2-eq moto

Embed Size (px)

Citation preview

  • 8/16/2019 2-eq moto

    1/13

    Prof. Adolfo Santini - Dinamica delle Strutture 1

    Formulazione dell’equazione del moto

  • 8/16/2019 2-eq moto

    2/13

    Prof. Adolfo Santini - Dinamica delle Strutture 2

    Sistema a un grado di libertà

    In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati ciascuno

    in un unico elemento e la configurazione deformata può essere descritta da una sola componentedi spostamento. Sistemi di questo tipo prendono il nome di sistemi a un grado di libertà.

    Anche se il comportamento dinamico della maggior parte delle strutture reali non può essere

    descritto con un solo grado di libertà, lo studio di questi sistemi è molto importante nelladinamica strutturale. Infatti, come sarà mostrato in seguito, l’analisi dinamica dei sistemi lineari

    a molti gradi di libertà può essere eseguita sovrapponendo in maniera opportuna la risposta di

    un certo numero di sistemi lineari a un grado di libertà.

    Sistema elementare Struttura ideale

  • 8/16/2019 2-eq moto

    3/13

    Prof. Adolfo Santini - Dinamica delle Strutture 3

    La forza di richiamo 1/2

    Si consideri il sistema o il portale illustrati in figura sollecitati da una forza statica  p.

    In entrambi i casi, il sistema si deforma e la forza interna  f S  che si oppone allo spostamento

    è uguale e contraria a  p, cioè

     p !   f S    = 0

    Questa forza, che agisce anche in condizioni dinamiche, tende a riportare il sistema nella sua

    configurazione iniziale e viene detta forza di richiamo. Per piccoli spostamenti, la relazione

    tra la forza  f S (t ) e lo spostamento relativo u(t ) è elastica lineare, cioè

     f S (t ) = ku(t )

     p

     p

  • 8/16/2019 2-eq moto

    4/13

    Prof. Adolfo Santini - Dinamica delle Strutture 4

    La forza di richiamo 2/2

     f S (t )=

     ku(t )

    La costante di proporzionalità k , espressa in

    N/m, è la rigidezza alla traslazione della molla

    o del portale.

    Se gli spostamenti sono grandi, la relazione

    tra  f S (t ) e u(t ) può non essere più elastica.

    In questo caso, le curve di carico e scarico

    differiscono da quella iniziale. Ciò vuol dire

    che la forza  f S (t ) non è a un sol valore, ma

    dipende dalla storia degli spostamenti e dal

    segno della velocità, positivo se lo spostamento

    cresce, negativo se decresce, cioè

     

     f S (t ) =   f S (u, !u)

    u

     f S 

    1

    u

     f S 

  • 8/16/2019 2-eq moto

    5/13

    Prof. Adolfo Santini - Dinamica delle Strutture 5

    La forza dissipativa 1/2

    La dissipazione di energia durante il moto può avvenire secondo meccanismi diversi, di solito

    presenti contemporaneamente. In un edificio, le principali cause di smorzamento includono

    l’attrito tra gli elementi strutturali e quelli non strutturali, l’apertura e la chiusura di lesioni neglielementi di calcestruzzo, l’attrito nelle connessioni degli elementi di acciaio.

    Identificare e modellare ognuno di questi meccanismi è pressoché impossibile. Per questa

    ragione, la dissipazione di energia nelle strutture è di solito rappresentata in maniera del tutto

    convenzionale. Nel caso dei sistemi a un grado di libertà lo smorzamento può essere descritto

    adeguatamente mediante un dissipatore viscoso lineare.

    La forza  f  D(t ) trasmessa dal dissipatore, detta forza dissipativa, è opposta al segno dellavelocità e varia linearmente con la velocità secondo la relazione 

     f  D (t ) = c !u(t )

    (t )

    (t )

    (t )

  • 8/16/2019 2-eq moto

    6/13

    Prof. Adolfo Santini - Dinamica delle Strutture 6

    La forza dissipativa 2/2

     

     f  D (t ) = c !u(t )

    La costante c, espressa in , prende il nome di coefficiente di smorzamento viscoso. N !s/m

    Il modello viscoso presenta il vantaggio di condurre a un’equazione

    del moto lineare. Tuttavia, a differenza della rigidezza k , il

    coefficiente c non può essere calcolato dalle proprietà del materiale

    e dalle dimensioni degli elementi strutturali, ma può essere solo

    stimato attraverso prove sperimentali. Il valore di c è scelto in modoche l’energia dissipata dal modello viscoso sia uguale a quella

    effettivamente dissipata nel sistema.

    Lo smorzatore viscoso equivalente consente di modellare la

    dissipazione di energia fino a quando gli spostamenti non superano

    il limite elastico. Nel caso in cui la struttura subisce spostamenti

    maggiori, una quantità aggiuntiva di energia viene dissipata a causa

    del comportamento inelastico del materiale. Se gli spostamenti sonodi segno alternato, si formano cicli di isteresi forza-spostamento, la

    cui area corrisponde all’ulteriore quantità di energia dissipata.

  • 8/16/2019 2-eq moto

    7/13

    Prof. Adolfo Santini - Dinamica delle Strutture 7

    L’equazione del moto 1/3

    Per un sistema dotato di massa, la seconda legge di Newton afferma che la variazione della

    quantità di moto è uguale alla risultante F (t ) delle forze applicate, cioè

     

    dt m !u t ( )!"   #$   = F t ( )

    Poiché la forza di richiamo  f S (t ) e la forza dissipativa f  D(t ) sono sempre opposte al moto, cioè

    sono sempre di segno opposto allo spostamento u(t ) e alla velocità rispettivamente, la risultante

    F (t ) delle forze applicate assume la forma

    F (t ) =  p t ( )!   f  D (t )!   f S (t )

  • 8/16/2019 2-eq moto

    8/13

    Prof. Adolfo Santini - Dinamica delle Strutture 8

    L’equazione del moto 2/3

    Assumendo che la massa non varia nel tempo, la seconda legge di Newton si scrive

     

    F (t ) =  m!!u(t )

    Sostituendo questa relazione nella

    F (t ) =  p t ( )!   f  D (t )!   f S (t )

    Tenendo conto delle relazioni che esprimono la forza di richiamo e quella dissipativa, si ottiene

    infine l’equazione del moto di un sistema lineare viscoso a un grado di libertà

    si ha

     

    m!!u(t ) =   p t ( )!   f  D (t )!   f S (t )

     

    m!!u t ( )+ c !u t ( )+ ku t ( ) =  p t ( )

  • 8/16/2019 2-eq moto

    9/13

    Prof. Adolfo Santini - Dinamica delle Strutture 9

    L’equazione del moto 3/3

    L’equazione del moto può essere anche ricavata utilizzando il principio dell’equilibrio

    dinamico di d’Alembert, basato sul concetto di forza d’inerzia. Si tratta di una forza

    apparente, cioè non direttamente applicata, pari al prodotto della massa per l’accelerazionee agente in direzione opposta al moto, che esprime la tendenza di un sistema materiale a

    opporsi a ogni variazione del suo stato di quiete o di moto rettilineo uniforme. Questa forza,

    può essere espressa attraverso la relazione

     

     f  I  (t ) = m!!u(t )

    In accordo con il principio di d’Alembert, l’equilibrio del sistema è garantito a ogni istantedi tempo se la forza d’inerzia è inclusa tra le forze agenti, cioè

     p(t )!   f  I    t ( )!   f  D (t )!   f S (t ) = 0

    da cui, sostituendo le relazioni già ricavate, si ottiene l’equazione del moto

     

    m!!u t ( )+ c !u t ( )+ ku t ( ) =  p t ( )

  • 8/16/2019 2-eq moto

    10/13

    Prof. Adolfo Santini - Dinamica delle Strutture 10

    L’equazione del moto per sistemi inelastici

    Nel caso di sistemi inelastici, la forza di richiamo dipende dalla storia degli spostamenti e dal

    segno della velocità. L’equazione del moto assume la forma

     

    m!!u t ( )+ c !u t ( )+   f S (u, !u) =  p t ( )

  • 8/16/2019 2-eq moto

    11/13

    Prof. Adolfo Santini - Dinamica delle Strutture 11

    L’equazione del moto per moti del suolo 1/2

    Le sollecitazioni dinamiche di un sistema strutturale possono essere causate non solo da carichi

    direttamente applicati, ma anche da un moto delle fondazioni, come accade, per esempio, nelcaso di un terremoto.

    Indicando con ug(t ) lo spostamento del suolo, con u(t ) quello

    della massa rispetto alla base e con ut (t ) quello totale, risulta 

    ut (t ) = u(t )+ u

    g(t )

     f  I    t ( )+   f  D (t )+   f S (t ) = 0

     

     f  I  (t ) = m!!ut (t )

    Imponendo l’equilibrio dinamico si ha

    in cui per la forza d’inerzia vale la relazione 

    Pertanto, l’equazione del moto si scrive

    m!!ut 

    t ( )+ c !u t ( )+ ku t ( ) =  0

  • 8/16/2019 2-eq moto

    12/13

    Prof. Adolfo Santini - Dinamica delle Strutture 12

    L’equazione del moto per moti del suolo 2/2

    Sostituendo la relazione   ut (t ) = u(t )+ u

    g(t )

     

    m!!ut 

    t ( )+ c !u t ( )+ ku t ( ) =  0nella

    si ha infine 

    m!!u t ( )+ c !u t ( )+ ku t ( ) = !m!!ug   t ( )

    La risposta dinamica causata da un moto sismico del suolo equivale a quella provocata

    dall’applicazione di un carico esterno equivalente, dato dalla relazione

     peff  (t ) = !m!!ug   t ( )

    detto forza sismica efficace.

    La forza sismica efficace è proporzionale

    alla massa: maggiore è la massa di unsistema, maggiori sono le sollecitazioni

    provocate dalle azioni sismiche. 

  • 8/16/2019 2-eq moto

    13/13

    Prof. Adolfo Santini - Dinamica delle Strutture 13

    La risposta dinamica

    La risposta dinamica si ottiene risolvendo l’equazione differenziale del moto. Il termine

    risposta è del tutto generale e include qualsiasi quantità d’interesse, come la variazione neltempo dello spostamento, della velocità o dell’accelerazione della massa. Da queste quantità

    si possono poi ricavare gli sforzi interni, la cui conoscenza è richiesta per il progetto strutturale.

    Per i sistemi elastici, questi ultimi possono essere determinati a ogni istante di tempo prefissato

    t * attraverso un’analisi statica della struttura sollecitata dalla forza statica equivalente 

     f S    = ku(t *)

    in cui k  è la rigidezza laterale del sistema. Questa forza, infatti, produce lo stesso spostamento

    u(t *) calcolato con l’analisi dinamica.