75
22. november 2014 PROMUSA MUSIK I KROPPEN OG HJERNEN En introduktion Erik Christensen [email protected] http://www.mt-phd.aau.dk/phd-theses/ 1 1

22. november 2014 PROMUSA

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

22. november 2014PROMUSA

MUSIK I KROPPEN OG HJERNENEn introduktion

Erik Christensen

[email protected] http://www.mt-phd.aau.dk/phd-theses/

1

1

9OVERBLIK1. Musik aktiverer hele hjernen - Musikterapi og neurovidenskab (1) 2. Tre niveauer: Hjernestamme, Thalamus og Cortex - MT og neurovidenskab (2) 3. Musik, lystfølelse og belønning - MT og neurovidenskab (3)4. Musikkens puls - MT og neurovidenskab (4)5. Musikkens bevægelse6. Cortex: Førbevidst og bevidst respons på musik7. Musikalsk hukommelse8. Hjernens to hemisfærer - MT og neurovidenskab (5) 9. Tangohjernen

2

2

MUSIK

Arvo Pärt: Spiegel im Spiegel (1978)Mozart: Requiem - Lacrimosa (1791)Toru Takemitsu: November Steps (1967)

Bambusgamelan fra Bali - Jegog (1991)Jelly Roll Morton: Black Bottom Stomp (1926) Damian Bolotin: Tango Escualo

Witold Lutoslawski: Livre pour orchestre (1968)Gregoriansk sang: Gloria in excelsis DeoAstor Piazzolla: Adios Nonino, live-optagelse (1989)

3

3

1. MUSIK AKTIVERER (næsten) HELE HJERNEN

Det er værd at påpege, at musik ikke kun er dybt sammenknyttet med det auditive system, men at musik også engagerer næsten ethvert andet neuralt system og enhver anden kognitiv funktion:

motoriskmultisensoriskhukommelseopmærksomhedemotion

Kraus, Strait & Zatorre (2014:1) Hearing Research special issue: A window into the hearing brain

4

4

1.1 Hvordan påvirker det hjernen at spille et instrument?

https://www.youtube.com/watch?feature=player_embedded&v=R0JKCYZ8hng

http://ed.ted.com/lessons/how-playing-an-instrument-benefits-your-brain-anita-collins!

eller

5

6

MUSIKTERAPI OG NEUROVIDENSKAB (1)Stefan Koelsch

Seks faktorer er relevante for effekten af musikterapi. Musik modulerer

Opmærksomhed Emotioner Kognition Adfærd Kommunikation Perception Koelsch (2009). A Neuroscientific Perspective on Music Therapy; Koelsch et al. 2010 Altenmüller & Schlaug 2013

6

7

MT OG MEUROVIDENSKAB:NEUROREHABILITERING

Teppo Särkämö (2008)Musiklytning fremmer rehabilitering

efter hjerneblødning

7

8

Neurorehabilitering efter hjerneblødningTeppo Särkämö og kolleger (2008)

RCT- study (Randomized Controlled Trial)eliminerer fejlkilder

Tre grupper à 20 patienter1. Sædvanlig behandling2. Sædvanlig behandling + lydbøger3. Sædvanlig behandling + selvvalgt musik

Lytning: minimum en time dagligt i 2 måneder

8

9

Teppo Särkämös resultater:

1) Musiklyttegruppen forbedrede deres opmærksomhed og verbale hukommelse bedre end de to andre grupper

2) Musiklyttegruppen oplevede mindre depression og forvirring end de to andre grupper

Särkämö et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke

9

10

2. TRE NIVEAUER:

CORTEX

THALAMUS

HJERNESTAMME

10

11

Cortex

Thalamus

Hjernestamme

2.1 Tre niveauer:

11

2.2 HJERNESTAMMENbehandler information der er nødvendig for at repræsentere kroppen og kontrollere dens liv

THALAMUSvideresender signaler fra hjernestammen

til vidtstrakte områder i CORTEXog TILBAGE IGEN

12

12

13

Kraus et al. (2009, 2011)http://www.soc.northwestern.edu/brainvolts

2.3 Musiklytning:intensitet, tonehøjde, klangfarve og timingregistreres i HJERNESTAMMEN

Musik - Arvo Pärt: Spiegel im Spiegel

13

x

14

Koelsch 2011

Thalamus (5)

Auditiv Cortex (6)

Hjernestamme (4) (2)

(1)

2.4 AUDITIVENERVEBANER

14

15

(6) Auditiv Cortex

(5) Thalamus: MGB

Hjernestammen: (4) Inferior Colliculus(3) Lateral Lemniscus (2) Superior Olivary Complex

(1) Cochlear Nuclei

2.5 Auditive nervebaner skematisk: opad (sort) og nedad (rød)

Christensen 2012:125-129

Bemærk de to tykke sorte pile. Den auditive information deles i to strømme: en der fortæller om lydens karakteristiske egenskaber,og en der fortæller om lydens bevægelse og rumlige placering.

15

16

2.6 CORTEX Forrest : Bevægelse. Bagest: Sansning

centralfure

lateralfure

16

17

2.7 MUSIK INVOLVERER

lytning, følelse, bevægelse, koordination, hukommelse, forventning

sanseintegrationopmærksomhedforberedelse og koordinering af bevægelseemotionel respons

kropsreaktioner: hjerteslag, åndedræt, svedproduktion

Altenmüller & Schlaug 2012:12

17

18

Motor cortex Premotor cortex (dorsal)

Premotor cortex (ventral)

Superior temporalgyrus/auditory cortex

Frontal cortex

Ear

Sound

PitchA percept according to which periodic sounds may be ordered from low to high. Musical pitch has complex properties related to scales, and is often represented as a helix. Perceived pitch most often corresponds to the fundamental frequency, even in its absence, owing to the presence of harmonics that are directly related to the fundamental frequency.

KinematicsParameters of movement through space without reference to forces (for example, direction, velocity and acceleration).

movement timing to several cortical and sub-cortical regions, including the cerebellum, basal ganglia and supplementary motor area (SMA). It has been proposed that the basal ganglia and possibly the SMA may be more important for interval timing at longer timescales (1 second and above), whereas the cerebellum may be more important for controlling motor timing at shorter timescales (millisecond)1,7.

Studies have shown that patients with cerebellar lesions have an impaired ability to complete perceptual and motor timing tasks8, and neuroimaging studies have shown cerebellar activity in relation to movement timing9,10. Although some studies have failed to sup-port a direct contribution of the cerebellum to timing11, current theories of cerebellar function suggest it may have a role in feedforward control or error correction — both of these functions would be relevant for timing. Several researchers have proposed that the cerebellum computes predictive models of movement that would include movement timing12,13, whereas others suggest that it is most important for online error correction

based on feedback, which would also contribute to opti-mization of timing14. The cerebellum may contribute to the precise control of movement trajectories, which are related to accurate timing,15,16, and it has been shown to have a role in the acquisition and integration of sensory information17. When subjects perform purely auditory perceptual tasks, neuroimaging studies consistently show cerebellar activity18.

Studies have suggested that the basal ganglia are also directly involved in movement timing. Patients with Parkinson’s disease, who have damage in the basal ganglia system, show impaired movement timing19. Furthermore, neuroimaging studies have shown that the basal ganglia are active in tasks that require timed finger tapping20,21. It has also been suggested that the basal ganglia may be involved in controlling specific motor parameters, such as force, which contribute to accurate timing22.

Many of these studies have examined very simple rhythms, usually requiring participants to tap a single finger to a constant beat. Although such tasks reveal important basic properties of perceptual and motor timing, it is not clear whether neural models based on these simple tasks are adequate for complex tasks like musical performance. Several recent experiments have examined perception and reproduction of more com-plex musical rhythms. These studies have shown greater involvement of the dorsal premotor cortex (dPMC), lateral cerebellar hemispheres and the prefrontal cor-tex23,24,25. It is not known whether these changes in brain activity are directly related to the temporal complexity of the rhythms or to other parameters such as sequence complexity, or the degree to which rhythmic structure allows subjects to predict and organize their motor per-formance. These results indicate that motor timing is not controlled by a single brain region, but by a network of regions that control specific parameters of movement and that depend on the relevant timescale of the rhyth-mic sequence. High-level control of sequence execution appears to involve the basal ganglia, PMC and SMA, whereas fine-grain correction of individual movements may be controlled by the cerebellum.

Sequencing. Motor sequencing has been explored in terms of either the ordering of individual movements, such as finger sequences for key presses, or the coor-dination of subcomponents of complex multi-joint movements. Several cortical and sub-cortical regions, including the basal ganglia, the SMA and the pre-SMA, the cerebellum, and the premotor and prefrontal cortices, have been implicated in the production and learning of motor sequences, but their specific contribu-tions and the way they work together are not yet clear. Neurophysiological studies in animals have demonstrated an interaction between the frontal cortex and basal ganglia during the learning of movement sequences26. Human neuroimaging studies have also emphasized the contribution of the basal ganglia for well-learned sequences27. It has been argued that the cerebellum is important for sequence learning and for the integration of individual movements into unified sequences27,28–31, whereas the pre-SMA and SMA have been shown to

Figure 1 | Auditory–motor interactions during musical performance. This figure illustrates the feedback and feedforward interactions that occur during music performance. As a musician plays an instrument, motor systems control the fine movements needed to produce sound. The sound is processed by auditory circuitry, which in turn is used to adjust motor output to achieve the desired effect. Output signals from premotor cortices are also thought to influence responses within the auditory cortex, even in the absence of sound, or prior to sound; conversely, motor representations are thought to be active even in the absence of movement on hearing sound. There is therefore a tight linkage between sensory and production mechanisms.

R E V I E W S

548 | JULY 2007 | VOLUME 8 www.nature.com/reviews/neuro

2.8 Musikudøvelse aktiverer sansning og bevægelse i cortex

Zatorre et al. 2007

18

19

MT OG NEUROVIDENSKAB (2) Genoptræning af armbevægelser efter hjerneblødning

(2) Action Research Arm Test – ARAT [30, 31].This test assesses pertinent functions of the upper extremitieswithin four subtests: grasp, grip, pinch, and gross movement, eachcontaining items arranged in hierarchical order or difficulty. Themaximum possible score is 57.

(3) Arm Paresis Score [32].This arm function test consists of seven simple tasks for the affectedhand alone and both hands together (opening of a jar of jam,drawing a line, picking up and releasing a 2† and 0.5† cylinder,drinking water from a glass, combing ones hair and opening/closinga clothes peg). For each successful task, a score of 1 is given.

(4) Box and Block Test - BBT [33].This test, consisting of a box with 2 compartments and 150 cubes,measures gross manual dexterity. The subject has to grasp one cubeat a time and move it from one compartment to the other. Thenumber of cubes transported within one minute is scored for theparetic and healthy extremity.

(5) Nine Hole Pegboard Test – 9HPT [34]Patients are asked to pick up nine rods (32 mm long, 9 mmdiameter) and place them into holes of 10 mm diameter as fast aspossible. The time needed for placing all nine rods is transformedto a point-score, which was used in subsequent statistical analysis(10 points for 5–15 seconds, 9 points for 15 and 25 seconds etc.)Zero points were given if the task could not be performed. Wedeveloped this score system based on our observations with pilotpatients to accommodate the data of those few patients who neededan exceedingly long time for the task (or even failed to perform)during the pre-test.There were no significant differences in pre-testing of motorfunctions between groups (see Table 2 for details).

j Conventional therapy

All participants, CG and MG, received standard therapies accordingto the instructions of the attending neurologists including indi-vidual physical therapy, individual occupational therapy usingdifferent materials and group therapies, each 30 minutes in dura-tion. MG patients received 27.4 units and CG patients 27.2 ofconventional therapies within the 3-week study period (duration ofeach unit 30 minutes; see Table 3 for details).

j Music-supported training

For 3 weeks, MG participants received 15 sessions, 30 minutes induration, administered individually, in addition to conventionaltreatment. The CG patients only received conventional therapy.

Two different input devices were used, a MIDI-piano and anelectronic drum set consisting of 8 pads, each with a 20 cmdiameter, arranged in front of the patient. The drum pads (des-ignated by numbers 1–8) were used to produce piano (G, A, B, C,D, E, F, G‘) rather than drum sounds. Similarly, the MIDI-pianowas arranged in such a way that only 8 white keys (G, A, B, C, D,E, F, G‘) could be played by the subject. This offers the advantageof an input device testing fine motor skills (piano) and anotherinput instrument testing gross motor skills (drum set), whilekeeping the output constant. The different modules are describedand the rules for progression from one level of difficulty to thenext are described below. The training was applied and monitoredby the first author. Each session was documented and recordedfor later analysis.

From experience gathered in a number of pilot patients, amodular training regime with stepwise increase of complexity wasdesigned.

Because of the different impairment patterns, some patientsreceived training exclusively on the drum pads (n = 3) or the piano(n = 12), while others were treated using both instruments (n = 5,15 minutes per instrument each session).

For drum training, patients were seated on a chair withoutarmrests or in their own wheelchair in front of the 8 drum pads(Fig. 1). The height and proximity of the drum pads were individ-ually adjustable, because at the beginning of the experiment, onlysome of the participants were able to hit the drums with their ex-tended arm, and some could only reach the lower drum pads (1–3–6–8). Each exercise was first played by the instructor (S.S.) and wassubsequently repeated by the patient. The instructor stood behindthe patient and supported the affected extremity if necessary.

Similarly, patients were seated in front of the MIDI-piano withthe instructor sitting next to them or standing behind them (on theaffected side). Again, an exercise was first demonstrated by theinstructor and then repeated by the patient. Patients started withthe affected upper extremity and then played with the affected andhealthy hand together.

The training was adaptable to the needs of the patients, in termsof the number of tones they were required to play, velocity, order,and limb used for playing. Furthermore, the degree of difficulty wassystematically increased using 10 set levels. Every patient startedthe exercises (between 8 and 12 per session) at the lowest level by

Table 2 Results of the pre-testing of motor functions between groups (Mean,SD)

Motor test/Parameter MG CG F(1,38)

FREQ Finger tapping 2.2 (1.8) 1.8 (1.6) 0.58, n.s.VMAX Finger tapping 171.1 (125) 133.9 (112.5) 1.00, n.s.NIV Finger tapping 2.4 (1.6) 2.5 (1.6) 0.26, n.s.FREQ Hand tapping 1.8 (1.6) 1.6 (1.4) 0.20, n.s.VMAX Hand tapping 92.7 (75.7) 103.1 (110.7) 0.12, n.s.NIV Hand tapping 2.5 (1.5) 2.7 (1.4) 0.81, n.s.ARAT 36.9 (22) 32.8 (24.2) 0.32, n.s.Arm Paresis Score 5.3 (2.3) 4.4 (2.9) 1.19, n.s.BBT 25 (15.7) 27.6 (21.3) 0.19, n.s.9HPT 4.9 (4.3) 4.2 (4.4) 0.26, n.s.

n.s. = non-significant

Table 3 Number of conventional therapies (group mean) for the affectedupper extremity within the 3-week study period (30 minutes per unit)

MG CG

Physical therapy individual 4.20 4.75Occupational therapy individual 7.20 7.18Fine motor activity group 8.30 8.17Arm group (perception, function, coordination) 7.74 7.10Total 27.44 27.20

Fig. 1 Illustration of the set-up. Eight drum pads, four for each arm, wereplaced in a semi circle, all within reach of the patient

Otte elektroniske trommer, fire til hver arm, placeres i halvcirkel foran patienten.De frembringer ikke trommelyde, men klavertoner G A H C D E F G. Den skadede arm og hånd trænes med øvelser af stigende sværhedsgrad.Patienten træner også på et klaviatur med de samme toner.

Sabine Schneider og kolleger (2007, 2010)

19

20

Sabine Schneiders undersøgelse: Tre grupper à 20 patienter1. Sædvanlig behandling (kontrolgruppe)2. Sædvanlig behandling + et motorisk træningsprogram 3. Sædvanlig behandling + træning med trommer og keyboard Grp. 2 og 3: 15 sessions á 30 minutter fordelt over 3 uger

Resultater: Musikunderstøttet træning (grp. 3) er mere effektiv end funktionel motorisk træning (grp. 2). Det gælder i særlig grad de finmotoriske funktioner, herunder fingerbevægelser.

Schneider et al. 2007, 2010

20

3.

MUSIK

LYSTFØLELSE

BELØNNING

21

21

22

3.1 RISLEN NED AD RYGGEN: “Chills”

Blood & Zatorre 2001; Menon & Levitin 2005; Panksepp & Trevarthen 2009; Grewe et al. 2009; Salimpoor et al. 2009, 2011; Kringelbach & Berridge (Eds.) 2010; Chanda & Levitin 2013

22

23

3.2 Musik der fremkalder “chills” eller “rislen ned ad ryggen”Nogle testpersoners selvvalgte uddrag af musik der fremkalder “chills” (1)

Canon in D Pachelbel ClassicalClair de Lune Debussy! ! ClassicalAdagio for Strings Barber! ! ClassicalRequiem–Lacrimosa Mozart! ! ClassicalSecond Symphony Beethoven! ! ClassicalNew World Symphony Dvorak! ! ClassicalMoonlight Sonata Beethoven! ! ClassicalSwan Lake Tchaikovsky!! ClassicalRomeo and Juliet Prokofiev!! ClassicalPiano Concerto no. 2 Shostakovich! ClassicalFifth Symphony Shostakovich! ClassicalSymphonie Fantastique Berlioz ClassicalPines of Rome Respighi Classical

Salimpoor et al. 2011

23

24

Musik der fremkalder “chills” eller “rislen ned ad ryggen”Nogle testpersones selvvalgte uddrag af musik der fremkalder “chills” (2)

Second Symphony Mahler ClassicalRhapsody on a Theme of Paganini Rachmaninoff! ClassicalMorceaux de Fantasies Rachmaninoff ClassicalElegy Elgar Classical

Claressence Holland JazzShine on You Crazy Diamond Pink Floyd! ! RockNyana! ! ! Tiesto! ! HouseHardstyle Disco! ! Biomehanika! ! TranceHorns of a Rabbit Do Make Say Think Post-RockLincolnshire Posy!! Grainger!! FolkJamedaran!! ! Alizadeh!! InternationalVicious Delicious! ! Infected Mushroom! Psychedelic Trance

Musik - Mozart: Requiem - Lacrimosa

24

25

3.3

Den neurovidenskabelige fremgangsmåde:Objektive fysiologiske målinger

korresponderer med subjektiv musikalsk oplevelse

Musik kan fremkalde oplevelser som kan måles i kroppen

Tre Målemetoder (1-2-3)

25

26

3.4 Metode (1): Målinger af “chill” respons i kroppen

Svedproduktion: Hudens evnetil at lede elektricitet

Åndedræt

Hjerterytme

26

27

3.5 Metode (2): PET scannningPositron Emission Tomography:

Billeddannelse under musiklytning

PET skaber billeder ved at måle regional blodgennemstrømning.Blodgennemstrømningen afspejler neuronernes aktivitet

27

28

3.6 Metode (3): fMRI scanningfunctional Magnetic Resonance Imaging:

Billeddannelse under musiklytning

fMRI skaber billeder ved at måle magnetiske forskelle mellem iltrigt og iltfattigt blod. Forskellene afspejler neuronernes aktivitet

28

29

3.7 LYSTFØLELSE i hjernen og kroppen

DOPAMIN udløses af musik under

FORVENTNINGog

OPLEVELSE af FØLELSESHØJDEPUNKT

Salimpoor, Zatorre et al. (2011) Resumé i Christensen 2012:130-132

29

30

3.8 Dopamin sprinkler områder i hjernen

30

3.9 HJERNENS BELØNNINGSSYSTEMER

Det cortikale kredsløb: cingulær cortex, orbitofrontal cortex, insula og amygdala.(Insula ligger skjult)Det subcortikale kredsløb: bl.a. nucleus accumbens og områder i hjernestammen. Morten Kringelbach: Den nydelsesfulde hjerne (2008)

Amygdala

31

32

Musik forbedrer helbred og velbefindende ved at aktivere neurokemiske systemer for

1. Belønning, motivation og lystfølelse 2. Stress og arousal 3. Immunitet 4. Social tilknytning.

Chanda & Levitin (2013). The Neurochemistry of Music.MacDonald, Kreutz & Mitchell (Eds. 2012). Music, Health and Wellbeing.Altenmüller & Schlaug 2013

MT OG NEUROVIDENSKAB (3) NEUROKEMISKE SYSTEMER

32

33

3.10

Musiklytning kan fremkalde lystfølelse

Men det er ikke hele historien

33

34

3.11 Musik kan kommunikere andet og mere end lystfølelse

Drama og sorg i Bachs Matthæuspassion Kaos og lys i Haydns SkabelsenFrygt i Dies Irae i Verdis Requiem Stærke dissonanser i Bartoks Koncert for Orkester Støjlyde af slagtøj og blæsere i Varèses HyperprismVoldsomhed i Debussys Præludium om Vestenvinden Jesu lidelse på korset i Messiaens Herrens fødsel Kaotiske og truende lyde i Xenakis’ MetastasisSurrealistiske sammenstød af følelser i Ligetis Aventures Skarpe, gennemtrængende lyde i japansk GagakuSamtidighed af støjlyd og tone i afrikanske instrumenterDen stærke forvrængede lyd i heavy rockKaos, lystfølelse og støj i John Zorns Forbidden Fruit (Christensen 2000:32-33)

Musik - Toru Takemitsu: November steps (1’10)

34

35

Toru Takemitsu: November Steps (1’10)for biwa, shakuhachi og orkester

Biwa Shakuhachi

MUSIK MED TONER OG STØJLYDE, Japan

35

36

Lillehjerne Basalganglier Hippocampus

CORTEX’S HJÆLPEFUNKTIONER

er forbundet med cortex ved loops via Thalamus (Edelman & Tononi 2000:45-46)

36

4. MUSIKKENS PULS: BASALGANGLIERNE

37

Grahn et al. 2007, 2009; Resumé i Christensen 2012:82-83

37

38

4.1. Timing i basalganglierneENTRAINMENT - kroppen trækkes med

Musik - Bambusgamelan

38

39

Musik - Jelly Roll Morton: Black Bottom Stomp

4.2. Timing i basalganglierne: PERCEPTION og FREMBRINGELSE af PULS

Lytning i kroppen

39

40

Damian Bolotin: Tango Escualo 3’00

4.3 ENTRAINMENT

Witek 2009; Witek et al. 2014

40

MT OG NEUROVIDENSKAB (4)Rytmisk Auditiv Stimulation (RAS)

Genoptræning af gangfunktion hos patienter med Parkinsons sygdom eller hjerneskade:Patienterne synkroniserer deres gang til musik med tydelig puls eller til en metronom

Michael H. Thaut (2005) Rhythm, Music, and the Brain pp. 137-149 Thaut (2010); Thaut & Abiru (2010); TUPF pp. 303-04

41

42

Parkinsons sygdom skyldes mangel på Dopamin i basalganglierne

42

5. MUSIKKENS BEVÆGELSE:LILLEHJERNEN og MOTOR CORTEX

43

Janata & Grafton 2003; Levitin 2006; Schmahmann 2010

43

44

5. 1 Musikkens bevægelse: Lillehjernen er aktiv

Musik - Lutoslawski: Livre pour orchestre

44

45

5.2 Musik der bevæger sig frit uden puls:

Selv om alle periodiske mønstre er rytmiske, så er ikke alle rytmiske mønstre periodiske.

Periodicitet er kun én type af rytmisk organisation.

Jeg vil definere rytme som et systematisk mønster af lyd karakteriseret af timing, accent og gruppering.

Bevidstheden er i stand til at organisere mønstre af tid uden reference til et taktslag.

Aniruddh D. Patel (2008) Music, Language and the Brain p. 96-98

45

46

Musik der bevæger sig frit uden puls:

Periodicitet er ikke nødvendig for at fremkalde forventninger om musikalsk tid.

Det er kun vigtigt, at lytteren er bekendt med tidsstrukturen, og at et element i tidsmønstret er forudsigeligt.

David Huron (2006) Sweet Anticipation. Music and the Psychology of Expectation p. 187

46

Leviti

47

5.3. Musikkens bevægelse

Musik - Gloria in excelsis Deo

Forarbejdning af musikalsk struktur foregår i et netværk, der inkluderer lillehjernen Levitin 2009:9

47

48

5.4 Lillehjernen indeholder flere neuroner end resten af hjernen

Jeremy Schmahmann 2010:246; De Smet et al. 2013

Lillehjernen er involveret i bevægelse, følelser, sprog og kognition

Lillehjernen registrerer og forudsiger sekventielle forløbLeggio et al 2011; Molinari & Leggio 2013

48

49

Selv i studier hvor forsøgs-personerne kun lytter til rytmer, bliver basalganglierne, lillehjernen, den øvre del af det præmotoriske område (PMA) og det supplerende motoriske område (SMA) ofte involveret

Zatorre et al. 2007:550

5.5 Musiklytning aktiverer motoriske områder i hjernen

PMA SMA

Lillehjerne

49

6.

CORTEX

Førbevidst og bevidstrespons på musik

50

50

51

6.1. Metode (4) EEG: Elektroencefalografi

EEG måler forandringer i elektrisk spænding forårsaget af aktivitet i hjernens neuroner

51

52

6.2. Metode (5) MEG: Magnetoencefalografi

MEG måler forandringer i magnetfelter fremkaldt af elektriske strømme i hjernen. MEG anvender meget sensitive magnetometre, kølet af flydende helium

52

6. 3. EEG og MEG-studier viser at

Hjernen responderer på toner forud for den bevidste opmærksomhed

53

Tervaniemi & Huotilainen 2003; Näätanen et al. 2007;Vuust et al. 2011

53

54

6.4. Cortex: Førbevidst respons på musik

MISMATCH NEGATIVITY (MMN)

Afvigelse (Mismatch)

EEG-måling

54

55

6.6. CORTEX: Bevidst respons på musik

ØVRE NERVEBANE meddelerlydens BEVÆGELSE: MELODI

NEDRE NERVEBANE meddelerIDENTIFIKATION af lyd: KLANGFARVE

55

56

6.7. CORTEX: Den øvre (dorsale) nervebane meddeler information om lydens BEVÆGELSE (Melodi)

Den nedre (ventrale) nervebane meddeler information om IDENTIFIKATION af lyd (Klangfarve)

Musik - Arvo Pärt: Spiegel im Spiegel

56

7. MUSIKALSK HUKOMMELSE:

57

Hippocampus konsoliderer hukommelse i samspil med mange områder spredt over hjernen

Edelman & Tononi 2000: 97-99; Damasio 2010: 130-153

57

58

7.1. Hippocampus

Hippocampus er involveret i hukommelse, følelser og oplevelse af rum

Koelsch 2010:134-135; Damasio 2010:130-153; Buckner 2010

58

59

7.2. MUSIKALSK HUKOMMELSE

“Den melodi der løber gennem dit hovede”

59

60

7.3. Musikalsk hukommelse spredt over hjernenaktiverer den auditive cortex

Zatorre & Halpern 2005

Parietal cortex

60

61

8. CORTEX har

TO HEMISFÆRER

61

62

8.1 Venstre og højre hemisfære

62

8.2. Den “klassiske” opfattelse af forskelle mellem højre og venstre auditiv cortex:

Venstre auditiv cortex er specialiseret i opfattelse af hurtige tidsforskelle, herunder opfattelse af sproglyde

Højre auditiv cortex er specialiseret i opfattelse af forskelle i lydspektre, herunder opfattelse af musikalske toner

Zatorre & Belin 2001; Zatorre & Zarate 2010:270-272

63

63

MT OG NEUROVIDENSKAB (5)Melodisk intonationsterapi (MIT)

Patienter der har mistet talens brug (afasi)på grund af en skade i venstre hemisfære kan ved lang tids træning udvikle en vis talefunktion i højre hemisfære. Træningen består i

1) at kombinere ord med en talemelodi2) og samtidig banke rytmisk med venstre hånd (hvis nerveforbindelser går til højre hemisfære)

Schlaug et al 2008; Altenmüller & Schlaug 2012, pp. 19-20; TUPF pp. 310-311.

64

8.4. De to hemisfærers funktioner påvirkes af musikalsk træning

Peter Vuust og kolleger: Test af musikeres og ikke-musikeres respons på rytmemønstre, der blev brudt på en umusikalsk måde:

Ikke-musikerne viste størst respons i højre hemisfæreMusikerne viste størst respons i venstre hemisfære

Vuust et al. 2005

65

8.5. De to hemisfærer ifølge Elkhonon Goldberg:

Højre hemisfære er specialiseret i undersøgelseaf noget nyt og ukendt

Venstre hemisfære er specialiseret i effektiv kontrolaf det velkendte

Goldberg 2005

66

MUSIK AKTIVERER (næsten) HELE HJERNENKraus, Strait & ZatorreDet er værd at påpege, at musik ikke kun er dybt sammenknyttet med det auditive system, men at musik også engagerer næsten ethvert andet neuralt system og enhver anden kognitiv funktion:

motoriskmultisensoriskhukommelseopmærksomhedemotion

Kraus, Strait & Zatorre (2014:1); Alain et al. (2014) “The Tango Brain” - Alluri, Toiviainen et al. (2012)

67

67

68

9. Aktivering af (næsten) hele hjernenMusik - Astor Piazzolla: Tango Adios Nonino

Alluri, Toiviainen et al. (2012) http://vimeo.com/32859237

68

69

http://news.sciencemag.org/sciencenow/2013/04/why-your-brain-loves-that-new-so.html

Happy new ears!

69

70

BØGERChristensen, E. (2012). Music Listening, Music Therapy, Phenomenology and Neuroscience. PhD Thesis, Aalborg University. Available at http://www.mt-phd.aau.dk/phd-theses/Damasio, A. (1999). The Feeling of What Happens. Damasio, A. (2010). Self Comes to Mind. Constructing the Conscious Brain. Daniels Beck, B. (2012). Guided Imagery and Music (GIM) with adults on sick leave suffering from work-related stress. PhD Thesis, Aalborg University. Edelman, G.M. & Tononi, G. (2000). A Universe of Consciousness.Fredens, Kjeld. (2012). Mennesket i hjernen. En grundbog i neuropædagogik. DanskGade, A. et al. (Red. 2009). Klinisk neuropsykologi. DanskHald, S. (2012) Music Therapy, Acquired Brain Injury and Interpersonal Communication Competencies. PhD Thesis, Aalborg University. Hjerneforum: Bogserie, se http://www.hjerneforum.dk/boeger DanskHuron, D. (2006) Sweet Anticipation.Koelsch, S. (2012). Brain and Music. Kringelbach, M.L. (2008). Den nydesesfulde hjerne. DanskLevitin, D. (2006). This is your Brain on Music.Manto, M. et al. (Eds. 2013). Handbook of the Cerebellum and Cerebellar Disorders.MacDonald, R.A.R. et al. (Eds. 2012). Music, Health, and Wellbeing.Malloch, S. & Trevarthen, C. (Eds. 2009). Communicative Musicality.Patel, A.D. (2008). Music, Language, and the Brain.Panksepp, J. (1998). Affective Neuroscience.Pfaff, D.W. (2006). Brain Arousal and Information Theory. Neural and Genetic Mechanisms. Thaut, M.H. (2005). Rhythm, Music, and the Brain. Vuust, Henriette B. (Red. 2013). Hjernen - fra celle til samfund. Dansk

70

71

Artikler og bogkapitler

Alain, C. et al. (2014). Turning down the noise: The benefit of musical training on the agingauditory brain. Hearing Research Vol. 308, 162-173. Alluri, V., Toiviainen, P., Jääskeläinen, I.P., Glerean, E., Sams, M. & Brattico, E. (2012). Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage 59, 3677– 3689. Alluri, V. et al. (2013). From Vivaldi to Beatles and back: Predicting lateralized brainresponses to music. NeuroImage 83, 627-636. Altenmüller, E. & Schlaug, G. (2012). Music, Brain, and Health: Biological Foundations of Music’s Health Effects. In MacDonald, R.A.R. et al. (Eds.) Music, Health, and Wellbeing, 12-24. Altenmüller, E. & Schlaug, G. (2013). Neurobiological Aspects of Neurologic Music Therapy.Music and Medicine 5 (4), 210-216. Blood, A.J. & Zatorre, R.J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. PNAS 98 (20),118118-11923. Buckner, R.L. (2010). The Role of the Hippocampus in Prediction and Imagination. Annual Review of Psychology 61, 27-48. Chanda, M.L. & Levitin, D.J. (2013). The neurochemistry of music. Trends in Cognitive Sciences 17(4), 179-193. Christensen, E. (2000): Music Precedes Language. Nordic Journal of Music Therapy 9 (2),32-35. De Smet, H.J. et al. (2013). The cerebellum: Its role in language and related cognitive and affective functions. Brain and Language 127, 334-342. Grahn, J.A. & Brett, M. (2007). Rhythm and Beat Perception in Motor Areas of the Brain. Journal of Cognitive Neuroscience 19 (5), 893–906.

71

72

Grahn, J.A. & Rowe, J.B. (2009). Feeling the Beat: Premotor and Striatal Interactions inMusicians and Nonmusicians during Beat Perception. The Journal of Neuroscience 29 (23),7540 –7548. Grewe, O., Kopiez, R., & Altenmüller, E. (2009). The Chill Parameter: Goose Bumps and Shivers as Promising Measures in Emotion Research. Music Perception 27 (1), 61-74. Janata, P. & Grafton, S. T. (2003). Swinging in the Brain: shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience 6 (7), 682-687. Koelsch, S. (2009). A Neuroscientific Perspective on Music Therapy. Annals of the New York Academy of Sciences 1169: 374–384. Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences 14 (3),131-137. Koelsch, S. et al. (2010). Music in the Treatment of Affective Disorders: An Exploratory Investigation of a New Method for Music-Therapeutic Research. Music Perception 27(4), 307-316 Koelsch, S. (2011). Toward a neural basis of music perception - a review and updated model. Frontiers in Psychology Vol. 2, Article 110, 1-20. Koelsch, S. & Stegemann, T. (2012). The Brain and Positive Biological Effects in Healthy and Clinical Populations. In MacDonald, R.A.R., Kreutz, G. & Mitchell, L. (Eds.) Music, Health, and Wellbeing. Oxford: Oxford University Press, 436-456. Kraus, N. (2011). Listening in on the listening brain. Physics Today 64(6), 40-45. Kraus et al. (2009). Experience-induced Malleability in Neural encoding of Pitch, Timbre, and Timing. Annals of the New York Academy of Sciences 1169, 543-557. Kraus, N., Strait, D.L. & Zatorre, R.J (Eds. February 2014). Music: A window into the hearing brain. Hearing Research Vol. 308, 1-174.

72

73

Levitin, D.J. (2009). The Neural Correlates of Temporal Structure in Music. Music and Medicine 1(1), 9-13 Leggio, M.G. et al. (2011). The neuropsychological profile of cerebellar damage: The sequencing hypothesis. Cortex 47, 137-144. Menon, V. & Levitin, D.J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage 28,175-184. Molinari, M & Leggio M.G. (2013). Cerebellar Sequencing for Cognitive Processing. In Manto, M. et al. (Eds.) Handbook of the Cerebellum and Cerebellar Disorders, 1701-1715. Näätänen, R. et al. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology 118, 2544–2590 Panksepp, J. (1995) The Emotional Sources of “Chills” Induced by Music. Music Perception 13 (2),171-207. Panksepp, J. & Trevarthen, C. (2009). The neuroscience of emotion in music. In Malloch, S. & Trevarthen, C. (Eds.) Communicative Musicality, 105-126. Salimpoor. V.N. et al. (2009). The Rewarding Aspects of Music Listening Are Related to Degree of Emotional Arousal. PLoS ONE 4(10). e7487. doi:10.1371/journal.pone.0007487 Salimpoor, V.N. et al. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience 14 (2), 257-264. Schmahmann, J.D. (2010). The Role of the Cerebellum in Cognition and Emotion. Neuropsychology Review 20:236–260. Schlaug et al. (2008). From Singing to speaking: Why singing may lead to recovery of expressive language function in patients with Broca’s aphasia. Music Perception 25 (4), 315-323. Schneider, S. et al. (2007). Using musical instruments to improve motor recovery skill following a stroke. Journal of Neurology 254, 1339-1346.

73

Schneider, S. et al. (2010). Music-Supported Training is More Efficient than Functional Motor Training for Recovery of Fine Motor Skills in Stroke Patients. Music Perception 27 (4), 271-280. Särkämö, T. et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 131, 866-876. Tervaniemi, M. & Huotilainen, M. (2003). The Promises of Change-Related Brain Potentials in Cognitive Neuroscience of Music. Annals of the New York Academy of Sciences 999, 29-39. Thaut, M. H. (2010). Neurologic Music Therapy in Cognitive Rehabilitation. Music Perception 27 (4), 281-285. Thaut, M.H. & Abiru, M. (2010). Rhythmic Auditory Stimulation in Rehabilitation of Movement Disorders. Music Perception 27 (4), 263-269. Vuust, P. et al. (2011). New fast mismatch negativity paradigm for determiningthe neural prerequisites for musical ability. Cortex 47, 1091-1098. Witek, M.A.G. (2009). Groove Experience: Emotional and Physiological Responses to Groove-Based Music. Proceedings of ESCOM 2009, University of Jyväskylä, Finland, 573-582.Retrieved 29 July 2012 from https://jyx.jyu.fi/dspace/handle/123456789/20138 Witek, M.A.G., Clarke, E.F., Wallentin, M., Kringelbach, M.L. & Vuust, P. (2014). Syncopation,Body-Movement and Pleasure in Groove Music. PLOS ONE 9(4). e94446. Zatorre. R.J. (2005). Music, the food of neuroscience? Nature 434, 312-315. Zatorre, R.J., & Halpern, A. (2005). Mental Concerts: Musical Imagery and Auditory Cortex. Neuron 47, 9-12. Zatorre, R.J. et al. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nature Reviews Neuroscience 8 (4), 494-521. Zatorre, R.J. & Zarate, J.M. (2012) . Cortical Processing of Music. In Poeppel, D et al. (Eds.) The Human Auditory Cortex, Springer Handbook of Auditory Research 43, 261-294.

74

74

75