6
First Remote Sensing Observations of Convective Bursts in a Rapidly Intensifying Hurricane from the Global Hawk Platform Stephen Guimond and Gerald Heymsfield Code 612, NASA/GSFC and UMD/ESSIC During the NASA GRIP field experiment, GSFC’s HIWRAP radar flying on the unmanned Global Hawk aircraft with additional measurements from the JPL HAMSR radiometer and NOAA radars provided an unprecedented view of the rapid intensification of Hurricane Karl (2010) for a ~ 14 hour period. Convective bursts formed in Karl through: (1) convergence generated from counterrotating mesovortex circulations and the larger scale vortex flow and (2) the turbulent transport of warm, buoyant air from the eye to the eyewall at lowtomid levels. (i) (iii) (ii) 54 GHz Tbs and Wind Vectors X (km) Y (km) 30 20 10 0 10 20 30 40 30 20 10 0 10 20 30 40 200 210 220 230 240 250 260 40 m s 1 N S Y (km) Height (km) 50 40 30 20 10 0 10 20 30 40 50 0 5 10 15 5 0 5 10 15 0.01 Y (km) Height (km) 50 40 30 20 10 0 10 20 30 40 50 0 5 10 15 15 10 5 0 5 Y (km) Height (km) 50 40 30 20 10 0 10 20 30 40 50 0 5 10 15 15 20 25 30 35 40 45 (a) (b) (c) (d) Ku#band Reflec-vity Meridional (Radial) Winds Ver-cal Winds S N

2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

  • Upload
    ledat

  • View
    216

  • Download
    4

Embed Size (px)

Citation preview

Page 1: 2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

First  Remote  Sensing  Observations  of  Convective  Bursts  in  aRapidly  Intensifying  Hurricane  from  the  Global  Hawk  Platform

Stephen  Guimond  and  Gerald  HeymsfieldCode  612,  NASA/GSFC  and  UMD/ESSIC  

During  the  NASA  GRIP  field  experiment,  GSFC’s  HIWRAP  radar  flying  on  the  unmanned  Global  Hawk  aircraft  with  additional  measurements  from  the  JPL  HAMSR  radiometer  and  NOAA  radars  provided  an  unprecedented  view  of  the  rapid  intensification  of  Hurricane  Karl  (2010)  for  a  ~  14  hour  period. Convective  bursts  formed  in  Karl  through:   (1)  convergence  generated  from  counter-­rotating  mesovortex  circulations  and  the  larger  scale  vortex  flow  and  (2)  the  turbulent  transport  of  warm,  buoyant  air  from  the  eye  to  the  eyewall  at  low-­to-­mid  levels.

(i)

(iii)

(ii)

54  GHz  Tbs  and  Wind  Vectors X (km)

Y (k

m)

−30 −20 −10 0 10 20 30−40

−30

−20

−10

0

10

20

30

40

200

210

220

230

240

250

260

40 m s−1

N"

S"

Y (km)

Hei

ght (

km)

−50 −40 −30 −20 −10 0 10 20 30 40 500

5

10

15

−5

0

5

10

Y (km)

Hei

ght (

km)

−50 −40 −30 −20 −10 0 10 20 30 40 500

5

10

15

−0.01

−0.005

0

0.005

0.01

Y (km)

Hei

ght (

km)

−50 −40 −30 −20 −10 0 10 20 30 40 500

5

10

15

−15

−10

−5

0

5Y (km)

Hei

ght (

km)

−50 −40 −30 −20 −10 0 10 20 30 40 500

5

10

15

15

20

25

30

35

40

45(a)

(b)

(c)

(d)

Ku#band(Reflec-vity(

Meridional((Radial)(Winds(

Ver-cal(Winds(

Ver-cal(Vor-city(

S"(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((N"

Page 2: 2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

Earth  Science  Division  -­ Atmospheres

Name:    Stephen  Guimond,  NASA/GSFC,  Code  612  and  UMD/ESSIC  E-­mail:   [email protected]:   301-­614-­5809

Reference:Guimond,  S.R.,  G.M.  Heymsfield,  P.D.  Reasor  and  A.C.  Didlake,  2016:  The  rapid  intensification  of  Hurricane  Karl  (2010):    New  remote  sensing  observations  of  convective  bursts  from  the  Global  Hawk  platform.  Journal  of  the  Atmospheric  Sciences,  accepted.

Contributors:    P.  Reasor  (NOAA/HRD),  M.  McLinden  (NASA/GSFC),  L.  Li  (NASA/GSFC),  A.  Didlake  (PSU)

Data  Sources:    NASA/GSFC  HIWRAP  airborne  Doppler  radar,  NASA/JPL  HAMSR  airborne  radiometer,  NOAA  radars,  GOES  IR  channel.

Technical  Description  of  Figures:Figure  1:    Panel  (i)  shows  the  eye  and  eyewall  of  Hurricane  Karl  (2010)  at  2  km  height  at  ~  1910  UTC  16  September  from  HAMSR  54  GHz  Tbs  (shading)  along  with  HIWRAP  wind  vectors  revealing  cyclonic  mixing  of  the  warm  core  (high  Tbs)  into  the  eyewall,  which  helps  to  fuel  the  convective  burst  observed  through  ice  scattering  (low  Tbs).  Panel  (ii)  shows  a  vertical  cross  section  of  HIWRAP  data  through  the  storm  center  shown  in  panel  (i)  by  the  gray  line.    Thedata  shown  in  panel  (ii)  is  (a)  Ku  band  reflectivity,  (b)  storm-­relative  meridional (radial)  wind  speeds  and  (c)  vertical  wind  speeds,  which  reveal  the  detailed  interaction  between  the  eye  and  convective  tower  in  the  southern  eyewall.    Finally,  panel  (iii)  shows  a  conceptual  diagram  summarizing  the  measurements  and  analysis  from  the  rapid  intensification  of  Karl.    Red  arrows  denote  the  flow  of  air  having  anomalously  warm  characteristics. Green  patches  denote  regions  of  convergence  that  form  due  to  the  interaction  between  the  mesovortex  circulations  and  the  larger  scale  vortex  inflow.

Scientific  significance:    Understanding  and  predicting  the  rapid  intensification  of  hurricanes  is  among  the  most  challenging  problems  in  atmospheric  science  due  to  the  stochastic,  turbulent  nature  of  the  primary  forcing  (convective  clouds).    Comprehensive  observations  from  a  variety  of  instruments  in  many  cases  are  required  to  determine  if  there  is  some  level  of  order  in  the  chaotic  evolution  of  convection.    The  observations  presented  in  this  paper  from  new  NASA  technologies  indicate  that  deep  convective  clouds  can  be  organized  by  mesoscale  circulations  at  the  eye/eyewall  interface  that  may  provide  some  level  of  determinism  for  the  predictive  problem.    

Relevance  for  future  science  and  relationship  to  Decadal  Survey:    The  recognition  of  the  importance  of  small-­scale  processes  in  the  evolution  of  the  larger  scale  hurricane  vortex  motivates  the  need  to  develop  sensors  with  very  high  spatial  and  temporal  resolution  to  fully  resolve  the  turbulent  nature  of  convection.    Other  atmospheric  phenomena  with  similar  scale  interactions  such  as  severe  storms  and  the  Madden-­Julian  Oscillation (MJO)  would  benefit  from  this  research  and  the  sampling  approach  described  above.    A  Doppler  radar  in  space  that  can  accurately  measure  the  three-­dimensional  winds  at  reasonably  high  resolution  would  be  a  tremendous  asset  to  address  these  problems.

Page 3: 2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

Effects  of  DSCOVR  Temporal  Sampling  Frequency  Quantified  with  GEOS-­5  Nature  Run

Daniel  Holdaway (USRA/610.1)  and  Yuekui  Yang(USRA/613)

The  Deep  Space  Climate  Observatory  (DSCOVR),  as  all  satellites,  samples  Earth  at  a  finite  temporal  resolution.  DSCOVR  sampling  of  global  radiation  and  cloud  cover  is  simulated  using  high  spatial  resolution  output  from  NASA’s  GEOS-­5  model.  We  find  that  the  less  frequent  the  sampling,  the  worse  the  correlation  between  the  subsample  and  the  original  time  series,  as  expected.  On  the  other  hand,  more  frequent  sampling  is  not  as  beneficial  as  expected  for  errors  in  the  global  monthly,  seasonal  and  annual  means.  For  example,  the  uncertainty  above  right  is  larger  for  6  hour  sampling  than  for  7,  9,  10  and  11  hours.  This  is  due  to  the  Earth’s  24-­hour  rotation  cycle.  Using  sampling  frequencies  that  are  a  factor  of  24  results  in  repeatedly  capturing  specific  parts  of  the  cycle,  introducing  a  bias.    

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

DailyMonthlySeasonalAnnualM

ean

Cor

rela

tion:

Sub

sam

ples

vs

Orig

inal

Sampling Interval (hour)

Correlation in Global Outgoing Radiation

0

0.5

1

1.5

2

2.5

2 4 6 8 10 12

DailyMonthlySeasonalAnnual

Erro

r in

Glo

bal M

ean:

Out

goin

g R

adia

tion

(W/m

2 )

Sampling Interval (hour)

Error in Global Outgoing Radiation

Page 4: 2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

Name:   Yuekui  Yang,  NASA/GSFC,  Code  613  and  USRA  E-­mail: [email protected]:  301-­614-­6313

References:Holdaway,  D.  and  Y.  Yang,  2016:  Study  of  the  Effect  of  Temporal  Sampling  Frequency  on  DSCOVR  Observations  Using  the  GEOS-­5  Nature  Run  Results  (Part  I):  Earth’s  Radiation  Budget.  Remote  Sensing, 8(2),  98,  doi:10.3390/rs8020098.

Holdaway,  D.  and  Y.  Yang,  2016:  Study  of  the  Effect  of  Temporal  Sampling  Frequency  on  DSCOVR  Observations  Using  the  GEOS-­5  Nature  Run  Results  (Part  II):  Cloud  Coverage.  Remote  Sensing,8(5),  431,  doi:10.3390/rs8050431.

Data  Sources:   NASA  Goddard  Earth  Observing  System  Model,  Version  5  (GEOS-­5)  Nature  Run  Data,  available  from  Goddard  Global  Modeling  and  Assimilation  Office  (http://gmao.gsfc.nasa.gov/global_mesoscale/7km-­G5NR/).

Technical  Description  of  Figures:The  figures  show  simulations  of  DSCOVR-­like  observations  with  GEOS-­5  Nature  Run  at  both  original  temporal  resolution  (30  min)  and  subsampled  coarser  temporal  resolution  in  order  to  study  the  ensuing  effects.Upper  Left  Panel:  Mean  of  the  correlation  coefficients  between  the  original  and  subsampled global  total  outgoing  radiation  time  series  as  a  function  of  temporal  sampling  frequency.  The  different  curves  represent  different  time  scales.  For  example,  the  “Monthly”  curve  is  generatedby  calculating  the  correlation  coefficients  between  the  subsamples  and  the  original  time  series  for  each  month  and  then  averaging  over  the  entire  Nature  Run  time  period  (2  years).    Upper  Right  Panel:  The  error  in  the  global  mean  total  outgoing  radiation  derived  from  the  subsampled  time  series  as  a  function  of  temporal  samplingfrequency.Lower  Left  Panel:  Same  as  the  upper  left  panel,  but  for  global  mean  cloud  fraction.    Lower  Right  Panel:  Same  as  the  upper  right  panel,  but  for  the  global  mean  cloud  fraction.

Scientific  significance,  societal  relevance,  and  relationships  to  future  missions:Orbiting  around  the  Earth’s  L1  Lagrange  point,  the  DSCOVR  satellite  always  stays  near  the  Sun-­Earth  line.  At  this  location,  which  lies  around1.5  million  km  away  from  the  Earth,  DSCOVR  can  view  the  entire  daytime  hemisphere  continuously.  Observations  from  the  two  Earth-­observing  instruments  onboard,  the  National  Institute  of  Standards  and  Technology  Advanced  Radiometer  (NISTAR)  and  the  Earth  Polychromatic Imaging  Camera  (EPIC),  are  being  used  to  derive  information  about  the  Earth’s  radiation  budget,  cloud,  aerosol,  ozone,  and  vegetation.  DSCOVR,  like  any  other  satellite,  can  only  provide  observations  with  a  finite  temporal  resolution.  As  a  result,  the  information  derived  from  these  observations does  not  represent  the  true  system.  We  investigate  how  subsampling  affects  the  mean  and  how  close  the  sampled  time  series  is  to  the  truth  using  GEOS-­5  Nature  Run  data.  Our  analysis  shows  that  the  errors  in  the  global  monthly,  seasonal  and  annual  means,  be  it  radiation  budget  or  cloud  coverage,  are  not  a  monotonic  function  of  sampling  frequency.  Error  peaks  appear  at  four,  six,  eight  and  twelve  hour  sampling  rate  because  of  the  24  hour  cycle  associated with  the  Earth’s  rotation.  DSCOVR  should  therefore  avoid  sampling  at  these  time  intervals.  Analysis  of  correlations  between  subsamples  and  the  original  time  series  show  that  while  obtaining  a  mean  close  to  the  truth  is  possible  even  at  large  sampling  intervals,  in  general  the  subsampled  time  series moves  farther  away  from  the  truth,  the  coarser  the  temporal  resolution.  Even  though  this  study  is  about  the  DSCOVR  mission,  the  results  are  helpful  in  understanding  the  uncertainties  in  products  from  other  satellites  (past,  current  or  future)  as  well.  As  shown  by  DSCOVR,  satellites  located  at  the  L1  point  has  the  unique  advantage  in  observing  the  climate  system.  In  the  future,  should  a  DSCOVR  follow  up  be  planned,  this  study  could  provide  general  guidance  in  the  sampling  strategy.

Earth  Sciences  Division  -­ Atmospheres

Page 5: 2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

A  new  “top-­down”  emission-­source  detection  algorithm  was  applied  to  the  measurements  of  sulfur  dioxide  (SO2)  from  the  Ozone  Monitoring  Instrument  (OMI)  on-­board  the  NASA  Aura  satellite.  It  was  

used  to  compile  the  first  global,  satellite-­based  emissions  inventory,  and  is  completely  independent  of  conventional  information  sources.    Nearly  40  of  the  sources  identified  by  this  new  method  were  found  

to  be  missing  from  leading  emissions  inventories  (black  symbols  and  country  color  code),  representing  about  12%  of  the  global  total.  Regionally,  emissions  can  be  off  by  factors  of  2  or  3.  This  method  has  potential  applications  to  detecting  emissions  for  other  pollutants  (NOx,  particulate  matter)

The  first  global,  satellite  based  sulfur  dioxide  (SO2)  emission  inventory  Chris  McLinden  (EC),  Vitali  Fioletov  (EC),  Mark  Shephard  (EC),  Nick  Krotkov,  Code  614,  

Can  Li  Code  614  and  ESSIC,  Randall  Martin,  Dalhousie  University,  Joanna  Joiner,  Code  614  

Page 6: 2016 07 highlights - NASA · Aura&Ozone &Monitoring ... and&the&Netherlands&Space&Agency&(NSO ).&&The&Planetary&Boundary&Layer&SO2

Earth  Sciences  Division  -­ Atmospheres

Name:    Nick  Krotkov,  Can  Li,  Joanna  Joiner;  NASA/GSFC,  Code  614E-­‐mail:  [email protected]:  301-­‐614-­‐5553

References:    Chris  A.  McLinden,    Vitali  Fioletov,  Mark  W.  Shephard,  Nick  Krotkov,  Can  Li,  Randall  V.  Martin,    Michael  D.  Moran,  and  Joanna  Joiner,  Space-­‐based  detection  of  missing  sulfur  dioxide  sources  of  global  air  pollution,  Nature-­‐Geoscience,  doi:  10.1038/ngeo2724,  2016.Data  Sources:    Aura  Ozone  Monitoring  Instrument  (OMI)  SO2  and  NO2  NASA   standard  products.  The  Dutch  -­‐ Finnish  built  OMI  instrument  is  part  of  the  NASA’s  EOS  Aura  satellite  payload.    The  OMI  project  is  managed  by  KNMI  (PI  Pieternel Levelt)  and  the  Netherlands  Space  Agency  (NSO).    The  Planetary  Boundary  Layer  SO2  product  (PBL  OMSO2  v1.2.0)  is  publicly  available  from  the  NASA  Goddard  Earth  Sciences  (GES)  Data  and  Information  Services  Center (DISC)  (http://disc.sci.gsfc.nasa.gov/Aura/data-­‐holdings/OMI/omso2_v003.shtml).  The  NASA  standard  SP  tropospheric  NO2  product  (OMNO2  version  2.1)  is  publicly  available  from  NASA  GES  DISC  at  http://disc.sci.gsfc.nasa.gov/Aura/data-­‐holdings/OMI/omno2_v003.shtml.  Technical  Description  of  Figure:The  map  shows  global  distribution  of  location  and  magnitude  of  missing  anthropogenic    (circles)  and  volcanic  (triangles)    SO2  emission  sources  detected  by  OMI.    The  downwind-­‐upwind  difference,  determined  by  merging  OMI  SO2  measurements  with  wind  information,  is  an  indicator  used  to  determine  the  presence  of  a  source  of  SO2.    Many of the missing SO2 sources were located in the Middle-East and related to the oil & gas sector. Also,  each  nation  is  color-­‐coded  according  to  the  fraction  of  emissions  that  were  found  to  be  missing  from  their  national  totals.  

Media  links:    NASA Press RELEASE 16-055: “NASA Satellite Finds Unreported Sources of Toxic Air Pollution”, June 1 https://www.nasa.gov/press-release/nasa-satellite-finds-unreported-sources-of-toxic-air-pollutionNASA Earth Observatory ‘s Image of the Day: “Satellite Finds Unreported Sources of Sulfur Dioxide”, June 7 http://earthobservatory.nasa.gov/IOTD/view.php?id=88153&eocn=home&eoci=iotd_titleWashington Post: “Scientists just discovered dozens of new sources of air pollution, May 31https://www.washingtonpost.com/news/energy-environment/wp/2016/05/31/scientists-just-discovered-dozens-of-new-sources-of-air-pollution/

Scientific  significance,  societal  relevance,  and  relationships  to  future  missions:These   results  represent  the  first  global  satellite-­‐derived  emissions  inventory.    It  is  independent  of  previous,  conventional  knowledge  sources  and  hence  can  be  used  to  both  verify  emissions  and  locate  new  or  unaccounted  for  emissions  sources.    Further,  it  provides  a  consistent  method  for  deriving  emissions,  independent  of  source  type  and  geopolitical  borders.  We  find  that  of  the500  or  so  large  sources  in  our  inventory,  nearly40  are  notcaptured  in  leading  conventional  inventories.  These  missing  sources  are  scattered  throughout  the  developing  world  (e.g.,  over  a  third  are  clustered  around  the  Persian  Gulf)  and  add  up  to  roughly  6–12%  of  the  global  anthropogenic  total.    This  method  can  be  used  for  other  short-­‐lived  pollutants  such  as  nitrogen  oxides,  particulate  matter,  and  ammonia.

The  next  generation  of  instruments  will  enable  more  accurate  emissions  and  improved  detection  limits.    This  includes  the  TROPOspheric Monitoring  Instrument  (TROPOMI)  mission,  planned  for  launch  on  ESA’s  Sentinel  5  Precursor  (S5P)  satellite  in  2016,  and  later  on  the  geostationary  consteallation of  satellites:    NASA’s  first  EV-­‐I  Tropospheric  emissions:  monitoring  of  pollution  (TEMPO)  over  North  America,  http://tempo.si.edu,  over  Europe  (ESA’s  and  Copernicus  Sentinel  4  UVN  )  and  East  Asia  (Geostationary  Environment  Monitoring  Spectrometer  (GEMS)  on  board  the  GeoKOMPSAT satellite).