2012 Kourovka Lecture 1

Embed Size (px)

Citation preview

  • 7/29/2019 2012 Kourovka Lecture 1

    1/89

    QUANTUMMANY

    BODY

    Eugene Demler Harvard University

    Grad students: A. Imambekov (->Rice),Takuya KitagawaPostdocs: E. Altman ->Weizmann A. Polkovnikov ->U. BostonA.M. Rey (->U. Colorado), V. Gritsev (-> U. Fribourg),D. Pekker (-> Caltech), R. Sensarma (-> J QI Maryland)

    Collaborations with experimental groups ofI. Bloch (MPQ),T. Esslinger (ETH), J .Schmiedmayer (Vienna)

    Supportedby

    NSF,

    DARPA

    OLE,

    AFOSR

    MURI,

    ARO

    MURI

  • 7/29/2019 2012 Kourovka Lecture 1

    2/89

    keV MeV GeV TeVfeV peV eV meV eVneV

    pK nK K mK K

    He Nfirst BEC

    roomtemperature

    LHCcurrentexperiments

    10-11 - 10-10 K

    of alkali atoms

  • 7/29/2019 2012 Kourovka Lecture 1

    3/89

    Bose-Einstein condensation ofwea y n erac ng a oms

    Density 1013 cm-1

    Typical distance between atoms 300 nmT ical scatterin len th 10 nm

    Scattering length is much smaller than characteristic interparticle distances.Interactions are weak

  • 7/29/2019 2012 Kourovka Lecture 1

    4/89

    New Era in Cold Atoms ResearchFocus on Systems with Strong Interactions

    Feshbach resonances

    Rotating systems

    Low dimensional systems

    oms n op ca a ces

  • 7/29/2019 2012 Kourovka Lecture 1

    5/89

    Feshbach resonanceGreiner et al., Nature 2003 ; Ketterle et al., 2003

    Ketterle et al.,Nature 435, 1047-1051 (2005)

  • 7/29/2019 2012 Kourovka Lecture 1

    6/89

    One dimensional systems

    One dimensional systems in microtraps.

    1D confinement in optical potential

    Weiss et al., Science (05);., . . . .

    Hansel et al., Nature (01);Folman et al., Adv. At. Mol. Opt. Phys. (02)

    .,Esslinger et al.,

    regime can be reached

    for low densities

  • 7/29/2019 2012 Kourovka Lecture 1

    7/89

    Atoms in optical lattices

    eory: a sc e a .

    Experiment: Kasevich et al., Science (2001);Greiner et al., Nature (2001);Phillips et al., J . Physics B (2002)

    Esslinger et al., PRL (2004);and many more

  • 7/29/2019 2012 Kourovka Lecture 1

    8/89

    Quantum simulations with ultracold atoms

    Antiferromagnetic andsu erconductin Tc

    Antiferromagnetismandpairing at nano Kelvin

    of the order of 100 K temperatures

    Same microscopic model

  • 7/29/2019 2012 Kourovka Lecture 1

    9/89

    Atoms in optical latticesElectrons in Solids

    Simple metals

    Perturbation theory in Coulomb interaction applies.an s ruc ure me o s wor

    Strongly Correlated Electron SystemsBand structure methods fail.

    Novel phenomena in strongly correlated electron systems:

    uantum ma netism hase se aration unconventional su erconductivithigh temperature superconductivity, fractionalization of electrons

  • 7/29/2019 2012 Kourovka Lecture 1

    10/89

    By studying strongly interacting systems of cold atoms we

    novel quantum materials: Quantum Simulators

    BUT

    are NOT direct analogues of condensed matter systemsThese are independent physical systems with their own

    Stron l correlated s stems of ultracold atoms should

    persona es , p ys ca proper es, an eore ca c a enges

    also be useful for applications in quantum information,

    high precision spectroscopy, metrology

  • 7/29/2019 2012 Kourovka Lecture 1

    11/89

    First lecture:

    experiments with ultracold bosons

    Cold atoms in optical lattices

    Bose Hubbard model. Superfluid to Mott transition

    Looking for Higgs particle in the Bose Hubbard modelQuantum magnetism with ultracold atoms in optical lattices

    ow mens ona con ensa es

    -Observation of prethermolization

  • 7/29/2019 2012 Kourovka Lecture 1

    12/89

    Second lecture:Ultracold fermions

    Fermions in optical lattices. Fermi Hubbard model.urren s a e o expermen s

    Doublon lifetimes

    Strongly interacting fermions in continuum.Stoner instability

  • 7/29/2019 2012 Kourovka Lecture 1

    13/89

    Ultracold Bose atoms in optical lattices

    Bose Hubbard model

  • 7/29/2019 2012 Kourovka Lecture 1

    14/89

    Bose Hubbard model

    t

    tunnelingofatomsbetweenneighboringwells

    repulsionofatomssittinginthesamewell

    Inthe

    presence

    of

    confining

    potential

    we

    also

    need

    to

    include

    Typically

  • 7/29/2019 2012 Kourovka Lecture 1

    15/89

    Bose Hubbard model. Phase diagramU

    M.P.A.Fisheretal.,

    PRB(1989)21n

    n=2 SuperfluidMott

    0

    Mottn=1

    Weaklattice Superfluidphase

    Stronglattice Mottinsulatorphase

  • 7/29/2019 2012 Kourovka Lecture 1

    16/89

    Bose Hubbard model

    Hami tonianeigenstatesareFoc statesSet .

    0 1

    AwayfromlevelcrossingsMottstateshave

    agap.

    Hence

    they

    should

    be

    stable

    to

    small

    tunneling.

  • 7/29/2019 2012 Kourovka Lecture 1

    17/89

    Bose Hubbard Model. Phase diagram

    1n

    U

    n=3 Mott

    2

    1

    n=2 SuperfluidMott

    0

    Mottn=1

    Particlehole

    Mottinsulatorphase

    excitation

    z

    numberof

    nearest

    neighbors,

    n fillingfactor

  • 7/29/2019 2012 Kourovka Lecture 1

    18/89

    Gutzwiller variational wavefunction

    Normalization

    Kineticenergy

    z numberofnearestneighbors

    Interactionenergyfavorsafixednumberofatomsperwell.

    Kineticenergyfavorsasuperpositionofthenumberstates.

  • 7/29/2019 2012 Kourovka Lecture 1

    19/89

    Bose Hubbard Model. Phase diagram

    U

    21n

    = Superfluid

    1

    Mottn=1

    0

    Notethat

    the

    Mott

    state

    only

    exists

    for

    integer

    filling

    factors.

    For evenwhen atomsarelocalized,

    makeasu erfluidstate.

  • 7/29/2019 2012 Kourovka Lecture 1

    20/89

    Nature415:39(2002)

  • 7/29/2019 2012 Kourovka Lecture 1

    21/89

    Optical lattice and parabolic potential

    Parabolicpotentialactsasacutthrough

    thephasediagram.Henceinaparabolic

    U

    .

    1nn=3 Mott

    1

    n=2 SuperfluidMott

    0

    Mottn=1

    .,

    PRL81:3108(1998)

  • 7/29/2019 2012 Kourovka Lecture 1

    22/89

    Bakr et al., Science 2010

    ydensi

    t

    x

  • 7/29/2019 2012 Kourovka Lecture 1

    23/89

    Nature2010

  • 7/29/2019 2012 Kourovka Lecture 1

    24/89

    trapped 2D superfluid on a lattice

    ColdAtoms(Munich)ElementaryParticles(CMS@LHC)

    Sherson et. al. Nature 2010

    Theory: David Pekker, Eugene Demler

    , , ,Schauss, Christian Gross, Immanuel Bloch, Stefan Kuhr

  • 7/29/2019 2012 Kourovka Lecture 1

    25/89

    Collective modes of strongly interacting

    Orderparameter BreaksU(1)symmetry

    FigurefromBissbort etal. (2010)

    Phase(Goldstone)mode=gaplessBogoliubov mode

    Gappedamplitudemode(Higgsmode)

  • 7/29/2019 2012 Kourovka Lecture 1

    26/89

    U

    21nn=3

    Su erfluid

    Mott

    1

    n=2 Mott

    Mott Superfluid

    0

    Mottn=1

    ofthesecondorderQuantumPhaseTransition

  • 7/29/2019 2012 Kourovka Lecture 1

    27/89

    neutronscattering

    Dangerfromscatteringonphasemodes

    Higgs

    Higgs

    n : n rare vergence

    Differentsusceptibilityhasnodivergence

    S.Sachdev,Phys.Rev.B59,14054(1999)

    a cemo u a on

    spectroscopy

    W.Zwerger,Phys.Rev.Lett.92,027203(2004)

    N.LindnerandA.Auerbach,Phys.Rev.B81,54512(2010)

    Podolsky,

    Auerbach,

    Arovas, Phys.

    Rev.

    B

    84,

    174522

    (2011)

  • 7/29/2019 2012 Kourovka Lecture 1

    28/89

    Whyitisdifficulttoobservetheamplitudemode

    Bissbort etal.,PRL(2010)

    Stoferle etal.,PRL(2004)

    Peak atUdominatesanddoesnot

    changeas

    the

    system

    goes

    through

    theSF/Motttransition

  • 7/29/2019 2012 Kourovka Lecture 1

    29/89

    Excitingtheamplitudemode

    Absorbedenergy

  • 7/29/2019 2012 Kourovka Lecture 1

    30/89

    ExcitingtheamplitudemodeManuel

    Endres,

    Immanuel

    Bloch

    and

    MPQ

    team

    Mottn=1 Mottn=1 Mottn=1

  • 7/29/2019 2012 Kourovka Lecture 1

    31/89

    Experiments:fullspectrumManuel

    Endres,

    Immanuel

    Bloch

    and

    MPQ

    team

  • 7/29/2019 2012 Kourovka Lecture 1

    32/89

    Timedependentmeanfield:Gutzwiller

    m ar o an au- s z equa ons n magne sm

    statespersite

    only

    Thresholdforabsorption

    scap ure verywe

  • 7/29/2019 2012 Kourovka Lecture 1

    33/89

    Plaquette MeanField

    Better

    utzw er

    Variational wavefunctionsbettercaptureslocalphysics betterdescribesinteractionsbetweenquasiparticles

    EquivalenttoMFTonplaquettes

  • 7/29/2019 2012 Kourovka Lecture 1

    34/89

    Timedependentclustermeanfield

    Latticeheight

    9.5

    Er:

    1x1

    vs 2x2

    breathingmode

    singleamplitude

    modeexcited multiplemodes

    excited?singleamplitude

    2x2captureswidthofspectralfeature

    breathingmode

    C i f i t

  • 7/29/2019 2012 Kourovka Lecture 1

    35/89

    Comparison of experimentsand Gutzwille theories

    Experiment 2x2ClustersKey experimental facts:

    wide bandband spreads out deep in SF

    Single site Gutzwiller Plaquette Gutzwiller

    Captures gap

    Does not capture width

    Captures gap

    Captures most of the width

  • 7/29/2019 2012 Kourovka Lecture 1

    36/89

    Beyond Gutzwiller: Scaling at low frequencies

    Higgs

    2Goldstonesw

    External drive couples vacuum to Higgs

    vacuum

    Higgs decays into a pair of Goldstone modes with conservation of energyMatrix element w2/w=wDensit of states wFermis golden rule: w2xw = w3

  • 7/29/2019 2012 Kourovka Lecture 1

    37/89

    Openquestion:observingdiscreetmodes

    disappearingamplitudemode

    reat ngmo e

    detailsattheQCP

    spectrumremains

    gappeddue

    to

    trap

  • 7/29/2019 2012 Kourovka Lecture 1

    38/89

    HiggsDrumModes

    1x1 calculation,20oscillations

    Eabs rescaledsopeakheights

    coincide

  • 7/29/2019 2012 Kourovka Lecture 1

    39/89

    atoms in optical lattices

    T t B i t i ti l l tti

  • 7/29/2019 2012 Kourovka Lecture 1

    40/89

    Two component Bose mixture in optical latticeExample: . Mandel et al., Nature (2003)

    tt

    Two component Bose Hubbard model

    We consider two component Bose mixture in the n=1Mott state with equal number of and atoms.

    We need to find spin arrangement in the ground state.

    Q i f b i i l l i

  • 7/29/2019 2012 Kourovka Lecture 1

    41/89

    Quantum magnetism of bosons in optical latticesDuan et al., PRL (2003)

    Ferromagnetic

    n erromagne c

  • 7/29/2019 2012 Kourovka Lecture 1

    42/89

    Two component Bose Hubbard model

    In the regime of deep optical lattice we can treat tunnelingas perturbation. We consider processes of the second order in t

    We can combine these processes intoanisotropic Heisenberg model

    Two component Bose mixture in optical lattice

  • 7/29/2019 2012 Kourovka Lecture 1

    43/89

    Two component Bose mixture in optical lattice.Mean field theory + Quantum fluctuations

    Hysteresis

    Altman et al., NJ P (2003)

    1st order

    bb d d l

  • 7/29/2019 2012 Kourovka Lecture 1

    44/89

    Two component Bose Hubbard model

    + infinitely large Uaa and Ubb

    ew ea ure:coexistence ofcheckerboard phase

    and superfluidity

  • 7/29/2019 2012 Kourovka Lecture 1

    45/89

    antibonding

    on ng

    Kinetic energy dominates: antiferromagnetic state

    Realization of spin liquid

  • 7/29/2019 2012 Kourovka Lecture 1

    46/89

    Realization of spin liquid

    Theory: Duan, Demler, Lukin PRL (03)

    Kitaev model Annals of Ph sics (2006)

    H =- J x ixjx - J y iyjy - J z iz jz

    Questions:Detection of topological orderCreation and manipulation of spin liquid statesDetection of fractionalization, Abelian and non-Abelian anyonsMelting spin liquids. Nature of the superfluid state

  • 7/29/2019 2012 Kourovka Lecture 1

    47/89

    Superexchange interactionin ex eriments with double wells

    Theory: A.M. Rey et al., PRL 2008

    Experiments: S. Trotzky et al., Science 2008

    Ob ti f h i d bl ll t ti l

  • 7/29/2019 2012 Kourovka Lecture 1

    48/89

    Observation of superexchange in a double well potential

    Jeory: . . ey e a .,

    J

    Use ma netic field radient to re are a state

    Observe oscillations between and states

    Experiments:S. Trotzky et al.Science 2008

    Preparation and detection of Mott states

  • 7/29/2019 2012 Kourovka Lecture 1

    49/89

    Preparation and detection of Mott states

    Reversing the sign of exchange interaction

    C i t th H bb d d l

  • 7/29/2019 2012 Kourovka Lecture 1

    50/89

    Comparison to the Hubbard model

  • 7/29/2019 2012 Kourovka Lecture 1

    51/89

    Beyond the basic Hubbard model

    Basic Hubbard model includesonly local interaction

    Extended Hubbard modeltakes into account non-local

    Beyond the basic Hubbard model

  • 7/29/2019 2012 Kourovka Lecture 1

    52/89

    Beyond the basic Hubbard model

  • 7/29/2019 2012 Kourovka Lecture 1

    53/89

    Probing low dimensionalcon ensa es w n er erence

    ex eriments

    Prethermalization

    f f i d d d

  • 7/29/2019 2012 Kourovka Lecture 1

    54/89

    Interference of independent condensates

    Experiments: Andrews et al., Science 275:637 (1997)

    Theory: J avanainen, Yoo, PRL 76:161 (1996)rac, o er, e a . :

    Castin, Dalibard, PRA 55:4330 (1997)

    and many more

    zExperiments with 2D Bose gas

  • 7/29/2019 2012 Kourovka Lecture 1

    55/89

    zHadzibabic, Dalibard et al., Nature 2006

    Time of

    xg t

    Experiments with 1D Bose gas Hofferberth et al. Nat. Physics 2008

    Interference of two independent condensates

  • 7/29/2019 2012 Kourovka Lecture 1

    56/89

    Interference of two independent condensates

    r

    r

    1 r+dAssuming ballistic expansion

    2

    d

    ase erence e ween c ou s anis not well defined

    They disappear after averaging over many shots

    Interference of fluctuating condensates

  • 7/29/2019 2012 Kourovka Lecture 1

    57/89

    Interference of fluctuating condensates

    dAmplitude of interference fringes,

    ., .,

    x1For independent condensates Afris finitebut is random

    x2

    For identicalcondensates

    Instantaneous correlation function

  • 7/29/2019 2012 Kourovka Lecture 1

    58/89

    Matter-wave interferometry

    phase,contrast

  • 7/29/2019 2012 Kourovka Lecture 1

    59/89

    Matter-wave interferometry

    phase,contrast

    Plot

    as

    circular

    statisticscontrast

  • 7/29/2019 2012 Kourovka Lecture 1

    60/89

    Matter-wave interferometry: repeatmany times

    i>100phase,contrast

    contrasti accumulatestatistics

    Plot phase

    Calculate average contrast

    Fluctuations in 1d BEC

  • 7/29/2019 2012 Kourovka Lecture 1

    61/89

    Fluctuations in 1d BEC

    Thermal fluctuations

    Thermally energy of the superflow velocity

    Quantum fluctuations

    Interference between Luttinger liquids

  • 7/29/2019 2012 Kourovka Lecture 1

    62/89

    g q

    Luttinger liquid at T=0

    For non-interacting bosons and

    For impenetrable bosons and

    Finitetemperature

    Experiments: Hofferberth,,

    Distribution function of fringe amplitudes

  • 7/29/2019 2012 Kourovka Lecture 1

    63/89

    Distribution function of fringe amplitudes

    for interference of fluctuating condensatesGritsev, Altman, Demle , Polkovnikov, Nature Ph sics 2006

    is a quantum operator. The measured value of

    Imambekov, Gritsev, Demler, PRA (2007)

    L

    will fluctuate from shot to shot.

    Higher moments reflect higher order correlation functions

    Distribution function of interference fringe contrast

  • 7/29/2019 2012 Kourovka Lecture 1

    64/89

    g.,

    asymetric Gumbel distribution

    (low temp. T or short length L)

    Thermal fluctuations dominate:broad Poissonian distribution(high temp. T or long length L)

    Intermediate regime:double peak structure

    Higher order correlation functions can be obtained

    Interference between interacting 1d Bose liquids.Distribution function of the interference am litude

  • 7/29/2019 2012 Kourovka Lecture 1

    65/89

    Distribution function of the interference am litude

    Distribution function of

    Quantum impurity problem: interacting one dimensional

    electrons scattered on an impurity

    Conformal field theories with negativecentral charges: 2D quantum gravity,

    -

    2D quantum gravity,non-intersecting loops

    ,random fractal stochastic interface,high energy limit of multicolor QCD,

    Yang-Lee singularity

    Fringe visibility and statistics of random surfaces

  • 7/29/2019 2012 Kourovka Lecture 1

    66/89

    Distribution function of

    Mapping between fringevisibility and the problemof surface roughness forfluctuating randomsurfaces.

    Relation to 1/f Noise andExtreme Value Statistics

    Roughness dh2

    )(

    Interference of two dimensional condensatesE i t H d ib bi t l N t 2006

  • 7/29/2019 2012 Kourovka Lecture 1

    67/89

    Ex eriments: Hadzibabic et al. Nature 2006

    Gati et al., PRL (2006)

    Ly

    x

    Lx

    Probe beam parallel to the plane of the condensates

    Interference of two dimensional condensates.

  • 7/29/2019 2012 Kourovka Lecture 1

    68/89

    Ly

    Lx

    Below BKT transitionAbove BKT transition

    Experiments with 2D Bose gas

  • 7/29/2019 2012 Kourovka Lecture 1

    69/89

    Time of

    Hadzibabic, Dalibard et al., Nature 441:1118 (2006)

    xflight

    low temperature higher temperature

    Typical interference patterns

    Experiments with 2D Bose gas

  • 7/29/2019 2012 Kourovka Lecture 1

    70/89

    x

    Hadzibabic et al., Nature 441:1118 (2006)

    z

    Contrast a ter

    integration0.4

    negra on

    overxaxis z

    integrationmiddleT

    lowT

    inte ration

    overxax sz

    .

    highT

    overxaxisz integration distanceDx

    00 10 20 30

    Dx(pixels)

    Experiments with 2D Bose gas

  • 7/29/2019 2012 Kourovka Lecture 1

    71/89

    fit by:rast 0.4

    2

    2

    12 1~),0(

    1~

    D

    dxxgCx

    a z a c e a ., a ure :

    rated

    con

    0.2

    owmiddleT

    Exponent

    Integ

    00 10 20 30

    high

    0.5

    ifg1(r) decays exponentially

    0.4

    0.3hi h low

    w :

    if r deca sal ebraicall or central contras

    0 0.1 0.2 0.3

    exponentially with a large :

    Sudden jump!?

    Experiments with 2D Bose gas. Proliferation of

  • 7/29/2019 2012 Kourovka Lecture 1

    72/89

    .,

    Fract on o mages s ow ng

    at least one dislocation

    Exponent

    0.520%

    0.410%

    0 0.1 0.2 0.3

    .

    00 0.1 0.2 0.3 0.4

    g

    centra contrast

    The onset of roliferationcentral contrast

    coincides withshifting to 0.5!

  • 7/29/2019 2012 Kourovka Lecture 1

    73/89

    one dimensional condensatesret erma zaton

    Theory: Takuya Kitagawa et al., PRL (2010)

    New J . Phys. (2011)

    Experiments: D. Smith, J . Schmiedmayer, et al.

    .

    Relaxation to equilibrium

  • 7/29/2019 2012 Kourovka Lecture 1

    74/89

    equilibriumatlongtimes(typicallyatmicroscopictimescales).All

    memoryabouttheinitialconditionsexceptenergyislost.

    Bolzmann equation

    .

    c ne ere

    a .,

    arXiv:1005.3545

    Prethermalization

  • 7/29/2019 2012 Kourovka Lecture 1

    75/89

    QCD

    Weobserveirreversibilityandapproximatethermalization.Atlarge

    timethesystemapproachesstationarysolutioninthevicinityof,but

    , .

    somememory

    beyond

    the

    conserved

    total

    energyThis

    holds

    for

    interactingsystemsandinthelargevolumelimit.

    Prethermalization inultracold atoms,theory:Ecksteinetal.(2009);

    Moeckel etal.(2010),L.Mathey etal.(2010),R.Barnett etal.(2010)

    Measurements of dynamics of split condensate

  • 7/29/2019 2012 Kourovka Lecture 1

    76/89

  • 7/29/2019 2012 Kourovka Lecture 1

    77/89

    Theoretical analysis of dephasing

    Luttinger liquid model of phase dynamics

  • 7/29/2019 2012 Kourovka Lecture 1

    78/89

    Luttinger liquid model of phase dynamics

  • 7/29/2019 2012 Kourovka Lecture 1

    79/89

    For each k-mode we have simple harmonic oscillators

    Phase diffusion vs Contrast Deca

  • 7/29/2019 2012 Kourovka Lecture 1

    80/89

    egmen s ze s onger an e uc ua on eng sca e

    At long times the difference between

    the two regime occurs for

    Length dependent phase dynamics

  • 7/29/2019 2012 Kourovka Lecture 1

    81/89

    Short segments = phase diffusion

    m

    10

    m

    15 ms 15.5 16 16.5 17 19 21 24 27 32 37 47 62 77 107 137 167 197

    m

    30m

    20

    m

    61m

    41

    110

    ong segmen s = con rasdecay

    Energy distribution

  • 7/29/2019 2012 Kourovka Lecture 1

    82/89

    Energy stored in each mode initially

    Equipartition of energyFor 2d also ointed out b Mathe Polkovnikov in PRA 2010

    The system should look thermal like after different modes dephase.

    Effective temperature is not related to the physical temperature

    Comparison of experiments and LL analysis

  • 7/29/2019 2012 Kourovka Lecture 1

    83/89

    Do we have thermal-like distributions at longer time

    Prethermalization

  • 7/29/2019 2012 Kourovka Lecture 1

    84/89

    Interference contrast is described by thermali tri ti n t t t m r t r m h l w r

    than the initial temperature

    Testin Prethermalization

  • 7/29/2019 2012 Kourovka Lecture 1

    85/89

    First lecture:

  • 7/29/2019 2012 Kourovka Lecture 1

    86/89

    experiments with ultracold bosons

    Cold atoms in optical lattices

    Bose Hubbard model. Superfluid to Mott transitionLooking for Higgs particle in the Bose Hubbard modelQuantum magnetism with ultracold atoms in optical lattices

    ow mens ona con ensa es

    -Observation of prethermolization

  • 7/29/2019 2012 Kourovka Lecture 1

    87/89

    Beyond Gutzwiller: Scaling at low frequencies

  • 7/29/2019 2012 Kourovka Lecture 1

    88/89

    signature of Higgs/Goldstone mode coupling

    Excite virtual Higgs excitation

    Virtual Higgs decays into a pair of Goldstone excitationsMatrix element of Higgs to Goldstone coupling scales as w2

    ase space sca es as wFermis golden rule: (w2)2x(1/w) = w3

  • 7/29/2019 2012 Kourovka Lecture 1

    89/89