33
2012 GEC Ghani Workshop 3/23/2012 1 Important! This session is approved for 0.2 IACET or 1.5 PDH. Many states accept this for Professional Continuing Education. To qualify for credit you must: Be sure your badge was scanned when you entered the workshop Stay for the entire session Participate in Question and Answer sessions Fill out the EvaluationForm and hand it to theproctor as you leave If you are registered in Florida, New York, or North Carolina, you must also sign the sheets in the back at the end of the session. Please print your name, include your registration number, and sign the sheet.

2012 GEC PPT GANHI REVISED 3 13 12 · Impact on Energy – Burj Khalifa Case Study Ahmed Abdul Ganhi Chairman 2 Allied Consultants Cairo, Egypt Learning Objectives 1

  • Upload
    vandang

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

2012 GEC Ghani Workshop 3/23/2012

1

Important!This session is approved for 0.2 IACET or 1.5 PDH. Many states accept this for Professional Continuing Education. 

To qualify for credit you must: Be sure your badge was scanned when you entered the workshop

Stay for the entire session

Participate in Question and Answer sessions

Fill out the Evaluation Form and hand it to the proctor as you leaveout t e a uat o o a d a d t to t e p octo as you ea e

If you are registered in Florida, New York, or North Carolina, you must alsosign the sheets in the back at the end of the session.  Please print your name,include your registration number, and sign the sheet. 

TITLE GOES HERETITLE GOES HERETITLE GOES HERETITLE GOES HERETITLE GOES HERE

2012 GEC Ghani Workshop 3/23/2012

2

R i f P ti i th Di t i t C liReview of Practices in the District Cooling Systems and Pumping Schemes to Manage the Impact on Energy – Burj Khalifa Case Study

Ahmed Abdul Ganhi

Chairman

2

Chairman

Allied Consultants

Cairo, Egypt

Learning Objectives

1. Understand distribution systems reliability

2. Determine distribution system energy running2. Determine distribution system energy running cost

3. Understand new Middle East techniques in District cooling

3

2012 GEC Ghani Workshop 3/23/2012

3

United Arab Emirates

4

Dubai

5

2012 GEC Ghani Workshop 3/23/2012

4

Burj Khalifa

6

Burj Khalifa

7

2012 GEC Ghani Workshop 3/23/2012

5

Burj Khalifa

8

Burj Khalifa

9

2012 GEC Ghani Workshop 3/23/2012

6

DCP1

DCP4

DCP‐1

ASHRAE check Figure 215 Sq.ft/TR

Connected Load 45,700 TR

Diversity Factor 94 %DCP 4

Master Plan

Plant load 43,000 TR

DCP‐2

ASHRAE check Figure 215 Sq.ft/TR

DCP‐3

ASHRAE check Figure 215 Sq.ft/TR

Connected Load 80,700 TR

Diversity Factor 74 %

DCP‐4

ASHRAE check Figure 215 Sq.ft/TR

Connected Load 59,500 TR

Diversity Factor 67 %

Plant load 40,000 TR

DCP2

DCP3

g 215 Sq.ft/TR

Connected load 51,300 TR

Diversity Factor 68 %

Plant load 35,000 TR

Plant load 60,000 TR

10

DCP1

DCP4

Master Plan

DCP2

DCP3

11

2012 GEC Ghani Workshop 3/23/2012

7

Direct Connection  Indirect Connection 

Interface with Building

12

Advantages• More economical no

HE (~ 100 $/T exchanger + accessories).

Disadvantages• Building design pressure 

should be same as the DCS which could add cost to the

Direct Connection

accessories).• No water treatment at user 

side.• Reduced ETS space

(xxxxxxx Sq. ft /TR).• Increased ΔT thus reduced 

distribution system capital cost.R d d i

which could add cost to the end user.

• Cross contamination that could affect both systems.

• Building specific water treatment may not be met as treatment at central plant.l k d• Reduced equipment 

maintenance and potential shutdowns for HE cleaning.

• Plant & network design pressure might be affected by end user. 

13

2012 GEC Ghani Workshop 3/23/2012

8

• Decision taken

• ETS for all users except for Mall (direct connection)

Direct Connection

• ETS for all users except for Mall (direct connection) owned by the Energy Provider.

• Burj indirect due to static impact.

• Pipes‐ Pre insulated with HDPE Jackets‐ Leak detectors

14

Primary–Secondary

Pumping Scheme

15

2012 GEC Ghani Workshop 3/23/2012

9

Pumping SchemePrimary–Distributed Secondary

16

Case StudyPrimary–Secondary vs. Primary‐Distributed Secondary

1) Primary Secondary

17

2012 GEC Ghani Workshop 3/23/2012

10

2) Distributed Secondary

Case Study

18

1) Primary-Secondary System – Pressure Gradient

PRESSURE GRADIENTPRIMARY-SECONDARY SYSTEM

200.000MAX PRESSURE:

83 4 PSI

Pressure Gradient Diagram

50.000

75.000

100.000

125.000

150.000

175.000

SY

ST

EM

HE

AD

(ft)

Supply Line

Return Line

83.4 PSI

0.000

25.000

Point

0

VB-01

Plot -

A

Plot -

B

Plot -

C

Plot -

D

Plot -

EVB-2

Plot -

F

Plot -

G

Plot -

H

Plot -

J

Plot -

K

K------

HEX

STATIONS

19

2012 GEC Ghani Workshop 3/23/2012

11

PRESSURE GRADIENTPRIMARY-DISTRIBUTED SYSTEM

175.000

200.000

2) Primary-Distributed Secondary – Pressure Gradient

Pressure Gradient Diagram

25.000

50.000

75.000

100.000

125.000

150.000

SY

STE

M H

EA

D (ft)

Supply Line

Return Line

Pressure at Each Station

MAX PRESSURE: 49.5 PSI

0.000

Point

0 -

PP-S

VB-01

Plot -

A

Plot -

B

Plot -

C

Plot -

D

Plot -

EVB-2

Plot -

F

Plot -

G

Plot -

H

Plot -

J

Plot -

K

STATIONS

‐ Observe Pump Head       ‐Max System Pressure

20

YEARLY POWER CONSUMPTIONPRIMARY-DISTRIBUTED VERSUS PRIMARY SECONDARY

800000.00

Energy Curve of Both

200000 00

300000.00

400000.00

500000.00

600000.00

700000.00

PO

WE

R C

ON

SU

MP

TIO

N (

KW

)

Primary Secondary

Distributed Secondary

0.00

100000.00

200000.00

1 2 3 4 5 6 7 8 9 10 11 12

MONTHS

P

21

2012 GEC Ghani Workshop 3/23/2012

12

SystemMonths          

Primary  Secondary (KW)

Primary Distributed Secondary (KW)

January 114830.54 55911.45

February 145975 33 71075 98

Energy Saving Table

February 145975.33 71075.98

March 306453.67 149213.53

April 359681.81 175130.52

May 494584.78 240815.33

June 629377.48 306446.44

July 666851.04 324692.46

August 659807.36 321262.87

September 543639.12 264700.08

October 404525.63 196965.16

November 248761.68 121123.06

December 155666.54 75794.67

TOTAL (MW) 4730.15 2303.13

22

Advantages of Selected Pumping Scheme

• No ΔP control valve required. Distributed pumps handle the pressure variations.

• Chilled water can be obtained from any plant.

23

2012 GEC Ghani Workshop 3/23/2012

13

Any supply temperature could be achieved by direct mixing as return pressure higher than supply

Advantages of Selected Pumping Scheme

24

DCP Configuration

DCP‐2  Convention Plant  Capacity 35,000 TR

DCP‐1  Ice Storage  Capacity 40,000 TR

25

2012 GEC Ghani Workshop 3/23/2012

14

What are chillers arrangement configurations?

1) Parallel Arrangement

DCP ‐ 2

26

• Series chillers have better kw/ton

2) In-Series Arrangement

DCP ‐ 2

kw/ton. 

• Single path chiller with lower ΔP across evaporator.

• Both chillers in‐series have higher primary pump headhigher primary pump head.

27

2012 GEC Ghani Workshop 3/23/2012

15

Fig-1: Series Arrangement

What Happens if Secondary is notMatching Primary?

28

Fig-2: Parallel Arrangement

What Happens if Secondary is notMatching Primary?

29

2012 GEC Ghani Workshop 3/23/2012

16

LOADING PERCENTAGE COMPARISON

Load Profile has to be AnalyzedLoading % in each arrangement should be computed

40.00

50.00

60.00

70.00

80.00

90.00

100.00

AD

ING

PE

RC

EN

TA

GE

0.00

10.00

20.00

30.00

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300

HOURS

LO

A

Series Arrangement Parallel Arrangement

30

Fig-1 Inseries Arrangement

Load Profile has to be AnalyzedHour by hour energy needs to be computed

31

2012 GEC Ghani Workshop 3/23/2012

17

Fig-1 Parallel Arrangement

Load Profile has to be Analyzed

32

May Improve the chiller KW/ton as the chillers will be loaded at all their best efficiency time, but no space

Buffer Tank (TES)

33

2012 GEC Ghani Workshop 3/23/2012

18

Advantages• Reduced compressor lift.

Disadvantages

Buffer Tank (TES)

Disadvantages• Increased chilled water pump head (two in‐series evaporators). • Increased condenser pump head (two in‐series condensers).• Increased bypassed energy through decoupler.

Conclusion• Analyze series/parallel arrangement with load profile and chiller loading percentage include pumping energy in primary andloading percentage include pumping energy in primary and condenser circuits.

• Net results. • Shows saving if chiller staging is properly watched.

34

• Series‐counter flow configuration

Chiller Arrangement of DCP‐2

• Number of chillers  original design = (2 x 2500) x 7 modules

• Number of chillers used (2 x 1250) x 14 modules

• Increased number of chillers staging

• Reduced wastage of energy through decouple

35

2012 GEC Ghani Workshop 3/23/2012

19

Counter Flow Cross Flow

Cooling Tower Types

Induced draft counter-flow tower Induced draft cross-flow tower

36

• Easier to maintain as water basin not restricted by wet deck.• Less  space  needed  because  of  increased  efficiency  and  lack  of plenum space required for cross flow towers

Advantages of Counter Flow

plenum space required for cross flow towers.• Longer  service  life  as  deck  supported  from  structural  supports underneath. No sagging as cross flow.

• Wet  deck  is  encased  on  all  sides  with  no  impact  from  direct prevailing wind.

• No  hot  water  basin  on  top  of  tower,  so  less  and  easy maintenance achieved.

• Taller in height that mean less prone to recirculation effect• Taller in height that mean less prone to recirculation effect.• When towers are laid side by side, towers still accessible.• Less pumping energy as no spray nozzles pressure.

37

2012 GEC Ghani Workshop 3/23/2012

20

Wind

Vw

Discharge Vd

Plume

Vp

Orientation with Wind Direction

Effect of wind velocity and discharge velocity on plume behavior

Recirculation potential in a forced draft cooling tower

Comparative recirculation potential of round and rectangular towers

38

Orientation with Wind Direction

Proper orientation of towers in a prevailing longitudinal wind (requires relative minimal tower size adjustment to compensate for recirculation and interference effects)

39

2012 GEC Ghani Workshop 3/23/2012

21

For Wet Coolers

where:Humidity is expressed in absolute units of moisture content for example grains of moisture per pound of aircontent, for example, grains of moisture per pound of air.

40

• Recirculation impacts design wet bulb temp• CFDModeling

‐ Conducted to validate tower performance at prevailing    wind d

For Wet Coolers

speed.• Capacity

‐ Heat rejection‐ Chiller motor cooling‐ Safety‐Design wet bulb temp. considering recirculation

• Pump NPSH‐ NPSHA > NPSHRNPSHA  NPSHR

Hs + Ha ‐ Hf ‐ Hv > NPSHR

‐ Found safe‐ Other tools to overcome NPSH issues

41

2012 GEC Ghani Workshop 3/23/2012

22

• Sand storm & development construction activity dust

For Wet Coolers

y‐ Cooling tower dirt removal

• Sweeper systems• Side stream filtration

•Ozonef• Issues & concerns of ozone

• Corrosion of steel parts (chiller marine box)

42

• Network air venting & dirt removal

• Impact of air on pump 

Other Points Considered

p p p

43

2012 GEC Ghani Workshop 3/23/2012

23

Gas venting (oxygen + nitrogen)

• Source 

Other Points Considered

‐ Air dissolved in make up water: 

‐ Air trapped in the system after initial filling:

used up by the initial corrosion.

proper air venting

• Large bore vent to pass air bubble Surface tension breaker

44

Diffusion: Expansion Tanks

Other Points Considered

Expansion tank with a bag Expansion tank with a membrane

• Air ingress due to negative pressure: expansion tank pressure should be maintained.

45

2012 GEC Ghani Workshop 3/23/2012

24

• Air vents

Ai & di

(1.64 ft/s)

Other Points Considered

• Air & dirt separators

(3.28 ft/s)

(2.46 ft/s)

Water speed versus removal time – ascending flow

(1.64 ft/s)

Water speed versus removal time – horizontal pipe

46

Other Points Considered

Baffle Separator

Centrifugal Separator

Wire Mesh Separator

47

2012 GEC Ghani Workshop 3/23/2012

25

Plant Arch Configuration

Plant Configuration

• Plant foot print 200 x 200 ft (60 x 60 mt)

• Chillers foot print 0.75 Sq. ft/T (0.07 Sq.m/T)

• Heat rejection required area 0.43 Sq.ft/T (0.04 Sq.m/T)

• Electrical work required area 0 54 Sq ft/T (0 05 Sq m/T)• Electrical work required area  0.54 Sq.ft/T (0.05 Sq.m/T)

• Pumps require area 0.32 Sq. ft/T (0.03 Sq.m/T)

48

Basement: Pumps + water tankHeight 7 mt

Plant Configuration

Ground: Chiller Hall + Electrical + ExpansionHeight 9 mtCrane

Mezzanine: Offices + Control RoomIsolation from structure via vibration matt.

Roof: Cooling Tower

49

2012 GEC Ghani Workshop 3/23/2012

26

DCP‐2 Plant Section

50

DCP‐2 Photo

51

2012 GEC Ghani Workshop 3/23/2012

27

• First large size district plant with Ice storage

• Capacity   43000 TR

District Cooling Plant‐1

p y

• Foot print  200 x 200 ft (60 x 60 m)

• Piles completed with no basement 

• Challenges‐ Foot print not adequate for heat rejection equipmentFoot print not adequate for heat rejection equipment 

(200 x 200 ft)‐ No basement available ‐ No space for chillers at ground floor

52

• Mall design Temp differs from Burj‐ ΔT 16oF ( 8.8oC)‐ Supply 42oF(5.5oC)

District Cooling Plant‐1

Supply 42 F(5.5 C)

• Temp Challenge due to 5 stages with cascaded ETS

37oF

56oF

53

2012 GEC Ghani Workshop 3/23/2012

28

Solution

• Thermal storage ‐ No sufficient land for chilled storage 0 3 ‐ 0 6 m3/Thr

District Cooling Plant‐1

‐ No sufficient land for chilled storage 0.3 ‐ 0.6 m /Thr‐ Low temp below 39.4oF so chilled storage not possibledue to density change.

• Ice storage technique 0.07‐ 0.08 m3/Thr

• Tank on ground and up to 1st floor 

• As tank occupied the ground, chillers moved to 1st floor 

• Electric platform elevator 40 T on capacity (4.5 M US $)

54

• Condenser pump on 1st floor

• NPSH not sufficient

District Cooling Plant‐1

• NPSHA not sufficient 

• Proposed NPSH diffuser

f l d b 2• CT on roof elevated by 2 mt

55

2012 GEC Ghani Workshop 3/23/2012

29

• Low Supply Temp Chillers

District Cooling Plant‐1

• Load achieved through:‐‐ Low temp chillers as base load to operate at 37oF (20,000 TR ).

‐ Glycol chillers to produce ice and operate at peak load via glycol heat exchangers (15,000 

)TR).‐ Heat exchangers between tank water and chilled water (7,000 TR ).

56

Ice StorageDischarging Mode

District Cooling Plant‐1

The Peak Day Load Profile

Base Load Chillers

Glycol ChillersChilling Mode

Glycol ChillersIce Storage

External Melt Ice-On-Coil 57

2012 GEC Ghani Workshop 3/23/2012

30

Flow Diagram

58

DCP‐1 Plant Section

59

2012 GEC Ghani Workshop 3/23/2012

31

Challenges• Dirt impact on glycol chiller tube heat transfer Manual cleaning is required

DCP‐1 Plant Section

transfer.  Manual cleaning is required to maintain capacity.

• Automatic tube cleaning was used with brushes + diverting valve + controller to clean tubes 4 times /Day.

60

DCP‐1 Plant Section

ATB System Control

ATB System ValveAutomatically reverses flow for 30 sec every six hours

61

2012 GEC Ghani Workshop 3/23/2012

32

DCP‐1 Plant Section

62

DCP‐1 Plant Section

63

2012 GEC Ghani Workshop 3/23/2012

33

REMEMBER TO FILL OUT AND TURN IN THE EVALUATION FORM

Reminder:  If you are registered in Florida, New York, or North Carolina, you must also sign the sheets in the back at the end of the session.  Please print your name, include your registration number, and sign the sheet. 

64