75
3. 2 网网网网 网网网网 网网 网网网网网网 网网网网网网网网网网 网网网网网网网网网网

3. 2 网架结构

  • Upload
    zoie

  • View
    116

  • Download
    4

Embed Size (px)

DESCRIPTION

3. 2 网架结构. 内容提示: 概述 网架结构选型 网架结构的计算与分析 网架结构的设计与构造. 上弦杆. 下弦杆. 斜腹杆. 中间节点. 支座节点. 3.1 概 述. 网架结构通常指的是平板网架,它是由按一定规律布置的杆件,通过节点连接而形成平板状的空间桁架( Space Truss )结构 。. 返回第二章. 网架结构具有如下特点: ( 1 )可实现的跨度大 ; ( 2 )经济 ; ( 3 )安全可靠 ; ( 4 )抗震性能好 ; ( 5 )适应性强 ; ( 6 )制作、安装方便。 - PowerPoint PPT Presentation

Citation preview

Page 1: 3. 2   网架结构

3. 2 网架结构内容提示:概述网架结构选型网架结构的计算与分析网架结构的设计与构造

Page 2: 3. 2   网架结构

3.1 概 述 网架结构通常指的是平板网架,它是由按

一定规律布置的杆件,通过节点连接而形成平板状的空间桁架( Space Truss )结构。

上弦杆

下弦杆

斜腹杆

中间节点

支座节点

Page 3: 3. 2   网架结构

网架结构具有如下特点: ( 1 )可实现的跨度大 ; ( 2 )经济 ; ( 3 )

安全可靠 ; ( 4 )抗震性能好 ; ( 5 )适应性强 ; ( 6 )制作、安装方便。

网架结构的缺点:节点耗钢量大,网架屋面材料的选用还受到某些条件的限制,制造、施工费用较高等。

返回第二章

Page 4: 3. 2   网架结构

3.2.2 网架结构选型3.2.2.1 网架结构的分类 按网架本身的构造分类 按建造材料分类 按支承情况分类 按组成方式不同分类:交叉桁架体系网架、三角

锥体系网架、四角锥体系网架和六角锥体系网架。

Page 5: 3. 2   网架结构

3.2.2 .2 网架结构的形式 1 .交叉桁架系网架

两向正交正放网架

Page 6: 3. 2   网架结构

Page 7: 3. 2   网架结构

2 .三角锥体系网架

三角锥网

架角锥网架

蜂窝形三

网架Ⅰ型

抽空三角

锥 网架Ⅱ型

抽空三角

Page 8: 3. 2   网架结构

3 .四角锥体系网架 正放四角锥网

架 边边相连

斜放四角锥网

架 顶顶相连

Page 9: 3. 2   网架结构

正放抽空四角锥网架 棋盘形四角锥网架

星形四角锥网架

Page 10: 3. 2   网架结构

4 .六角锥体系网架

六角锥网架

Page 11: 3. 2   网架结构

2.2.3 网架结构的选型

1 .周边支承网架的 结构选型与工程实例

上海体育馆

Page 12: 3. 2   网架结构

2 .三边支承网架的结构选型与工程实例

广州白云机场机库

屋盖

Page 13: 3. 2   网架结构

3 .点支承网架的结构选型与工程实例

美国芝加哥国会大厅网架结构

Page 14: 3. 2   网架结构

4.网架结构的主要几何尺寸 ( 1 )网架高度( h ) 跨高比 (10~14) ( 混凝土 ) (13~17)-0.03L ( 2 )上弦平面网格尺寸( s ) 重屋面 : (2~4)+0.2L [(6~8)+0.08L] 轻屋面 : (6~8)+0.07L (3) 挠度要求和屋面排水 L/250~L/300 ( 屋面排水 3~5%)

Page 15: 3. 2   网架结构

3.2.3 网架结构的计算要点 3.2.3.1 荷载与作用 1 .永久荷载( 1 )自重( 2 )屋面( 3 )吊顶 (4) 设备管道2 .可变荷载( 1 )屋面活载( 2 )屋面雪荷载( 3 )风荷载 (4) 积灰荷载 (5) 吊车荷载3. 地震作用 水平 , 竖向4. 温度应力

Page 16: 3. 2   网架结构

3.2.4 网架内力计算方法 计算模型 --- 结点为铰接 1. 空间桁架位移法 2. 交叉梁系差分法 3. 拟夹层板法 4. 假想弯矩法

边界条件及对称性的利用

Page 17: 3. 2   网架结构

3.2.5 网架结构的设计与构造 3.2.5.1 网架结构的杆件设计 1 .杆件材料和截面形式 钢材品种 : Q235 钢和 Q345 钢。 截面形式 : 圆钢管、单角钢、双角钢、 H 型钢和方钢管

等。 2 .杆件截面尺寸 截面的最小尺寸 : 角钢 : L50×3 钢管 : φ48×2 。 常用钢管规格 : φ48×3.5 、 φ60×3.5 、 φ75.5×3.75 、 φ89×4 、 φ108×

6 、 φ114×4 、 φ133×8 、 φ159×10 、 φ168×12 、 φ180×14

Page 18: 3. 2   网架结构

选杆规格统一的问题 小跨度网架 :2 ~ 3 种 大中跨度网架 : 6 ~ 7 种 , 一般不超过 8 种。 3 .杆件的计算长度和长细比限值( 1 )网架杆件的计算长度 l0

杆件

节点

螺栓球 焊接空心球 板节点

弦杆及支座腹杆 l 0.9 l l

腹杆 l 0.8 l 0.8 l

Page 19: 3. 2   网架结构

( 2 )网架杆件的长细比限值

1 )受压杆件 180

2 )受拉杆件 ① 一般杆件 400

② 支座附近杆件 300

③直接承受动力荷载杆件 250

Page 20: 3. 2   网架结构

3.2.5.2 网架结构的节点设计及构造 1 .焊接钢板节点 焊接钢板节点是在平面桁架钢板节点的基础上发展起来的一种网架节点形式。其主要优点是刚度较大,造价较低,制作时不需要大量机械加工,是一种便于就地制作的节点型式。缺点是现场焊接量大,且仰焊、立焊占一定的比例,需要采取措施控制焊接变形和节点偏心。它主要用于网架杆件为两个角钢组成的 T 形截面或十字形截面的两向交叉网架或四角锥体网架。

Page 21: 3. 2   网架结构

2 .焊接空心球节点 ( 1 )特点和适用范围 焊接空心球节点( Hollow spherical nodes )是目前在国内得到广泛应用的一种节点形式,约占已建成网架工程 50%左右。这种节点是一种空心球体 , 它是将两块圆钢板经热压或冷压(常用前者)成两个半球壳后再对焊而成。空心球的钢材品种宜采用 Q235 钢和Q345 钢制作。

由于球体为各向同性,钢管杆件与空心球的配合不会产生偏心,因此 ,焊接空心球节点适应性强,尤其对三向网架、三角锥网架和六角锥网架更加适宜。

Page 22: 3. 2   网架结构
Page 23: 3. 2   网架结构

( 2 )焊接空心球的构造 焊接空心球按构造可分为两类: 不加肋空心球和加肋空心球。 当球直径≥ 300mm ,且杆件内力较大需要提高空心球承载能力要求时,可采用加肋空心球。加肋空心球的承载力比不加肋空心球高约 15% ~ 30% 。

加肋空心球的肋板厚度不应小于球壁厚度,通常可取为与空心球壁厚相同。

肋板可用平台或凸台,采用凸台时,其高度不得大于1mm ,而且应使内力较大的杆件位于肋板平面内。

Page 24: 3. 2   网架结构

环形加劲肋板③

球体

环形加劲肋板

球体①

②③球体

环形加劲肋板

球体

球体

-

空心球构造剖示图

Page 25: 3. 2   网架结构

( 2 )空心球尺寸的估算方法 空心球尺寸主要包括空心球外径和壁厚。 1 )外径( D ) 空心球体外径主要是由构造要求确定,通常取

钢管外径最大值的 2倍以上,且应使连接于同一球节点上的各相邻杆件之间球面焊缝空隙一般不小于 10mm 。为保证这一焊缝空隙,空心球直径可初步按下式估算:

Page 26: 3. 2   网架结构

图 2.46 空心球直径估算

Page 27: 3. 2   网架结构

式中: θ—汇集于球节点任意两相邻钢管之间的 夹角(弧度),一般不小于 35°; a— 不小于 10mm ,一般取 a=15mm或 20mm; d1 、 d2— 组成 θ 角的钢管的外径, mm; D— 空心球的外径, mm 。

21 2 dad

D

Page 28: 3. 2   网架结构

2 )壁厚( t ) 空心球的壁厚应同时满足以下三个条件: ①D/t=25 ~ 45; ②t/δmax=1.2 ~ 2.0 (这里 δmax 为节点所连接钢

管杆件中的最大壁厚); ③tmin≥4mm (其中 tmin 为空心球最小壁厚尺

寸)。

Page 29: 3. 2   网架结构

( 3 )焊接空心球的承载力验算

当空心球直径为 120 ~ 500mm时 ,其承载力验可按下式计算:

1 )受压空心球

式中: D— 空心球外径( mm ); t — 空心球壁厚( mm ) ηc— 加肋空心球承载力提高系数, 不加肋时 ηc =1.0, 加肋时 ηc =1.4; [Nc]— 受压空心球的承载力设计值 , 单位为 N 。

)3.13400(][22

D

dttdN cc

Page 30: 3. 2   网架结构

2 )受拉空心球

式中: t — 空心球壁厚( mm ); d—钢管外径( mm ); f — 钢材抗拉强度设计值( N/mm2 ); ηt—加肋空心球承载力提高系数; 不加肋时 ηt =1.0, 加肋时 ηt =1.1; [Nt]— 空心球的抗拉承载力设计值 , 单位为 N 。

ftdN tt 55.0][

Page 31: 3. 2   网架结构

按下式进行验算:

][N

][

ttmax

cmaxc

N

NN

一般抗压承载力起控制作用。如何提高焊接空心球的抗压承载力 ?

Page 32: 3. 2   网架结构

球内灌浆 钢管穿通

加平行双肋 十字肋

Page 33: 3. 2   网架结构

( 4 )空心球与杆件连接的构造与计算

1 )对接焊缝的连接构造 中大跨度网架,应采用符合构造要求的完全焊透的坡口对接焊缝。

质量标准应符合《钢结构工程施工质量验收规范》( GB50205-2001 )规定的二级焊缝的要求。

探伤:射线( δ≤8mm )与超声波 一级焊缝 100%;二级焊缝 20% 对符合构造要求的完全焊透的坡口对接焊缝,

可视焊缝与母材等强度,而不必进行验算。

Page 34: 3. 2   网架结构

图 2.48 增设短衬管连接图示

Page 35: 3. 2   网架结构

对小跨网架 ,杆件与空心球的连接 ,可用全周角焊缝连接。构造要求: 此时焊脚尺寸 hf 应符合以下要求: ①当 δ≤4mm 时 ,hf≤1.5δ且 hf≥4mm; ②当 δ> 4mm 时 ,hf≤1.2δ且 hf≥6mm 。 ( δ—与空心球相连圆钢管的 壁厚)计算: 按等强度条件确定焊脚尺寸 hf

2 )角焊缝连接的构造与计算

wffd

Afh

7.0f

Page 36: 3. 2   网架结构

式中: A—被连接圆钢管杆件的截面面积( mm2 ) f —杆件所用钢材的抗拉强度设计值( N/mm

2 ) d —被连接圆钢管杆件的直径( mm ) —角焊缝的抗拉强度设计值( N/mm2 )

wff

Page 37: 3. 2   网架结构

( 5 )焊接空心球节点设计步骤 1 )估算空心球直径; 2 )按构造要求确定空心球壁厚; 3 )按公式核算空心球的承载能力; 4 )进行杆件与空心球连接的设计。

为简化施工,需将外径相近的空 心球进行统一规格。

Page 38: 3. 2   网架结构

( 6)例题 某四角锥网架焊接空心球下弦中间节点的设计。己知:

钢球及杆件所用材料均为 Q235,钢焊条为 E43××型焊条 , 手工焊接。

59°

174.95kN

D =180球体

φ80×3.5 φ80×3.5

φ60×2 φ60×2

t= 6

137.76kN

19.18kN 15.01kN

Page 39: 3. 2   网架结构

1 )空心球的设计与计算① 空心球外径的确定己知腹杆与下弦杆轴线间的夹角为 :

本题可取空心球外径 =180mm 。 D≤300mm ,不需加肋。② 空心球壁厚的确定 根据构造要求 ,空心球壁厚应满足如下条件: t=(1/25 ~ 1/45)D=4 ~ 7.2mm; t =(1.2 ~ 2.0) =4.2 ~ 7.0mm;且 t ≥4mm;参照上述结果 , 可取 t =6mm 。

(mm) 155

18059

1028060Dmin

o59=

max

21 2 dad

D

Page 40: 3. 2   网架结构

③ 空心球承载力验算: 空心球的抗压承载力设计值:

空心球的抗拉承载力设计值:

kN)01.15(N(kN)42.134)180

606313606400(0.1][N max

22

c

-.

(174.95kN)N(kN)32. 1782158060.155.0][ maxt N

)3.13400(][22

D

dttdN cc

ftdN tt 55.0][

Page 41: 3. 2   网架结构

④空心球的连接焊缝: 空心球采用焊接成型 , 其连接焊缝采用完全焊 透的坡口对接焊缝。

⑤ 钢管杆件空心球连接焊缝的计算 下弦杆 \ 腹杆与空心球的连接,均采用完全焊透的坡口对接焊缝连接,此时视焊缝与母材等强度,不必进行焊缝强度计算。

注意:图纸的标注问题。

Page 42: 3. 2   网架结构

3 .螺栓球节点( 1 )特点和适用范围 螺栓球节点是一种设有螺纹孔的实体球节点特点 :

与焊接空心球节点相比, 螺栓球节点可避免现场焊接作业,具有运输和安装方便的优点。

适用 :

连接钢管杆件,还可连接其他形式的杆件。 但与焊接空心球节点相比 , 抗拉承载力低 (750kN),

不适用大跨度 .

Page 43: 3. 2   网架结构
Page 44: 3. 2   网架结构

( 2 )螺栓球节点的构成

Page 45: 3. 2   网架结构

( 3 )螺栓球节点的材料选用 钢球宜采用 45号钢; 高强度螺栓应为 10.9s级( M12 ~ M36 ) 或 9.8s级( M39 ~ M60 ); 销子一般采用高强冷拔钢丝制成; 封板、锥头和套筒宜采用 Q235 钢或 Q345 钢;

Page 46: 3. 2   网架结构

( 4 )螺栓球节点的设计

1 )螺栓球的直径 主要取决于高强度螺栓直径的大小、 高强度螺栓拧入球体的长度及两相 邻圆钢管杆件轴线夹角的大小。条件 1:

相邻套筒接触面不相碰

21

221

2 )cotsin

(D ddd

Page 47: 3. 2   网架结构

式中:

D——螺栓球直径( mm ); θ—— 两个螺栓之间的最小夹角( rad ); d1 、 d2——螺栓直径( mm ), d1> d2; η——套筒外接圆直径与螺栓直径的比值 ,

η=1.8 。

Page 48: 3. 2   网架结构

条件 2:

相邻螺栓不相碰的最小直径 D 为

21

2211

2 )2cotsin

(D dddd

ξ——螺栓伸进螺栓球长度与螺栓直径的比值; ξ =1.1

Page 49: 3. 2   网架结构

条件 3:

θ<30º,相邻两根杆件(管端为封板)不相碰

D1,D2--相邻两根杆件的外径θ--相邻两根杆件的夹角d1--相应 于D1杆件 所配螺栓直径 S-- 套筒长度螺栓球直径可取计算结果中的较大者。

Page 50: 3. 2   网架结构

2)高强度螺栓的设计 对于受拉杆件,高强度螺栓单独承受拉力,其直径大小应根据杆

件的拉力按下式来确定

式中: —高强度螺栓的拉力设计值( N ); —螺栓直径对承载力影响系数。 当螺栓直径小于 30mm时, = 1.0; 当螺栓直径大于等于 30mm时, = 0.93; —高强度螺栓经热处理后的抗拉强度设计值, 对 10.9s取为 430N/mm2;对 9.8s取为 385N/mm2; —高强度螺栓的有效截面面积( mm2 ),可按表 2.11 选取。当 螺栓上钻有销孔或键槽时,应取螺纹处或销孔键槽处二者中 的较小值。

bteff

bt fAN

btN

btf

effA

Page 51: 3. 2   网架结构

对于受压杆件,高强度螺栓不受力,可以不予验算,但由于构造上的原因,螺栓直径也不宜太小。可按其设计内力绝对值求得螺栓直径计算值后,减少 1~ 3个级差。

螺栓杆长度 Lb 由构造确定,其值为:

S---套筒长度

δ – 锥头或封板厚度

Page 52: 3. 2   网架结构

3 )套筒的设计 套筒作用 : 拧紧高强度螺栓和承受杆件传来的压

力。 套筒分侧面设滑槽和开螺钉孔两种形式。

销子或螺钉 : 直径可取螺栓直径的 0.16 ~ 0.18倍,不宜小于 3mm 。螺钉直径可采用 6 ~ 10mm 。

Page 53: 3. 2   网架结构

套筒长度的计算设滑槽的套筒,套筒长度( mm )可按下式计算:

式中: ds—销子直径( mm ); a1—套筒端部到滑槽端部距离( mm ); ξd0—螺栓伸入钢球的长度( mm ); a2—螺栓露出套筒长度,可预留 4 ~ 5mm , 但不应少于 2个丝扣。

12aal

420 sdada

Page 54: 3. 2   网架结构

套筒应进行承压验算,公式为

式中: Nc--- 所连杆件轴力设计值 f----- 套管钢材抗压强度设计值

An--- 套管在开槽处或螺栓孔处的净截面面积

Page 55: 3. 2   网架结构

4 )锥头或封板的设计 锥头或封板作用 : 连接钢管杆件和高强度螺栓,并承受杆件传来的拉力和压力。

管径较大(≥ 76mm )时应采用锥头,以避免相邻杆件碰撞,而管径较小(< 76mm )时可采用封板。

锥头或封板与杆件间的连接焊缝应与连接的钢管等强

Page 56: 3. 2   网架结构

封板厚度应按实际受力大小按下式计算决定

式中: N—被连接圆钢管杆件的轴心拉力; R— 近似取被连接圆钢管杆件的外圆半径; r— 高强度螺栓圆头与封板接触部分的中心至封板中 心(即螺栓孔中心)的距离,通常取 r=0.64d ; f—封板所用钢材的设计强度。 <规程 >规定,其封板厚度不宜小于钢管外径的 1/5 。

Rf

rRNt

)(2

Page 57: 3. 2   网架结构

锥头底板的厚度亦可近似地按上式计算确定;此时式中的半径 R宜近似地取锥头底板的外圆半径。通常锥头底板的厚度不宜小于钢管外径的 1/6 。

Page 58: 3. 2   网架结构

3.2.6 网架支座节点设计 一、设计原则 支座节点构造应受力明确、传力简捷、安全可靠,并应符合

计算中所采用的边界条件。 二、分类 受力:压力支座节点和拉力支座节点 构造 : 平板支座节点 单面弧形支座节点 板式橡胶支座节点 球铰压力支座节点 三、构造与设计

Page 59: 3. 2   网架结构

1 、平板支座节点 ( 压力 ) :适用于较小跨度网架

b

a

支座斜杆

上弦杆

锚栓

支座底板

空心球体 上弦杆

支座斜杆

锚栓

b

a

支座底板

Page 60: 3. 2   网架结构

网架杆件承受拉力锚栓

锚栓支承托座

支座底板

平板支座节点 ( 拉力 ) :

适用于较大跨度网架

Page 61: 3. 2   网架结构

1 )压力支座 : 与平面桁架的支座类似

底板的平面尺寸、厚度, 十字肋板的尺寸和焊缝等

2 )拉力支座

锚栓直径需要通过计算确定

一个拉力螺栓的有效截面面积应按下式计算

≥ eA ata

t

fn

R3.1

平板支座节点设计概要

Page 62: 3. 2   网架结构

2 、单面弧形支座节点 ( 压力 ) :适用于中小跨度网架

R

底部支承弧形板

底部支承

弧形板

1-1

网架支座上部支承板

空心球体

网架杆件

网架支座上部支承板11

锚栓

r

hchbe

L

b

锚栓

2 2 网架支座上部支承板

网架杆件

空心球体

网架支座上部支承板

2-2

底部支承

弧形板

底部支承弧形板

b

hchbe

rR

L

Page 63: 3. 2   网架结构

单面弧形拉力支座节点 ( 拉力 ) :

适用于中小跨度网架锚栓支承托座

承受拉力锚栓

网架杆件

网架支座上部的支承板

1-1

1 1

b

网架支座上部的支承板

底部支承弧形板

Page 64: 3. 2   网架结构

1 )弧形支座的平面尺寸 a1·b1≥R/f R-- 支座反力f--- 钢材(或铸钢)抗压强度设计值

2)弧形支座的厚度

弧形板中央截面最大弯距为

单面弧形支座设计概要

Page 65: 3. 2   网架结构

由强度条件得出

f----- 钢材(或铸钢)抗弯强度设计值

t1>>50mm

Page 66: 3. 2   网架结构

4 、板式橡胶支座节点: 适用于大中跨度网架

1锚栓 4φ24

橡胶板支座

1

网架支座上部支承板

网架杆件

空心球体

a

trs

a

网架支座上部支承板

1-1

b

Page 67: 3. 2   网架结构
Page 68: 3. 2   网架结构

氯丁橡胶( -25℃ )或天然橡胶( -40℃ )橡胶垫板的底面积 A

A≥Rmax/[σ]

A-----垫板承压面积

a,b---分别为橡胶垫板短边与长边

Rmax----荷载标准值在支座引起的反力

[б]---橡胶垫板的允许抗压强度

板式橡胶支座设计概要

Page 69: 3. 2   网架结构

橡胶垫板厚度

d0=2dt+ndi

0.2a≥d0≥1.43µ

1.43----- 为 tana =0.7 的倒数

Page 70: 3. 2   网架结构

3.2.7 网架结构的其他构造1) .网架结构的屋面构造

小立柱起坡 网架变高度

螺栓球节点屋面小立柱

Page 71: 3. 2   网架结构

2) .国外空间网格结构的部分节点构造

返回第二章

基于角锥体模数单元组件的 Pyramitec 体系

Page 72: 3. 2   网架结构

不列颠钢铁公司钢管部开发的 Nodus 节点

Page 73: 3. 2   网架结构

( e)英国伯明翰国家室内体育场 Mero周边节点的滑动支座

( f )渥太华 Fentiman公司推出的 Triodetic 体系

Page 74: 3. 2   网架结构

( g )大阪世博会象征性喜庆广场空间网架的标准球节点

( h )标准的 Orona SEO 空间网格节点 ( i )巴塞罗那近郊帕拉富斯运动俱乐部

连接剖面示意图 屋顶网 壳的 ORTZ 节点详图

Page 75: 3. 2   网架结构

( c )带有 18个螺纹孔的 Mero KK标准球节点 ( d )两端焊有圆锥头部件的 Mero标准杆件