2bFE1007F2-200809

Embed Size (px)

Citation preview

  • 8/13/2019 2bFE1007F2-200809

    1/29

    Part II:

    65

    Equations with Constant Coefficients

    Linear 2-nd order homogenous equations

    (basic case)

    Methods We Need to Learn:

    2

    1 22

    d y dya a y 0

    dxdx+ + =

    66

    Linear 2-nd order non-homogenous equations:Variation of parameters

    Undetermined coefficients (special cases)

    D-operator method

  • 8/13/2019 2bFE1007F2-200809

    2/29

    2

    1 22

    d y dya a y F(x)

    dxdx+ + =

    F(x) 0 : Non-homogeneous

    F(x) = 0 : Homogeneous

    The ODE is 'linear' even if a1, a2, ..., an are functions of x.

    Linear 2nd-order Homogeneous Eqns with Constant Coefficients :

    67

    This is because :

    degree of

    2

    2

    d y1

    dx=

    dy1

    dx=degree of

    degree of y = 1

    and a1, a2, ..., an are at most functions of x only.

    Linear Differential Operator (D-Operator)

    D f(x) : meansd

    f(x)dx

    D : Operation of differentiation w.r.t. x

    = =2

    2 d f(x)D f(x) D (Df(x))3

    3 )x(fd)x(fD =

    68

    )x(f2dx

    )x(df

    dx

    )x(fd)x(f)2DD(

    2

    22 +=+

    dxdx

    Linear D operator satisfies basic algebraic laws.

  • 8/13/2019 2bFE1007F2-200809

    3/29

    2 D2 + bD + c f = D r D r f

    (1) (D2 + D 2) f = (D + 2)(D 1) f

    Examples :

    69

    2

    c4bbr,

    2

    c4bbr

    2

    2

    2

    1

    =+

    =

    Linear 2nd-order Homogeneous Equation:

    (D2 + 2aD + b) y = 0 (1)

    Characteristic Equation : r2 + 2ar + b = 0

    (D2 + 2aD + b) = (D r1) (D r2)

    70

    1du

    r u 0dx

    =

    (D r1) u = 0

    1 2

    Let (D r2) y = u

    dur dx1u

    =

  • 8/13/2019 2bFE1007F2-200809

    4/29

    = 1x12rD c( er )y

    1r x12dy

    ri.e., = c ey

    = =1 11r x r xc u e e c e1 ln(u) r x c= +

    71

    Recall Equation (9):1

    y Qdx=

    2r x e=Integrating factor:

    =

    =

    =

    2 2 1

    2 1 2

    r x -r x r x1

    r x (r r )x1

    y ( e e c e dx

    e

    1 Qd

    c e

    x )

    dx

    Case 1 : r1 r2

    c

    72

    21 2

    y e e c

    r r

    = +

    1 2r x r x12

    1 2

    ce c e

    r r= +

    1 2r x r x3 2c e c e= +

  • 8/13/2019 2bFE1007F2-200809

    5/29

    1 2(r r )xe 1 =

    Case 2 : r1 = r2

    2 1 2r x (r r )x1y e c e dx

    =

    73

    2r x1 2e (c x c )= +

    = + 2r x1 2(c x c ) e

    2r x1e c dx=

    (1) Find the general solution of

    0y6dx

    dy5

    dx

    yd2

    2=++

    Example:

    74

    + + = = 2(r 5r 6) 0 r 2 , 3

    2x 3x1 2y c e c e

    = +

  • 8/13/2019 2bFE1007F2-200809

    6/29

    4x x=

    given that y(0) = 2 and y'(0) = 3.

    0y4dx

    dy3

    dx

    yd2

    2=

    (2) Find the solution of

    1 2( 4, 1 )r r= =

    75

    3 = y'(0) = 4 c1e40 c2e

    -0

    2 = y(0) = c1 + c2

    3 = 4 c1 c2

    2 = c1 + c2 ; 3 = 4 c1 c2

    1 21 11

    c c5 5

    = =

    4x x1 11y e e5 5

    = +

    76

    (3) Find the solution of

    + =23

    3 2

    y d y dy6 11 6y 0

    dxdx dx

    d

    3 2(r 6 r 11 r 6) 0 + =

  • 8/13/2019 2bFE1007F2-200809

    7/29

  • 8/13/2019 2bFE1007F2-200809

    8/29

    Case 3: For Imaginary Roots

    ( i )x ( i )x1 2y c e c e

    + = +

    i x i2

    x)x e c( ce e = +

    1 2 i ir r= + =

    79

    x1 2( ( )cos x + i sin x cos x - i sin x( ) )e c c

    = +

    x1 2 1 2( ( + ) cos x + i ( ) sin x) )e c c c c

    =

    x 3 4( cos x + sin x )e c c=

    ix ix

    2

    2

    d yy 0

    d x+ =

    1 2r i ; r - i= + =

    r i ( =0, =1)=

    2 1 0r + =(5) Find the solution of:

    80

    1 2c (co s x i s in x ) c (co s x i s in x )= + +

    ( )x 3 4e c cos x c s in x= +

    3 4c cos x c s in x= +

  • 8/13/2019 2bFE1007F2-200809

    9/29

    1x0

    1x0xy2

    dx

    dy3

    dx

    yd2

    2

    >

    =+

    1 y(0) 2, y '(0)= =

    (6) Solve the following initial value problem:

    81

    (a) Find y(x) in the interval 0 x 1.

    dy

    dx(b) Find y(x) for x > 1 such that y(x) and

    are continuous at x = 1.

    Solution:

    (a) 1x0

    1x0xy2'y3"y

    >

    =+

    and2

    1)0('y,2)0(y ==

    2

    82

    1 2 , = = =

    x 2xh 1 2y c e c e= +

    ' "p p pAssum e : y Ax B; y A; y 0= + = =

    Find particular solution py :

  • 8/13/2019 2bFE1007F2-200809

    10/29

    x)BAx(2A30 =++

    4

    3B,

    2

    1A ==

    2x2x1ph ecec43x

    21yyy +++=+=

    83

    x 2x1 21y ' c e 2c e2

    = + +

    Two arbitrary constants : &1c 2c

    21 cc4

    3)0(

    2

    12)0(y +++==

    = = + +1 21 1y '(0) c 2c2 2

    = = 1 27 9

    c , c2 4

    84

    = + +x 2x1 7 9 3

    y(x) x e e2 2 4 4

  • 8/13/2019 2bFE1007F2-200809

    11/29

    x 2xh 1 2y(x) y c e c e= = +

    (b) For x > 1, the given D.E. is homogeneous

    i.e. y" 3y' + 2y = 0

    and the complete solution is given by

    It is re uired that x and ' x are continuous at x = 1.

    85

    21 2y(1) c e c e for x 1

    = + >

    2

    for 0 x 11 7 9 3

    y(1) (1) e e2 2 4 4

    = + +

    Continuity of y(x) at 1 gives:

    )1(e4

    9e

    2

    7

    4

    5ecec 2221 +=+

    21 2y '(1) c e 2c e for x 1= + >

    x 2xh 1 2y(x) y c e c e for x 1= = + >

    86

    2 1 7

    9

    y'(1) e e fo r 0 x 12 2 2

    = +

    x 2x1 7 9y'(x) e e for 0 x 12 2 2

    = +

  • 8/13/2019 2bFE1007F2-200809

    12/29

  • 8/13/2019 2bFE1007F2-200809

    13/29

    Linear 2-nd order homogenous equations

    (basic case)

    Linear 2-nd order non-homogenous equations:

    ( )+ + = 2

    1 22d y dy

    a a y F x 0dxdx

    89

    Variation of parameters

    Undetermined coefficients (special cases)

    D-operator method

    = +

    = +

    1 2r x r x1 2

    1 1 2 2

    (i) y c e c e

    c u (x) c u (x)

    Since 1 2u (x) and u (x) are linearly independent of

    another, we have

    90

    + + = + + =

    + + = + + =

    2 " '1 11 1 1 12

    2" '2 2

    2 2 2 22

    d u dub cu 0 u bu cu 0

    dxdx

    d u dub cu 0 u bu cu 0

    dxdx

  • 8/13/2019 2bFE1007F2-200809

    14/29

    = +

    = =

    1 1

    1 1

    r x r x1 2

    r x r x1 2

    (ii) y c xe c e

    u xe ; u e

    + + = + + =" ' " '1 1 1 2 2 2u bu cu 0 ; u bu cu 0

    91

    x1 2

    x x1 2

    (iii) y e (c cos x c sin x)

    u e cos x ; u e sin x

    = +

    = =

    " ' " '1 1 1 2 2 2u bu cu 0 ; u bu cu 0+ + = + + =

    Linear 2nd Order Non-homogeneousEquations with Constant Coefficients :

    )x(Fbydx

    dya2

    dx

    yd2

    2=++ (2)

    The general (complete) solution of (2) is of the form:

    92

    0bydx

    dya2

    dx

    yd2

    2=++

    y = yh x + yp x

    where yh(x) is the general solution of

    yp(x) is a particular solution of (2).

  • 8/13/2019 2bFE1007F2-200809

    15/29

  • 8/13/2019 2bFE1007F2-200809

    16/29

    Also assume:

    + =1 1 2 2v '(x) u (x) v '(x) u (x) 0 (6.1)

    = +p 1 1 2 2y v u v u (6)

    95

    = + ++

    p 1 1 2 2 1 1 2 2

    0

    (v 'y ' v u ' v u ' u v ' u )

    = +1 1 2 2v u ' v u ' (7)

    = + + +p 1 1 2 2 1 1 2 2y " v u " v u " v 'u ' v 'u ' (8)

    Substituting (6), (7), (8) into (5):

    0

    1 1 1 1v u " 2au ' bu

    + + +

    0

    2 2 2 2v u " 2au ' bu +

    + +

    ' ' ' '

    96

    (6.1)

    (9)v1' u1' + v2' u2' = F(x)

    v1' u1 + v2' u2 = 0

  • 8/13/2019 2bFE1007F2-200809

    17/29

    121 2 1 2

    u F(x)v ' u u ' u ' u=

    21

    1 2 1 2

    u F(x)v '

    u u ' u ' u

    =

    Solve eqns

    (6.1)&(9) to obtain:

    97

    Since u1, u2 and F(x) are known, v1 and v2 can beobtained.

    yp = v1u1 + v2u2

    The particular solution of (5) is then given by :

    Exam le:2d y dy

    2 3 6+ =

    = (c1 + v1)u1 + (c2 + v2)u2

    y = c1u1 + c2u2 + v1u1 + v2u2

    The general solution of (5) is then given by :

    98

    31

    xx2u e u, e

    ==

    dxdx

    21 1

    12

    d u du2 3u 0

    dxdx+ =

    22 2

    22

    d u du2 3u 0

    dxdx+ =

  • 8/13/2019 2bFE1007F2-200809

    18/29

  • 8/13/2019 2bFE1007F2-200809

    19/29

    Undetermined coefficients (3 special F(x) functions):

    rxF(x) e :=

    F x sinkx coskx :=

    Three different cases, depending on whether r is aroot of the characteristic equation.

    101

    Three different cases, depending on whether 0 isa root of the characteristic equation.

    2F(x) ax bx c := + +

    Two different cases, depending on whether ki is aroot of the characteristic equation.

    Undetermined Coefficient Method:

    Find a particular solution of

    x2

    2ey3

    dx

    yd=+

    Guess yp = A ex

    102

    xp e

    4

    1 y =

    xp

    x2p2

    e3A=3y,eAdx

    yd=

    4

    1=A

  • 8/13/2019 2bFE1007F2-200809

    20/29

    Assume: yp = A sin x

    " = A sin x ' = A cos x

    Example : Find a solution of

    y" 3y' 4y = 2 sin x

    by the undetermined coefficient method.

    103

    yp" =A sin x B cos x

    A sin x 3 A cos x 4 A sin x = 2 sin x

    No solution. Wrong Guess!!

    Try: yp = A sin x + B cos x yp' = A cos x B sin x

    17

    5A =

    17

    3B=

    (A + 3B 4A) sin x + (B 3A 4B) cos x = 2 sin x

    -5A + 3B = 2 ; -3A 5B = 0

    104

    2

    2

    d y9y 9x cos x

    dx+ =

    using the undetermined coefficient method.

    Example : Find a particular solution of

  • 8/13/2019 2bFE1007F2-200809

    21/29

  • 8/13/2019 2bFE1007F2-200809

    22/29

    Table 15.1The method of undetermined coefficients for selected equationsof the form : 2

    2

    d y dya by

    dxdx

    xF( )+ + =

    If F(x) hasa term thatis aconstantmulti le of

    And if yp

    107

    e rx r not a root of the characteristic eqn

    r a single root of the characteristiceqn

    r a double root of the characteristiceqn

    A erx

    A x erx

    A x2 erx

    sin kx,

    cos kx

    ki not a root of the characteristic

    eqn

    ki a root of the characteristic eqn

    B cos kx + C sin kx

    B x cos kx +C x sin kx

    Table 15.1

    The method of undetermined coefficients for selected equations ofthe form : 2

    2

    d y dya by

    dxdx

    xF( )+ + =

    If F(x) hasa term thatis aconstantmultiple of

    And if yp

    108

    ax2 + bx

    + c

    0 not a root of the characteristic eqn

    0 a single root of the characteristiceqn

    0 a double root of the characteristiceqn

    Dx + Ex + F

    (chosen to matchthe degree of ax2 +bx + c)

    Dx3 + Ex2 + Fx(degree 1 higherthan the degree ofax2 + bx + c)

    Dx4 + Ex3 + Fx2

    (degree 2 higherthan the degree ofax2 + bx + c)

  • 8/13/2019 2bFE1007F2-200809

    23/29

    2x

    23d y dy 2y e

    dxdx+ =(1) (r2 + r 2) = 0

    r1 = 2 , r2 = 12x x

    h 1 2; y c e c e= +

    xp

    3 y Ae=

    109

    2x

    22d y dy 2y e

    dxdx

    + =(2)

    r1 = 2 , r2 = 1

    2xpy A ex

    =

    2x xh 1 2; y c e c e

    = +

    Trial function : yp = A x2 ex

    2

    2xd y dy2 y e

    dxdx+ + =(3) (r2 + 2r +1) = 0

    r1 = 1 , r2 = 1 ; yh = ( c1+ c2x) ex

    110

    22

    d y y sin(x)dx

    + =(4) (r2 + 1) = 0

    r = i , = 1

    yh = c1 sin(x) + c2 cos(x) (1)

  • 8/13/2019 2bFE1007F2-200809

    24/29

  • 8/13/2019 2bFE1007F2-200809

    25/29

    )x3sin(8

    1yp =

    (2) + (3) = 8C1sin(3x) 8C2cos(3x) = sin(3x)

    8

    1C,0C 12 ==

    113

    1 21

    y sin(x) cos(x) sin(3x)8

    a a = +

    0dx

    yd2

    2=

    2

    223

    d yx

    dx

    x4 5+ +=

    F(x)

    (6)

    r2 = 0 r1 = 0, r2 = 0

    114

    Trial function:

    yp = Ax4 + Bx3 + Cx2

    yh

    = ( c1

    + c2x ) e x = c

    1+ c

    2x

  • 8/13/2019 2bFE1007F2-200809

    26/29

    6x5x4dx

    dy4

    dx

    yd 22

    2++=+(7)

    r1 = 0, r2 = 4 ,r2 + 4r = 0

    Trial function:yp = Ax

    3 + Bx2 + Cx

    115

    (8) Find the solution of

    0y16dx

    dy8

    dx

    yd2

    2=++

    for which y(2) = 3e8 and y'(2) = 10e8

    The general solution (i.e. homogeneous) is

    r2 + 8r + 16 = 0 r = 4, 4

    4x 4xx1 2y c e c e = +

    = = +8 8 8e e1 2y(2) 3e c c

    116

    = = +8 8 8 81 2 2y '(2) 10e 4c e 4c 2e c e

    = +1 2

    c c

    = +1 210 4c 7c

    1 2 c 1, c 2= =4x 4xy e 2xe = +

  • 8/13/2019 2bFE1007F2-200809

    27/29

    ,)x(ty)x(rdx

    dy)x(r

    dx

    yd1212

    2=++

    =2d y dy

    and y2(x) is a solution of

    (9) If y1(x) is a solution of

    117

    2,

    dxdx

    + + =2

    1 2 1 22

    d y dyr (x) r (x)y t (x) +t (x) .

    dxdx

    prove that y3(x) = y1(x) + y2(x) is a solution of

    )x(ty)x(rdx

    dy)x(r

    dx

    yd112

    112

    12

    =++

    dd2

    y2(x) is a solution

    Solution : y1(x) is a solution

    118

    xyxr

    dx

    xr

    dx2221

    2

    =++

    If y3(x) = y2(x) + y1(x)

    dx

    dy

    dx

    dy

    dx

    dy 213 +=then:22

    2

    21

    2

    23

    2

    dx

    yd

    dx

    yd

    dx

    yd+=and

  • 8/13/2019 2bFE1007F2-200809

    28/29

    323

    123

    2y)x(r

    dx

    dy)x(r

    dx

    yd ++

    = + + + +

    21 1

    1 2 1

    2

    22

    2 2

    2

    d y dd y dy

    y

    r (x) r (x)+ (ydx dxdxx yd )

    119

    1 2

    y3 = y1 + y2 is a solution of

    )x(t)x(ty)x(rdx

    dy)x(r

    dx

    yd

    21212

    2+=++ (proved).

    2

    2

    d y dy2 3y 6 7sinx

    dxdx+ = + (i)

    2d d

    is given by the solution of

    (10) The solution of:

    120

    2

    ydxdx

    + =

    2

    2

    d y dy2 3y 7sinx

    dxdx+ =

    plus the solution of

    (iii)

  • 8/13/2019 2bFE1007F2-200809

    29/29

    3x x3 4

    7 7y c e c e sin x cos x= +

    The solution of (iii) is

    The solution of (ii) is

    3x x1 2y c e c e 2

    = +

    121

    3x x5 6

    7 7y c e c e sin x cos x

    5 102= +

    The solution of (i) is therefore

    Linear 2-nd order homogenous equations

    (basic problem: three different cases incharacteristic eqns. )

    Linear 2-nd order non-homogenous equations(general solution for the corresponding homogenous

    Summary of Part II:

    equat on p us part cu ar so ut on :

    Method for calculating particular solution:

    Variation of parameters

    Undetermined coefficients (special cases)

    D-operator method (special cases, to bedi d l )