryza sativa L.) as a model system. Two experimental designs were used, first, a two-week-old seedling model for leaf, and second, growing rice in the contaminated soil till harvest for seeds. In experiment 1, the leaves were sampled at 0, 6, 12, 24, 48 and 72 h post-gamma irradiation at ITF, and rice whole genome 4x44K DNA microarray chip revealed differentially regulated 4481 (induced) and 3740 (suppressed) and 2291 (induced) and 1474 (suppressed) genes at 6 and 72 h, respectively. Gene expression profiles in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were validated by RT-PCR. Simultaneously, 2D-DIGE-based analysis at 72 h revealed 91 differentially expressed spots, whose MALDI-TOF and TOF/TOF mass spectrometry analyses identified 59 different (50 up-accumulated, 9 down-accumulated) proteins. These results unraveled the molecular responses at the level of the genome and proteome in vegetative leaf tissues. In experiment 2, we grew rice in the contaminated site (rice field) in ITF, till maturity and harvested the seeds. These seeds were compared with the seeds harvested from the rice grown in the clean soil in Minamisoma (Fukushima) at the level of the genome and metabolome under continuous gamma radiation exposure outside and inside the rice plant. An Agilent-based multi-omics workflow and analyses was used for the seed study to reveal the modulation of several metabolic and defense pathways related to the stress response of plants. It can be said that the rice plants grown in radionuclide-contaminated soil form seeds with an elevated defense capability against stress. Currently, we are investigating the rice seed proteome-wide changes using 1-DE shotgun approach in combination with mass spectrometry.

    94

  • 95

  • 96

  • 97

  • 98

  • 99

  • 100

  • 101

  • 102

  • 103

  • 104

  • 105

  • o

    o

    106

  • 107

  • 108

  • 109

  • o

    o

    110

  • 111

  • 112

  • 113

  • 114

  • 115

  • 116

  • 117

  • 118

  • 119

  • Mousseau et al. 2014, Oecologia 175: 429-437)

    120

  • (

    Mousseau et al. 2014)

    Mousseau et al. 2014)

    121

  • 122

  • 123

  • 124

  • Control

    Control

    125

  • Control Radiation Control Radiation

    Mixed model, glmer in Rradiation /control P=0.690

    Mixed model, glmer in Rradiation /control P=0.254

    126

  • 127

  • (Gy)

    (Gy)

    128

  • 129

  • 1 1 2 1,2

    2 http://w3.u-ryukyu.ac.jp/bcphunit/fukushimaproj.html

    2 2011 5 Zizeeria maha5 3

    3

    10 10 12

    GM

    Cs134 Cs137 K40

    100 100 260 cm

    10 3

    10

    10 3

    PCR EFI

    COI

    130

  • 131

  • 1 2 1, 2

    1. 2.

    (Zizeeria maha)

    1

    (Pieris rapae)

    (2 ) 40.71 1.7K 6.2K 15K Bq / kg ND 15.2

    6.9 107.9 Bq / kg

    132

  • 133

  • 134

  • 135

  • 136

  • BLV

    0

    500

    1000

    1500

    2000

    2500

    10 15 20 25

    137

  • 587 11,130 40.9 2009 122010 3

    558 9,834 28.7 2010 122011 4

    138

  • 139

  • 140

  • Table 1. Pharmacokinetic parameters of Cs in SD rats (2 weeks after the dose: CsCl(117mmol/kg=15mg/kg)) t1/2() hr T1/2() hr MRT hr F (bioavailability) %

    IV 5.1 1.7 155 16 136 9 - PO 5.1 3.1 160 34 136 20 87 5

    Vdss l/kg CLtot ml/min/kg CLr ml/min/kg Urinary recovery % IV 14.6 1.6 1.8 0.2 0.7 0.1 40 3 PO 14.4 3.1 2.0 0.2 0.8 0.2 41 9

    Table 2. Pharmacokinetic parameters of Cs in SD rats (16 weeks after the dose: CsCl(117mol/kg=15mg/kg)) T1/2() hr T1/2() hr T1/2() hr MRT hr F (bioavailability) %

    IV 2.11.2 5322 28929 27522 - PO 4.03.4 6831 34118 30847 9110

    Vc l/kg Vdss l/kg Cltot ml/min/kg Clr ml/min/kg Urinary recovery % IV 6.52.7 27.02.9 1.70.3 1.00.2 634 PO 5.92.1 29.94.5 1.60.0 1.10.2 6311

    141

  • Table 3. Elimination half lives of Cs in Wagyu Organs (14 weeks after the multiple dose of 137Cs (100kBq/day for 21days)

    T1/2() day T1/2() day Muscles 14.03.1 60.87.9

    Parenchymal organs

    8.80.6 66.53.0

    GI tract 7.21.6 63.77.4 Lymph node 7.13.6 82.827.7

    Glands 9.92.9 70.83.9 CNS 26.36.3 - Blood 9.9 69.3 Urine 7.7 69.3

    Days after the last Cs-137 intake in Wagyu

    Blood

    Muscles

    Blood

    Urine

    Cs-

    137

    conc

    entr

    atio

    n(B

    q/kg

    )

    142

  • http://liffn.jp/

    Cs

    ( )

    ( )

    Cs Cs?

    Cs

    KaBioavailability

    143

  • Days after Cs administration

    Cs c

    once

    ntra

    tion(

    M)

    Cs

    plasma

    Dose CsCl 117 mol/kg po (15mg/kg)

    RBCT1/2 160h

    Bioavailability 87%

    Days after Cs administration

    Cs c

    once

    ntra

    tion(

    M)

    Cs

    plasma

    Dose CsCl 117 mol/kg po (15mg/kg)

    RBC T1/2 300h

    Vdc 6.5L/kgVdss 30L/kgCLtot 1.65ml/kg/h

    Bioavailability 91%

    144

  • Days after the first Cs administration

    Cs c

    once

    ntra

    tion(

    M)

    CsPB

    Ctr

    PBPB

    Ctr

    100

    10

    1

    0.1

    0.010 20 40 60 0 20 40 60

    PBPB

    T1/2 300hDose poCsCl 3.6 mol/kg/dayPB 500 mol/kg/day

    145

  • Cs (Rat)

    Cs

    ( )

    ( )

    63%

    PB PB Cs PB

    Cs

    PB

    146

  • 147

  • 148

  • Total 129 kBq

    81 kBq

    Total 48 kBq

    33 kBq33 kBq

    1

    10

    100

    1000

    10000

    0 10 20 30 40 50 60 70 80 90

    149

  • Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9 T1/2( ): 69.3

    Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9

    T1/2( ): 69.3

    150

  • Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9 T1/2( ): 69.3

    Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9T1/2( ): 69.3

    151

  • Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9

    T1/2( ): 69.3

    Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9

    T1/2( ): 69.3

    152

  • Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9

    T1/2( ): 69.3

    Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9

    T1/2( ): 69.3

    T1/2( ): 7.7

    T1/2( ): 69.3

    153

  • Cs c

    once

    ntra

    tion(

    M)

    Days after the last Cs administration

    C(t)=A*exp(-t* )+B*exp(-t* )

    T1/2( ): 9.9

    T1/2( ): 69.3

    CV CV14.0 3.1 22.3 60.8 7.9 12.9

    8.8 0.6 6.4 66.5 3.0 4.5

    7.2 1.6 21.6 63.7 7.4 11.6 7.1 3.6 50.1 82.8 27.7 33.5 9.9 2.9 28.9 70.8 3.9 5.5 26.3 6.2 23.6 4.6 3.1 67.8 33.1 17.2 52.0

    T1/2( ): 9.9 T1/2( ): 69.3T1/2( ): 7.7 T1/2( ): 69.3

    154

  • Cs

    ( )

    ( )

    Cs Cs?

    Cs

    Bioavailability?

    ?

    T1/2( ): 60-70

    155

  • 156

  • 157

  • 158

  • 159

  • 160

  • 161

  • 162

  • 163

  • 164

  • 165

  • 166

  • 167

  • 168

  • 169

  • 170

  • 171

  • 172

  • 173

  • (90Sr 238Pu,239 240Pu)1

    1) 2) 3) 1)

    1) 1) 1)

    1)2)3)

    , 28 8 4

    2

    Prologue & Backgrouund

    174

  • 3

    4

    175

  • 5

    6

    176

  • 177

  • 178

  • 12

    23

    23 9 30

    17000 Sr 895700 Sr 90(Bq/m2)Sr 89/Sr 901.9~6.5( 6,5)

    179

  • 13

    0.55Pu 2380.66Pu 239+240(Bq/m2)Pu 238/Pu 239

    0.02610.053

    238,239+240,2412 24 8 21

    14

    502Bq/m2

    3070Bq/m2

    180

  • 15

    1.61Pu 2387.52Pu 239+240(Bq/m2)Pu 238/Pu 239

    0,02610.214

    16

    181

  • 90Sr 238Pu,239 240Pu

    24 12

    182

  • 19

    Q

    1999 20091789

    (2003 35 )2003 57

    2003 452003 29

    (2004 34 )(2004 54 )

    2004 482004 18

    1980 13

    183

  • 90Sr 238Pu, 239 240Pu

    8 (TMF500,MORITA )

    53mesh90Sr

    238Pu 239+240Pu

    238Pu239+240Pu:(

    90Sr

    9.6mBq/g H28.04

    6.8m Bq/g H28.04

    184

  • 23

    2004 (2016)7 mBq/g Ca

    51 1970)35 1983)

    28 1993)

    17(2013)

    1970 1985309

    198010 mBq/g Ca

    1971 1979

    185

  • 198010 mBq/g Ca

    26http://www.kankyo hoshano.go.jp/01/0101flash/01011812_2.html

    40

    1965 36Bq 23Bq/day 632008 0.031Bq/day 1 1000

    186

  • Sr90Sr 90 2004

    (20 )

    28

    DM) M) P

    28 4 11

    187

  • 29

    Sr 90 7 mBq/g Ca

    2004

    188

  • 2011

    20

    189

  • 1 2 3 3 4 3 3 3

    5 5 3 6 1, 7

    1 2 3 45 6 7

    NaI ( )1

    1,158Bq/kg 6383

    1

    402 2

    (1)

    1 (2) 1

    190

  • 191

  • 192

  • 193

  • 194

  • Dosimetry method of animals affected by Fukushima Nuclear Power Plant No.1 accident

    1 1,2 1 3 4 1

    ( 1 2 3 4 )

    ( FNPP )

    2011 8

    FNPP 20km

    2011 8 29 2013 3 7

    204 Particle

    and Heavy Ion Transport Code System ( PHITS )

    Geo Information System ( GIS )

    (Sato et al., 2012) FNPP

    Te-132/I-132 I-131

    Cs-134 Cs-137 (Imanaka et al., 2012)

    Cs-134 Cs-137

    20 Te-129m

    Te-129m Te-132 14.5

    Tagami et al.,

    2013)

    FNPP

    ICRP

    PHITS PHITS

    ( ICRP Pub.108 )

    I-131 Cs-134 Cs-137

    Te-129m

    GIS

    PHITS ICRP 8

    200 Gy

    30

    0.47-

    0.84

    Te-132 / I-132

    7 3

    .

    195

  • Figure 1

    196

  • 197

  • 2011 3 15132 129m

    14.5 : 1.00 (Tagami etal, 2013)

    PHITS

    GIS

    198

  • Figure 2

    Figure 2

    PHITS/ICRP

    199

  • Table 0

    Table 1

    200

  • Table 2

    Figure 3

    201

  • Table 3

    Figure 4

    202

  • Te 132 / I 132

    73

    203

  • [[ ]

    1

    127mTe 109129mTe 33.6

    1

    (IAEA)

    [ ] 1.

    (Te 1000, Wako)

    (CsCl 99.9 %, Wako)

    1 mg/dry-soil-kg

    4

    1 4 150 g 200 g

    (Incu Tissue 7272100mm, SPL LIFE

    SCIENCES) (Raphanus

    sativus var. sativus) (Brassica rapa var.

    perviridis) 1 1

    1.5 2 cm

    8 16 22

    2 2

    1.5 2cm

    2.

    1 3.

    (CD.15S, ) 70 % HNO3

    ; 5 ml 30 % H2O2 ; 1.2 ml Topwave,

    100 mg

    100 mg

    ICP-MS(HP-4500, Yokogawa, Japan)

    204

  • [[ ] 1.

    127mTe 129mTe

    1.11015 Bq 3.31015 Bq

    1)

    127mTe 129mTe 1 3

    2. 137Cs Saito 2011 6

    14129mTe 137Cs

    137Cs 129mTe2)

    137Cs

    129mTe

    A B127mTe 129mTe

    134Cs 137Cs Saito

    3. IAEA Technical Report

    Series 4723)

    4.

    ICRP Publication724)

    127m Te, 129mTe, 137Cs, 134Cs

    3 1 5 10 15

    5. 1g

    E()/g

    E()/g = Ce()

    C(Bq/g)

    e()

    1 g

    E()/g

    E()/g =C0 e() exp ( -T1/2 / t ) dt

    C0

    (Bq/g)

    e()

    T1/2 (days)

    t (days)

    t = 0 (day) t = 365 (days)

    [ ] 1.

    2.

    (134+137Cs)

    (127m+129mTe)

    1

    137Cs 134Cs

    2

    [ ]

    pH

    IAEA TRS 472 1

    IAEA

    100

    12

    205

  • 1) ; IAEA

    , Available

    at:

    http://www.meti.go.jp/earthquake/nuclear/backdro

    p/pdf/app-chap04-2.pdf 2016 2 1

    2) K. Saito, I. Tanihata, M. Fujiwara, T. Saito, S.

    Shimoura, T. Otsuka, Y. Onoda, M. Hoshi, Y.

    Ikeuchi, F. Takahashi, N. Kinouchi, J. Saegusa, A.

    Seki, H. Takemiya and T. Shibata; Detail

    deposition density maps constructed by large-scale

    soil sampling for gamma-ray emitting radioactive

    nuclides from the Fukushima Dai-ichi nuclear

    power plant accident. J. Environ. Radioactiv. , 139,

    308-319 (2015).

    3) International Atomic Energy Agency; IAEA

    Technical Report Series 472. Handbook of

    parameter values for the prediction of radionuclide

    transfer in terrestrial and freshwater environments,

    Vienna (2010).

    4) International Commission on Radiological

    Protection; ICRP Publication 72, Ann. ICRP, 26,

    26-27 (1995).

    9.210-3 3.010-2 1.110-2 2.710-1

    8.610-3 3.210-2 2.310-2 7.610-1

    7.410-3 5.110-2 6.710-3 3.910-1

    (Sv)

    1 5 10 15

    1

    134+137Cs 15.3 12.4 23.9 34.7 38.5 127m+129mTe 3.5 1.8 1.8 1.2 1.0

    (134+137Cs)+(127m+129mTe) 18.9 14.2 25.8 35.9 39.5

    2

    134+137Cs 283.0 228.3 442.4 641.2 711.1 127m+129mTe 9.8 5.0 5.0 3.2 2.7

    (134+137Cs)+(127m+129mTe) 292.8 233.3 447.4 644.4 713.8

    1

    134+137Cs 11.1 8.9 13.9 18.3 22.0 127m+129mTe 2.4 1.3 1.0 0.6 0.5

    (134+137Cs)+(127m+129mTe) 13.5 10.2 14.9 18.9 22.5

    2

    134+137Cs 60.7 49.0 76.1 100.5 120.8 127m+129mTe 2.5 1.3 1.0 0.6 0.6

    (134+137Cs)+(127m+129mTe) 63.2 50.2 77.1 101.1 121.4

    206

  • 2016/8/4

    2011 3

    207

  • 1

    50 70

    (ICRP) Publication 72 (Publ.72)

    208

  • IAEA)Technical Report Series 472(TRS 472)

    35 15

    290 811 1

    46683

    1

    /

    100 50 50 10

    134137

    90

    106

    2012 4

    1

    1 mSv/year

    [Bq/kg]

    1

    209

  • !

    210

  • 1mg/dry soil kg

    1 4

    8 1622

    60 %

    Soil 1:Soil 2Soil 3Soil 4

    4

    Soil pH(H2O)Ex.K Ex.Na Ex.Ca Ex.Mg Alo Feo Sio T C T N

    cmolc/kg %1 5.4 9.39 1.63 24.82 19.91 17.08 1.92 11.07 14.12 0.562 7.6 0.99 0.19 24.94 2.51 0.69 1.52 0.31 2.72 0.273 5.7 0.81 0.11 14.03 4.84 2.56 2.87 0.20 1.32 0.104 6.4 1.75 0.04 2.55 0.43 34.13 11.45 14.73 3.88 0.36

    pH(H2O)

    Ex. K, Na, Ca, Mg

    (Alo) (Feo) (Sio)

    (T C) (T N)

    4

    211

  • I

    III

    IIIIII

    I

    II

    III

    I

    ICP MS

    Alo Feo

    Soil 1,4

    K

    Soil 1,4

    Alo Feo

    212

  • Soil 2

    Soil 1,4

    Alo Feo

    213

  • 214

  • These data were measured and presented by Saito et al.

    137Cs 129mTe

    137Cs 129mTe

    A B

    A

    B

    129mTe

    127mTe, 129mTe, 131mTe, 132Te

    129mTe

    3.

    B129mTe : 137Cs = 0.71 : 1

    2011/6/14A,B

    134Cs : 137Cs = 0.91 : 1A

    129mTe : 137Cs = 1.49 : 1

    2011/3/11

    127mTe : 129mTe1 : 3

    Saito

    127mTe: 109d129mTe: 33.6d131mTe: 30h132Te : 78.2h

    127mTe

    215

  • (TRS 472,

    (134+137Cs)

    (127m+129mTe)

    2011/4/30

    2011/10/30

    216

  • (Bq/kg)134Cs 137Cs

    A 60 59 2011/5/438 39 2011/5/14

    B 2 1100 1100 2011/4/132 220 200 2011/3/30

    134Cs 137Cs

    137Cs

    137Cs

    2500Bq/kg

    1 (g)3 1 5 10 15

    *1 31.0 31.0 45.4 45.0 54.1*2 27.7 27.7 50.6 55.1 61.1

    217

  • 40

    100

    1.1 8.3

    1.4 17.4

    IAEA TRS 472

    5.

    218

  • 219

  • 2 Cs 90Sr

    101 100 10-1 10-2 10-3 10-4 10-5

    10-6

    10-7

    Cs

    1,* , 2 1, 1, 1

    1 2

    1 Cs

    100 m

    220

  • 221

  • 222

  • 223

  • 224

  • 225

  • 100 m

    226

  • 227

  • 100 m

    228

  • 1.E+01

    1.E+02

    1.E+03

    1.E+04

    0 2 4 6 8

    Coun

    ts

    X ray energy (keV)

    O

    CNa

    Mg

    Al

    Si

    K

    Ca

    Ti Fe

    Fe

    104

    103

    102

    101

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    0 2 4 6 8

    Coun

    ts

    X ray energy (keV)

    O

    CNa

    Mg

    Al

    Si

    K

    Ca

    Ti Fe

    Fe

    104

    103

    102

    101

    229

  • 230

  • 231

  • 232

  • 1986 4

    watching

    1990

    Krivolutsky

    1986-1988(1999)

    Krivolutsky

    R(D+15) mR/h 15

    rad

    16 15 60 150 160

    5 30 40 300 400 11 15 240 150 2500

    14 51 15 60 150 600

    26 10 60 100 600

    2 30 80 500 1200

    9 30 80 200 560 2 30 80 400 600

    15 30 80 350 600

    14 30 80 200 560

    100rad Gy

    233

  • 187

    8

    D.A. KrivolutskyBioindication of Radioactive Contamination

    NAUKAMoscow 1999 400

    234

  • D.A. Krivolutsky Bioindication of Radioactive ContaminationNAUKA Moscow 1999 pp106-122.

    235

  • 236

  • (1988)

    Kuzbov et el. 1991

    237

  • 0.1

    1

    10

    100

    1000

    1 10 100 1000 10000

    137

    100

    Bq/m

    2G

    y h-

    1

    0.1

    1

    10

    100

    1000

    1 10 100 1000 10000

    Gy

    h-1

    238

  • 0

    200

    400

    600

    800

    1000

    1200

    0 10 20 30

    Cum

    ulat

    ive

    expo

    sure

    at 1

    m a

    bove

    gro

    und

    per

    initi

    al C

    s137

    dep

    ositi

    on o

    f 1,0

    00 k

    Bq m

    -2, m

    Gy

    Elapsed time after deposition, year

    Total: ChernobylCs134+Cs137: ChernobylTotal: FukushimaCs134+Cs137: Fukushima

    239

  • 27

    R(D+15) mR/h

    15

    rad

    16 15 60 150 160

    5 30 40 300 400 11 15 240 150 2500

    14 51 15 60 150 600

    26 10 60 100 600

    2 30 80 500 1200 9 30 80 200 560

    2 30 80 400 60015 30 80 350 600

    14 30 80 200 560

    100rad Gy

    240

  • 241

  • 1986 7 1988 A.N.Severtsov

    E.A.FyodorovFyodorov

    1986 4 281986 9 1987

    Krivolutsky etal 1988 1990; Krivolutsky 19941991

    1986 1987

    30km 1986 5 1986 1987 7 -8

    Prister Shein 1979 1980KRB-G-1 RUP-1

    G.N Shein

    R(t) t mR/h RD+15 15 mR/h

    7.5 RD+15 -0.75 e-3.51 10-3t

    70-75 2 1986

    30km 27 1

    D.A. Krivolutsky Bioindication of Radioactive Contamination NAUKA Moscow 1999 pp106-122.

    242

  • 96

    1986

    mR/h cm-2 min-1 R

    3km 86/7/18 49.7 2940

    30km 86/7/18 6.1 916

    3km 86/9/23 8.0 1.0 5.0 8600

    30km 30km15 D+15

    D+15 1mR/h 1 60287033

    1986-1987

    Krivolutsky 1983 IEMEZh225 cm 3cm 10

    5cm2 25cm2

    !!!!!!

    km

    1986 30

    243

  • 20cm

    1987 4

    1545

    30 100.9 1.4mR/h

    Dendrobaena octaedra Eisenia nordenskioldi 1988

    krad

    50 3 30

    12

    15

    2 2.5 3km

    1987 199350 1995

    30km

    1986 8

    10km 1986 8 1

    0.3krad 4krad

    244

  • 50

    30km

    30km

    30km 45

    30km

    !!! !!!

    (?) 1.5

    10 (?)

    245

  • (?)(???)

    30km

    134 137

    246

  • (N

    b95

    Zr95

    R

    u103

    R

    u106

    C

    s134

    C

    s137

    C

    e141

    C

    e144

    318

    41

    1 25

    66

    32

    7694

    0

    3920

    73

    60

    3070

    63

    16

    33

    1258

    51

    51

    05

    115

    50

    3057

    45

    59

    021

    600

    4960

    22

    134

    4503

    10

    76

    3455

    181

    67

    5 10

    75

    414

    2808

    0 71

    20

    9474

    57

    60

    397

    1200

    114

    5 28

    3 11

    680

    1520

    11

    842

    1579

    181

    67

    5 10

    472

    414

    2808

    0 71

    20

    2529

    2 57

    60

    397

    1200

    116

    41

    2396

    18

    13

    049

    760

    1640

    0 21

    600

    4979

    5 14

    210

    2055

    5 94

    4 33

    00

    644

    1

    1 0

    1920

    19

    59

    1 28

    138

    2 58

    4 20

    7 0

    6880

    54

    38

    50

    150

    38 161

    3 491

    15

    458

    35

    1434

    54

    7 10

    69

    567

    1225

    1 67.1

    64

    132

    7 26

    1 18

    0 33

    6 20

    2 24

    2 10

    2 22

    3 27

    135

    38

    3 57

    13

    16

    8 20

    3 14

    0 20

    4 15

    3 5

    25

    165

    34

    20

    4280

    42

    10

    3652

    73

    33

    8000

    85

    96

    6667

    31

    37

    261

    647

    62

    98

    165

    141

    1070

    7 76

    94

    2927

    0 0

    7352

    0 20

    080

    3888

    0

    6479

    5 29

    240

    3239

    8 31

    29

    1246

    247

  • 137Cs 137Cs No.1 19.7 No.5 21.9

    No.2 43.2 No.6 22.2 No.3 11.3 8.6 No.4 15.1

    134 137 60

    137 22pCi/kg !!! !!!

    137

    137137 0.76 0.56

    0.86 Ci/kg137

    137

    0.12 1.0

    0.3 2.0

    0.3

    0.5 0.2

    1987 8 1 400rad 5000rad1987 1 1986 8 1

    10 20 50 1986

    1987 30km

    1987

    40

    248

  • 1987

    1987 30km

    33 120

    1986 19871.5

    40 1987

    R(D+15) mR/h 15

    rad

    16 15 60 150 160

    5 30 40 300 400 11 15 240 150 2500

    14 51 15 60 150 600

    26 10 60 100 600

    2 30 80 500 1200

    9 30 80 200 560 2 30 80 400 600

    15 30 80 350 600

    14 30 80 200 560

    249

  • 1986-19872-3

    30km 13790

    1986-1987 137 13 20

    137 20 450Ci/ km 5km5 16137 0.6 Ci/kg 22kBq/kg 13.4 500kBq/kg 9.5

    350kBq/kg 0.7 26kBq/kg 137 450Ci/ km137

    15 20 137 20 35Ci/km 13 20 5km 137

    0.23 3.8 Ci/kg 8.5 1400 kBq/kg

    137 0.1 3.7 Ci/kg 3.7 140 kBq/kg137

    5km137

    137137

    90 1.5 Ci/kg 56

    kBq/kg 0.6 Ci/kg 22kBq/kg 2 Ci/kg 74kBq/kg

    1986 9 5km

    250

  • 3.52 3

    30km

    Kn

    90 137

    90 137137 Kn 1.4 1.7

    Kn 2 90 137

    2km 5

    270km 137 2kmKn 0.06 Kn 0.2 5km Kn 0.2 Kn

    0.6 270km Kn 4.9 Kn 0.6

    30km

    30km

    90 137

    251

  • 137

    90

    137 137Kn

    1986 1987 19871988 1988

    1987

    10mR/h2 2.5

    10mR/h 1989

    1990 1988 1988 30km

    1987 3 4

    1988

    252

  • 1986 1987

    1988 30km 1987

    1988 1988

    1986 1988 400 600mR/h

    1991 30km

    50 120rad

    30km 80 95

    70

    40 60 10 20

    30km

    50

    2016.7.20

    253

  • 2016 8 3 4

    1.

    2.

    3.

    4.

    5.

    6. EGS5

    7. EPMA

    8.

    9.

    10. 2013 2015

    11. Randeep Rakwal Transcriptomic, proteomic and metabolomic profiling of low-level gamma irradiated rice at Iitate village, Fukushima

    254

  • 12.

    13.

    14.

    15.

    16.

    17.

    18. 90Sr 238Pu,239 240Pu

    1 19.

    20.

    21.

    22.

    Cs 23.

    255

  • http://repository.kulib.kyoto-u.ac.jp/dspace/

    KUR REPORT OF KYOTO UNIVERSITY RESEARCH

    REACTOR INSTITUTE

    28 12 2 TEL072451- 2300