4.DC1 Biasing - BJTs

Embed Size (px)

Citation preview

  • 8/7/2019 4.DC1 Biasing - BJTs

    1/89

    DC BiasingDC Biasing - - BJTsBJTs

    CHAPTER 4

  • 8/7/2019 4.DC1 Biasing - BJTs

    2/89

    IntroductionIntroductionBJTs amplifier requires a knowledge of both the DC analysis( large signal) and AC analysis ( small signal).F or a DC analysis a transistor is controlled by a number of

    factors including the range of possible operating points.

    Once the desired DC current and voltage levels have been

    defined, a network must be constructed that will establish thedesired operating point.

    BJT need to be operate in active region used as amplifier.

    The cutoff and saturation region used as a switches.

    F or the BJTs to be biased in its linear or active operating region the following must be true:

    a) BE junction forward biased, 0.6 or 0.7V

    b) BC junction reverse biased

  • 8/7/2019 4.DC1 Biasing - BJTs

    3/89

    IntroductionIntroduction

    DC bias analysis assume all capacitors are open cct.

    AC bias analysis :

    1) Neglecting all of DC sources

    2) Assume coupling capacitors are short cct. The effect of

    these capacitors is to set a lower cut-off frequency for the cct.

    3) Inspect the cct (replace BJTs with its small signal model).

    4) Solve for voltage and current transfer function and i/o and

    o/p impedances.F or transistor amplifiers the resulting DC current and voltageestablish an operating point that define the region that can beemployed for amplification process.

  • 8/7/2019 4.DC1 Biasing - BJTs

    4/89

    Slide 1

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    T ransistor Construction

    There are two types of transistors: pnp and npn -type.

    N ote : the labeling of the transistor:E - Emitter B - BaseC - Collector

  • 8/7/2019 4.DC1 Biasing - BJTs

    5/89

    Slide 2

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    T ransistor Operation

    With the external sources (V EE and V CC) in the polarities as shown:

    The E-B junction is forward-biased and the B-C junction is reverse biased.

  • 8/7/2019 4.DC1 Biasing - BJTs

    6/89

    Slide 3

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Currents in a T ransistor

    Note that IC is comprised of two currents:

    [Formula 3.1]

    [Formula 3.2]

    C III !

    COminorityCmajorityC III !

  • 8/7/2019 4.DC1 Biasing - BJTs

    7/89

    Slide 4

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Common Base Configuration

    The base is common to both input (emitter base) and output (collector base) of thetransistor.

  • 8/7/2019 4.DC1 Biasing - BJTs

    8/89

    Important basic relationships for a transistor:

    V BE =0.7V

    I E =( +1)I

    BI

    C

    I E = I C +I B

    I C = I B

    IntroductionIntroduction

  • 8/7/2019 4.DC1 Biasing - BJTs

    9/89

    Ope rating PointOpe rating PointF or transistor amplifiers the resulting dc current and voltage

    establish an operating point on the characteristics that define the

    region that will be employed for amplification of the applied

    signal.

    Operating point quiescent point or Q-point

    The biasing circuit can be designed to set the device operation at

    any of these points or others within the active region.

    The BJT device could be biased to operate outside the max

    limits, but the result of such operation would be shortening of thelifetime of the device or destruction of the device.

    The chosen Q-point often depends on the intended use of the

    circuit .

  • 8/7/2019 4.DC1 Biasing - BJTs

    10/89

    15

    18

    12

    9

    6

    3

    IC(mA)

    VCE(V)

    IB=60 uA

    10 20 30

    IB=50 uA

    IB=0 uA

    IB=40 uA

    IB=30 uA

    IB=20 uA

    IB=10 uA

    40

    A

    C

    B

    VCEsat

    PCmaxICmax

    VCEmaxCutoff

    Saturation

    Various o pe rating p oints within th e limits of o pe rationVarious o pe rating p oints within th e limits of o pe rationof a transistor of a transistor

  • 8/7/2019 4.DC1 Biasing - BJTs

    11/89

    Fixe dFixe d--Bias CircuitBias Circuit

    F or the dc analysis the network can be isolated from theindicated ac levels by replacing the capacitors with an open-circuit equivalent because the reactance of a capacitor for dc is

    The dc supply V cc can be separated into two supplies

  • 8/7/2019 4.DC1 Biasing - BJTs

    12/89

    Forward Bias of Bas eForward Bias of Bas e --Emitt e r Emitt e r

    W rite KVL equation inthe clockwise directionof the loop :

    +V CC IBRB V BE =0

    Solving the equation for the current IB results :

    B

    B

    V B V

    +

    +

    --

    IB

    V

    Base-emitter loop

    +

    -

    B

    BECCB

    R

    V-VI !

  • 8/7/2019 4.DC1 Biasing - BJTs

    13/89

    Coll e ctor Coll e ctor- -Emitt e r Loo pEmitt e r Loo pThe magnitude of the IC is related directly to IB through

    IC= IB ; IB=0

    Apply KVL in the clockwise directionaround the indicated close loop results:

    V CE + ICRC V CC =0V CE = V CC ICRC

    R ecall that :V CE = V C V E ; V E =ICRC

    In this case, V E = 0V, soV CE =V C

    C

    V CE

    V CC

    C

    C c

  • 8/7/2019 4.DC1 Biasing - BJTs

    14/89

    Exam p le 1Exam p le 1D etermine the f llowing f or the f ixed bias on f iguration.

    The transistor has a = 50

    a) I BQ and I CQ b) V CEQ c) V B and V C d) V BC

  • 8/7/2019 4.DC1 Biasing - BJTs

    15/89

    S olutionS olution

    biased.

    reverseisunction-BCthatindicatessignve-

    6.13 V83.67.0VVV)d

    V6.83VVV

    V0.7VV)c

    V83.6

    k 2.22.35m-12R I-VV) b

    m34.2u08.4750II

    u08.47k 240

    7.012

    R VV

    I)a

    CBBC

    CCEQCE

    BBE

    CCCCCEQ

    BQCQ

    B

    BECCBQ

    !!!

    !!!

    !!

    !

    !!

    !! F!

    !!

    !

  • 8/7/2019 4.DC1 Biasing - BJTs

    16/89

    Exam p le 2Exam p le 2D etermine the f ollowing f or the f ixed bias con f iguration.

    The transistor has a = 90a) IBQ and ICQ b) V CEQ c) V B d)V C e) V E

    C = .7kohm

    B

    C

    EV BE

    V CE

    V C C = 6 V

    IC

    IB

    B = 7 0 kohm

  • 8/7/2019 4.DC1 Biasing - BJTs

    17/89

    S olutionS olution

    V0V)e

    V8.17VVd)V

    V0.7VV)c

    V17.8

    k 7.22.93m-16

    R I-VV) b

    mA93.2u55.3290II

    uA55.32k 470

    7.016R

    VVI)a

    E

    CCEQCE

    BBE

    CCCCCEQ

    BQCQ

    B

    BECCBQ

    !

    !!!

    !!

    !

    !

    !

    !! F!

    !

    !

    !

  • 8/7/2019 4.DC1 Biasing - BJTs

    18/89

    Slide 7

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    3 Regions of Operation

    Active

    Operating range of the amplifier.

    Cutoff -When I B = 0-The amplifier is basically off. There is voltage but littlecurrent.- small collector leakage current- VCE = V CC

    Saturation- The amplifier is full on. There is little voltage but lots of

    current.- VCE SAT, base-collector junction become forward

    biased and IC cannot increase no further.- V CE SAT occur somewhere below the knee of the

    collector curve.

  • 8/7/2019 4.DC1 Biasing - BJTs

    19/89

    Transistor S aturationTransistor S aturation

    The term saturation is applied to any system where levels havereached their max values.F or a transistor operating in the saturation region, the current ismaximum value for a particular design.Saturation region are normally avoided because the B-C junction

    is no longer reverse-biased and the output amplified signal will be distorted.

    R C

    V CE =0V

    +

    -

    V CC

    ICsat

    R B+

    -V RC =V CC

    The sat ur at ion curren t f or the f ixed bias con f igur at ion is:

    ICsa t R C

    VCC

  • 8/7/2019 4.DC1 Biasing - BJTs

    20/89

    By refering to example 1 and the figure, determine the saturationlevel.

    Solution

    Exam p le 3Exam p le 3

    limit.thewithinoperatesisIthat theconcluded becan

    It.mA34.2Iin1exampleof designThe

    mA45.5k 2.212

    R V

    I

    CQ

    CQ

    C

    CCCsat

    !

    !!!

  • 8/7/2019 4.DC1 Biasing - BJTs

    21/89

    F ind the saturation current for the fixed-bias configuration of figure example 2.

    Solution

    limit.the

    withinoperatesisIthat theconcluded becan

    It.mA93.2Iin2exampleof designThe

    mA92.5k 7.2

    16R

    VI

    CQ

    CQ

    C

    CCCsat

    !

    !!!

    Exam p le 4Exam p le 4

  • 8/7/2019 4.DC1 Biasing - BJTs

    22/89

    LoadLoad- -Lin e AnalysisLin e AnalysisW e investigate how the network parameters define the possiblerange of Q-points and how the actual Q-point is determined.R efer to figure below (output loop) one straight line can be draw at output characteristics. This line is called load line .This line connecting each separate of Q-point.

    At any point along the load line, values of I B, I C and V CE can be picked off the graph.

    The process to plot the load line as follows:

  • 8/7/2019 4.DC1 Biasing - BJTs

    23/89

    Step 1:

    R efer to circuit, V CE =V CC I C R C (1)

    Choose I C =0 mA. Subtitute into (1), we get

    V CE =V CC (2) located at X axis

    Step 2:Choose V CE =0V and subtitute into (1), we get

    I C =V CC / R C (3) located at Y-axis

    Step 3:

    Joining two points defined by (2) + (3), we get straight line that can be drawn as F ig. 5.6.

    LoadLoad- -Lin e AnalysisLin e Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    24/89

    IC (m )

    V CE (V )

    Load lineV CC /R C

    IC = 0 m

    V CC

    IBQQ -pointV CE = 0 V

    F ig. 5.6

    LoadLoad- -Lin e AnalysisLin e Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    25/89

    IC(mA)

    VCE(V)

    VCC/R C

    VCC

    IBQ2

    Q-point

    Fig. 5.7:Movement of Q-point with increasinglevels of I B

    Q-point

    Q-point

    IBQ3

    IBQ1

    Cas e 1:

    Level IB changed by var ying the value of R B.

    Q oint moves up and down

    LoadLoad- -Lin e AnalysisLin e Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    26/89

    IC(m )

    V CE (V )

    VCC /R C1

    V CC

    IBQQ -point

    F ig. 5.8 : Eff ect o f increasing levels o f R C on theload line and Q -point

    Q -pointQ -point

    VCC /R C2

    VCC /R C3

    R C3 > R C2 > R C1

    Cas e 2:

    V CC f ixed and RC change the load line will shi f t as shown in Fig 5.8

    IB f ixed, the Q point will move as shown in the same f igure.

    LoadLoad- -Lin e AnalysisLin e Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    27/89

    IC(m )

    VCE (

    V)

    VCC 1/R C

    VCC 1

    IBQQ-point

    Fig. 5.9: Eff ect o f lo er values o f V CC on the load line and Q-point

    Q-point

    Q-point

    VCC 2/R C

    VCC 3/R C

    VCC 2VCC 3

    VCC1 > VCC2 > VCC3

    Cas e 3:

    RC f ixed and V CC varied, the load line shi f ts as shown in Fig. 5.9

  • 8/7/2019 4.DC1 Biasing - BJTs

    28/89

    Exam p le 5Exam p le 5G iven the load line of F ig. 5.10 and defined Q-point, determine therequired values of V CE , R C and R B for a fixed bias configuration.

    15

    18

    12

    9

    6

    3

    I C (m )

    V C E (V )

    I B = 60 u

    10 20 30

    I B = 50 u

    I B = 0 u

    I B = 40 u

    I B = 30 u

    I B = 20 u

    I B = 1 0 u

    40

    I C m ax

    F i . .1 0

    Q - p o i tIB=17 u A

  • 8/7/2019 4.DC1 Biasing - BJTs

    29/89

    S olutionS olution

    kohm2311

    177.040I

    VVR

    R V-V

    I

    kohm67.2m15

    40I

    VR

    0V .VatR

    VI

    m0IatV40VV

    B

    BECCB

    B

    BECCB

    C

    CCC

    CEC

    CCC

    CCCCE

    :2tep

    :1tep

    !

    Q!

    !

    !

    !!!

    !!

    !!!

  • 8/7/2019 4.DC1 Biasing - BJTs

    30/89

    Exam p le 6Exam p le 6Determine the value of Q-point for this figure. Also find the new

    value of Q-point if F change to 150 .

    100! F

  • 8/7/2019 4.DC1 Biasing - BJTs

    31/89

    16.95mA)V,(2.51 point-Q NewV51.2

    56016.95m-12

    R I-VV

    :4Step

    mA16.95113150II

    same,isvaluetheA113100k

    0.7-12I

    150,new:3Step

    mA3.11,V67.5int poQV67.5

    560m3.11-12

    R I-VV

    :2Step

    mA11.3113100II

    A113100k

    0.7-12I

    100,

    :1Step

    CCCCCE

    BC

    B

    CCCCCE

    BC

    B

    !

    !Q! F!

    Q!!

    ! F

    !

    !

    !

    !Q! F!

    Q!!

    ! FThe change of

    F cause the big change of Q-point value.

    This shows that f ixed

    biased con f iguration is

    NOT sta ble

    The change of

    F cause the big change of Q-point value.

    This shows that f ixed

    biased con f iguration is

    NOT sta ble

    S olutionS olution

    ICQ & V CEQ

  • 8/7/2019 4.DC1 Biasing - BJTs

    32/89

    Emitt e r Bias (E- S ATB ILIZED B IAS)The DC bias network below contains an emitter resistor to

    improve the stability level of fixed-bias configuration.The analysis consists of two scope:

    - Examining the base-emitter loop (input loop)

    - Use the result to investigate the collector-emitter loop (output

    loop)

    Vi

    Vo

    R C

    C 1

    C 2

    VCC

    IC

    I

    R B

    F i . .11 R E

    IE

  • 8/7/2019 4.DC1 Biasing - BJTs

    33/89

    Bas eBas e --Emitt e r Loo pEmitt e r Loo p

    EBBECC

    B

    EBBEBBCC

    BE

    EEBEBBCC

    R 1R V-V

    I

    get,finally weequ,theRearrange

    0R I1-V-R I-V

    get,we(1)intosubtitute,I1Iknown that

    (1) 0R I-V-R I-V:KV

    F!

    ! F

    F!

    !

    IE= IC + IB ; IC = I B

    IE= I B + IB

    = ( + 1)IB

  • 8/7/2019 4.DC1 Biasing - BJTs

    34/89

    Coll e ctor Coll e ctor- -Emitt e r Loo pEmitt e r Loo p

    EBEBBBCCB

    CCCCCECEC

    ECCE

    EEE

    ECCCCCE

    CE

    EECECCCC

    VVV OR R I-VV

    R I-VV OR VVV

    V-VV

    R IV

    knowcanalsoweFig.5.13theFrom

    )R (R I-VV

    get,we(1)equrearrangeIIAssuming

    (1) 0R I-V-R I-V:KV

    !!

    !!

    !

    !

    !

    $

    !

    V CC ICRC = V CE + IERE = V C

  • 8/7/2019 4.DC1 Biasing - BJTs

    35/89

    Slide 12

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Characteristics of Common-Emitter

    Collector characteristics = output characteristics.Base characteristics = input characteristics.

  • 8/7/2019 4.DC1 Biasing - BJTs

    36/89

    Slide 13

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Amplifier Currents

    IE = IC + IB

    IC = E IE

  • 8/7/2019 4.DC1 Biasing - BJTs

    37/89

    Slide 14

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Actual Amplifier Currents

    IC = E IE + ICBO

    ICBO = minority collector current. This is usually so small that it can be ignored, except inhigh power transistors and in high temperature environments.

    [Formula 3.9]

    When I B = 0 QA the transistor is in cutoff, but there is some minority current flowing calledICEO .

    A0I1I

    I BCBO

    CEO QE

    !!

  • 8/7/2019 4.DC1 Biasing - BJTs

    38/89

    Slide 15

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Beta ( F)

    In DC mode: [Formula 3.10]

    In AC mode: [Formula 3.11]

    F indicates the amplification factor of a transistor. ( F is sometimes referred to as hfe, aterm used in transistor modeling calculations)

    B

    C

    II

    dc !&

    constantVII

    ac CEB

    C!

    ((

    !&

  • 8/7/2019 4.DC1 Biasing - BJTs

    39/89

    Slide 1

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    D etermining beta ( F) from a Graph

    Note: F AC = F DC

    1087.5)(f or VCEA25

    2.7mADC !!!&

    Q

    1007.5)(f or VCE010

    1mA)020330(

    2.2mA)(3.2mAAC !!!!&

    QQQQ

  • 8/7/2019 4.DC1 Biasing - BJTs

    40/89

    Slide 17

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    Relationship between F and E

    Both indicate an amplification factor.

    [Formula 3.12a]

    [Formula 3.12b]

    1&&

    !E

    1!&

    E

    E

  • 8/7/2019 4.DC1 Biasing - BJTs

    41/89

    Slide 18

    Robert Boylestad Digital Electronics

    Copyright 2002 by Pearson Education, Inc.Upper Saddle River, New Jersey 07458

    All rights reserved.

    F provides a Relationship between Currents

    [Formula 3.14]

    [Formula 3.15]

    BC II &!

    BE 1)I(I &!

  • 8/7/2019 4.DC1 Biasing - BJTs

    42/89

    Exam p le 7Exam p le 7

    F or the emitter-bias network for F ig.5.14 determine:a)I B b)I C c)V CE d)V C e)V E f)V B g)V BC

    R C=2 kohm

    VCC =+20 V

    IC

    IB

    R B=430 kohm

    Fi . .14 R E=1 kohm

    IE

    Beta =50

  • 8/7/2019 4.DC1 Biasing - BJTs

    43/89

    S olutionS olution

    required)as biased(reverse

    V27.1398.1571.2VVV)g

    V71.201.27.0VVV)f

    V01.2k 1m01.2R IR IV

    OR

    V01.297.1398.15VVV)e

    V98.1502.420

    k 2m01.220R IVV)d

    V97.13

    03.620k 1k 2m01.220

    R R I-VVc)

    m01.21.4050II b)

    1.40k 1150k 430

    7.020R 1R

    V-V Ia)

    CBBC

    EBEB

    ECEEE

    CEEE

    CCCCC

    ECCCCCE

    BC

    EB

    BECCB

    !!!

    !!!

    !!$!

    !!!

    !!

    !!

    !

    !!

    !

    !Q! F!

    Q!! F

    !

  • 8/7/2019 4.DC1 Biasing - BJTs

    44/89

    S aturation L eve lS aturation L eve l

    The saturation current f or an emitter -bias con f iguration is :

    R C

    VCE =0 V+

    -

    VCC

    IC satFig. 5 .16

    +

    -

    R E

    E C

    CC C sat

    E C C sat CC

    E C sat C C sat CC

    R RV I

    R R I V

    R I R I V

    !

    !!0

    0

  • 8/7/2019 4.DC1 Biasing - BJTs

    45/89

    D etermine the saturation current f or the networ k of example 7.

    S olution:S olution:

    This value is a bout three times the level of ICQ

    (2 .01 m A F=50 ) f or the example 7. Its indicate the parameter that been used in example 7 can be use in anal ysis of emitter bias networ k.

    mA67.6k 3

    20k 1k 2

    20

    R R VI

    EC

    CCCsat

    !!!

    !

    Exam p le 8Exam p le 8

  • 8/7/2019 4.DC1 Biasing - BJTs

    46/89

    The process to plot the load line as f ollows :

    Step 1:Re f er to f ig. 5.13 , V CE =V CC IC(R C+ RE) (1)Choose IC=0 m A. Su btitute into (1), we get

    V CE =V CC (2) located at X axis

    Step 2:Choose V CE =0 V, su btitute into (1) gives

    axisYatlocated(3) R R

    VI 0VVCE

    EC

    CCC ! !

    Load-Lin e Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    47/89

    Step 3:J oining two points de f ined by (2 ) + (3), we get straight line that can

    be drawn as Fig. 5.17 :IC

    VCE(V)

    VCC /(R C+R E)

    VCC

    IBQQ-point

    Fig. 5.17: Load line f or the emitter-bias con f iguration

    VCEQ

    ICQ

    Load-Lin e Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    48/89

    Exam p le 9Exam p le 9F or the emitter-bias network for F ig.5.14 determine:a) Draw a load line in the graph on the characteristic.

    b)I B c)I C d)V CE e)V C f)V E g)V B h)V BC i) Choose the operating point between cut off and saturation, determine

    the resulting values I CQ and V CEQ

    j) k) l) ICsat

    Beta =50

    15 V

    30

  • 8/7/2019 4.DC1 Biasing - BJTs

    49/89

    Voltag e Divid e r BiasVoltag e Divid e r Bias

    I CQ and V CEQ from the table is changing dependently the changing of F.

    The voltage-divider bias configuration is designed to have a lessdependent or independent of the F.

    If the circuit parameter are properly chosen, the resulting levels of I CQand V CEQ can be almost totally independent of F.

    F IB(Q A) IC(m A) V CE (V )

    50 40 .1 2 .01 13 .97100 3 .3 3 .6 3 9 .11

  • 8/7/2019 4.DC1 Biasing - BJTs

    50/89

    Two method for analyzed the voltage-divider bias configuration:- Exact method ( applied anywhere)- Approximate method (only if specified conditions are

    satisfied)

    Voltag e Divid e r BiasVoltag e Divid e r Bias

  • 8/7/2019 4.DC1 Biasing - BJTs

    51/89

    Exact AnalysisExact Analysis

    Step 1 :

    The input side of the network can be redrawn for DC analysis.Step 2 :

    Analysis of Thevenin equivalent network to the left of baseterminal

  • 8/7/2019 4.DC1 Biasing - BJTs

    52/89

    Step 2(a) :

    R eplaced the voltage sources with short-circuit equivalent and gives the value of R TH

    Exact AnalysisExact Analysis

    21TH R R R !

  • 8/7/2019 4.DC1 Biasing - BJTs

    53/89

    Step 2(b ):

    Determining the E TH by replaced back the voltage sources and open circuit Thevenin voltage. Then apply the voltage-divider rule.

    21

    CC22R T

    R R

    VR VE !!

    Exact AnalysisExact Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    54/89

    Step 3 :

    The Thevenin network is then redrawn and I BQ can bedetermined by KVL 0R IVR IE EEBETHBTH !

    givesI1Iubtitute BE !

    ETHBETH

    B

    R 1R

    VEI

    F!

    Exact AnalysisExact Analysis

  • 8/7/2019 4.DC1 Biasing - BJTs

    55/89

    Exam p leExam p leDetermine the DC bias voltage V CE and current I C for thevoltage-divider configuration of network below:

    R C = 1 0 k o h m

    VC C = 2 2 V

    R 1 = 3 9 k o h m

    R E = 1 . 5 k o h mR 2 = 3 . 9 k o h m

    140! F

  • 8/7/2019 4.DC1 Biasing - BJTs

    56/89

    kohm3.55k 9.3k 39 k 9.3k 39

    R R R 21TH

    !!

    !

    V2

    k 9.3k 3922k 9.3

    R R VR

    E21

    CC2TH !!!

    A05.6

    k 5.11140k 55.37.02

    R 1R VE

    I ETHBETH

    B

    Q!!

    F!

    mA85.005.6140II BC !Q! F!

    V22.12

    k 5.1k 10m85.022

    R R IVV ECCCCCE

    !

    !

    !

    S olutionS olution

  • 8/7/2019 4.DC1 Biasing - BJTs

    57/89

    F or the voltage-divider bias configuration, determine: I BQ , I CQ ,V CEQ , V C , V E and V B.

    Exam p leExam p le

    S l tiS l ti

  • 8/7/2019 4.DC1 Biasing - BJTs

    58/89

    kohm7.93k 1.9k 62

    k 1.9k 62

    R R R 21TH

    !!

    !

    V05.2

    k 1.9k 6216k 1.9

    R R

    VR E

    21

    CC2TH !!!

    A4.21

    k 68.0180k 93.77.005.2

    R 1R VE

    IETH

    BETHBQ

    Q!!

    F!

    mA712.14.2180II BCQ !Q! F!

    V16.8

    k 68.0k 9.3m712.116

    R R IVV ECCCCCEQ

    !!

    !

    V32.9k 9.3m712.116R IVV CCCCC

    !!

    !

    V18.1

    k 68.0m712.14.21

    k 68.0II

    R IV

    CB

    EEE

    !

    Q!

    !

    !

    V88.1

    7.018.1

    VVV BEEB

    !

    !

    !

    S olutionS olution

  • 8/7/2019 4.DC1 Biasing - BJTs

    59/89

    App roximat e AnalysisApp roximat e AnalysisStep 1 :

    FR E u 10 R 2 Step 2 :

    The input section can be represented by the network of figure below and R

    2 can be considered in series by assuming

    I 1$ I 2 and I B= 0A .

    E i

    i

    R R

    I I R R

    1

    212

    !

    $u

    F

    R 1

    R iR 2

    Partial-bias circuit for calculating theapproximate base voltage, B

    CC

    I1

    I2

    IB

    B

    +

    -

    This eq n must b e satisfi e d. If not, a pp roximat e analysiscant b e us e d , and you ha ve to us e th e e xact analysis(Th eve nins m e thod )

  • 8/7/2019 4.DC1 Biasing - BJTs

    60/89

    21

    CC2R 2B

    R R

    VR VV

    :determined becanvoltage baseThe

    !!

    BEE

    EBBE

    E

    V-VV

    V-VV

    :wellascalculated becanVleveland

    B!

    !

    ECQ

    E

    EE IIand

    R V

    I

    :determined becancurrentemitter theand

    $! E E R R )1(R where

    10R R

    :approacheapproximat

    definethat willCondition

    i

    2E

    F F !!

    u

    App roximat e AnalysisApp roximat e AnalysisR1

    RiR2

    Partial-bias circuit for calculating theapproximate base voltage, V B

    VCC

    I1

    I2

    IB

    VB

    +

    -

    Step 3:

  • 8/7/2019 4.DC1 Biasing - BJTs

    61/89

    N P N Transistor S imulationN P N Transistor S imulation

  • 8/7/2019 4.DC1 Biasing - BJTs

    62/89

    R epeat the analysis of example 9 using the approximatetechnique and compare solution for I CQ and V CEQ .

    Solution:

    Exam p leExam p le

    !satis f iedkohm39kohm210

    k 9.310k 5.1140

    R 10R

    :tep1

    2E

    u

    u

    u F

    dra n becancct bias partialthe:2tep

  • 8/7/2019 4.DC1 Biasing - BJTs

    63/89

    V2

    k 9.3k 3922k 9.3

    R R VR

    V

    :3Step

    21

    CC2B !!!

    V3.17.02

    VVV BEBE

    !!

    !

    mA867.0k 5.1

    3.1

    R

    VII

    E

    EECQ !!!$

    V03.12

    k 5.1k 10m867.022

    R R IVV ECCCCCEQ

    !

    !

    !

    ICQ (m A) V CEQ (V )

    Exact Anal ysis

    0.8 5 12 .22

    Approximate Anal ysis

    0.86 7 12 .03

    ICQ and V CEQ are certainl y close.

    S olutionS olution

    Exam p leExam p le

  • 8/7/2019 4.DC1 Biasing - BJTs

    64/89

    R epeat the exact analysis of example 9 if F is reduced to 70.Compare the solution for I CQ and V CEQ .

    Solution:Solution: kohm3.55R TH !V2E TH !

    A81.11k 5.1170k 55.3

    7.02R 1R

    VEI

    ETH

    BETHB

    Q!! F

    !

    mA83.081.1170II BC !Q! F!

    Exam p leExam p le

    S olution (continu e d )S olution (continu e d )

  • 8/7/2019 4.DC1 Biasing - BJTs

    65/89

    V46.12k 5.1k 10m83.022

    R R IVV ECCCCCE

    !!

    !

    FICQ (m A) V CEQ (V )

    140 0 .8 5 12 .22

    70 0 .8 3 12 .46

    Conclusion : Even though F is drasticall y hal f , the level ICQand V CEQ are essentiall y same.

    S olution (continu e d )S olution (continu e d )

    Exam p leExam p le

  • 8/7/2019 4.DC1 Biasing - BJTs

    66/89

    D etermine the levels of ICQ and V CEQ f or the voltage -divider con f iguration using the exact and approximate anal ysis. Compare the solution.

    R C . ohm

    V CC 8 V

    R 1 =8 oh m

    R E =1.2 ohmR 2=22 ohm

    ICQ

    I Q

    Exam p leExam p le

    S olutionS olution

  • 8/7/2019 4.DC1 Biasing - BJTs

    67/89

    S olutionS olution

    kohm35.71k 22k 82

    k 22k 82

    R R R

    :AnalysisExact

    21T

    !!

    !

    V81.3

    k 22k 8218k 22

    R R VR

    E21

    CC2T

    !!!

    A6.39

    k 2.1150k 35.177.081.3

    R 1R VEI

    ET

    BET

    BQ

    Q!!

    F!

    mA98.16.3950II BCQ !Q! F!

    V54.4

    k 2.1k 6.5m98.118

    R R IVV ECCCCCEQ

    !

    !

    !

    S olution (continu e d )S olution (continu e d )

  • 8/7/2019 4.DC1 Biasing - BJTs

    68/89

    satis f ied)(not220kohm60kohm

    k 2210k 2.150

    R 10R

    :AnalysiseA pproximat

    2E

    u

    u

    u F

    V81.3

    k 22k 8218k 22

    R R VR

    EV21

    CC2TB !!!!

    V11.37.081.3

    VVV BEBE

    !!

    !

    mA59.2

    k 2.1

    11.3

    R

    VII

    E

    EECQ !!!$

    V88.3

    k 2.1k 6.5m59.218

    R R IVV ECCCCCEQ

    !

    !

    !

    S olution (continu e d )S olution (continu e d )

    S olution (continu e d )S olution (continu e d )

  • 8/7/2019 4.DC1 Biasing - BJTs

    69/89

    S olution (continu e d )S olution (continu e d )

    ICQ (m A) %di ff erence V CEQ (V)

    %di ff erence

    Exact Anal ysis

    1.9823 .5%

    4.5417 %

    Approximate Anal ysis

    2.59 3 .88

  • 8/7/2019 4.DC1 Biasing - BJTs

    70/89

    The saturation collector -emitter circuit f or the voltage -divider con f iguration has the same appearance as the emitter -biased

    con f iguration as shown below.

    EC

    CCCsat

    R R VI !

  • 8/7/2019 4.DC1 Biasing - BJTs

    71/89

    Load Lin e AnalysisLoad Lin e Analysis

    The similarities with the output circuit of the emitter -biasedcon f iguration result in the same intersections f or the load line of the voltage -divider con f iguration.

    The load line there f ore have the same appearance with :

    axisatlocate d R R

    VI 0VVCE

    EC

    CCC ! !

    axisXatlocate d VV 0m AICCCCE ! !

  • 8/7/2019 4.DC1 Biasing - BJTs

    72/89

    Another wa y to improve the sta bility of a bias circuit is to add a f eed bac kpath f rom collector to base. In this bias circuit the Q -point is onl y slightl y

    dependent on the transistor Beta F.

    DC Bias with Voltag e Fee dbackDC Bias with Voltag e Fee dback

  • 8/7/2019 4.DC1 Biasing - BJTs

    73/89

    Bas eBas e --Emitt e r Loo pEmitt e r Loo p Appl ying Kircho ffs voltage law : V CC IC

    d R C IBR B V BE IERE = 0

    Note : ICd = IC + IB -- but usuall y IB

  • 8/7/2019 4.DC1 Biasing - BJTs

    74/89

    Coll e ctor Coll e ctor- -Emitt e r Loo pEmitt e r Loo p

    Appl ying Kircho ffs voltage law : IE + V CE + ICd

    RC V CC = 0

    Since ICd $ IC and IC = FIB: IC(R C + R E) + V CE V CC =0

    Solving f or V CE : V CE = V CC - IC(R C+ RE)

    )( E C C CC CE R R I V V !

  • 8/7/2019 4.DC1 Biasing - BJTs

    75/89

    Transistor S aturation L eve lTransistor S aturation L eve l

    EC

    CCCC

    R R V

    maxIsatI !!

    Load Lin e AnalysisLoad Lin e Analysis

    It is the same anal ysis as f or the voltage divider bias

    and the emitter -biased circuits.

    S imulation of a N P N ty pe commonS imulation of a N P N ty pe common- -e mitt e re mitt e r

  • 8/7/2019 4.DC1 Biasing - BJTs

    76/89

    S imulation of a P ty pe commonS imulation of a P ty pe common e mitt e r e mitt e r transistor transistor

  • 8/7/2019 4.DC1 Biasing - BJTs

    77/89

    M isc e llan e ous configurationM isc e llan e ous configuration

  • 8/7/2019 4.DC1 Biasing - BJTs

    78/89

    De sign Ope ration

    W e are able to design the transistor circuit using the ideas that we have learnt before during analyzing dc biasing circuit.How?

    - Understand the Kirchoffs Law and other electric circuit law such as Ohms Law, Thevenin Laws etc - Identify the parameters given- Analyze into the input/output for the system and build a

    loop using electric circuits law.

  • 8/7/2019 4.DC1 Biasing - BJTs

    79/89

    De sign Ope rations

    If the transistor and supplies are specified,the design process will simply determine therequired resistor for a particular design.Once the theoretical values of the resistorsare determined, the nearest standard commercial values are normally chosen and

    any variations due to not using the exact resistance values are accepted as part of thedesign.

    R unknown =V R /I R

    e s gn o a as c rcu w an e m e r e s gn o a as c rcu w an e m e r

  • 8/7/2019 4.DC1 Biasing - BJTs

    80/89

    f ee dback r e sistor f ee dback r e sistor

    The emitter resistor is to 1/10 of the suppl y voltage

    De sign of a bias circuit with anDe sign of a bias circuit with an

  • 8/7/2019 4.DC1 Biasing - BJTs

    81/89

    R E and R C cannot proceed directly from theinformation just specified.R E to provide dc bias stabilization so that thechange of collector current due to leakage currentsin the transistor and the transistor beta would not cause a large shift in the operating point.

    The R E cannot be unreasonably large because thevoltage across it limits the range of swing of thevoltage from collector to emitter.V E typically -1/10 from supply voltage

    De sign of a bias circuit with anDe sign of a bias circuit with ane mitt e r f ee dback r e sistor e mitt e r f ee dback r e sistor

  • 8/7/2019 4.DC1 Biasing - BJTs

    82/89

    Exam p le 3

    Determine the resistor values for the network,for

    the indicated operating point and supply voltage.

    (b e ta ind epe nd e nt )(b e ta ind epe nd e nt )

  • 8/7/2019 4.DC1 Biasing - BJTs

    83/89

    The emitter resistor is to 1/10of the suppl y voltageTo determine R1 and R2 use 10R 2 RE

    ( p )( p )

    Transistor as switchingTransistor as switching

  • 8/7/2019 4.DC1 Biasing - BJTs

    84/89

    Transistor as switchingTransistor as switchingn e tworksn e tworks

    Transistor wor ks as an inverter in computer circuits.Operating point switch f rom cut -off to saturation along the load line f or proper inversion.In order to understand, we assume that ;

    IC=ICEO =0 m AV CE =V sat =0 V

    One must understand the transistor graph output and load -line anal ysis to descri be and discuss a bout the

    transistor switching networ ks.

    Transistor as switching n e tworksTransistor as switching n e tworks

  • 8/7/2019 4.DC1 Biasing - BJTs

    85/89

    uAmAI

    ITherefore

    mAR

    V

    k

    V I

    II

    CsatB

    C

    cc

    IB

    CsatB

    8.481251.6

    ,

    1.6I

    63uA68

    7.0that,seellwe'figure,thewithcompare

    thatensuremustWe

    Csat

    !!"

    !!

    !!

    "

    F

    F

    gg

  • 8/7/2019 4.DC1 Biasing - BJTs

    86/89

    Tim e int e r val

  • 8/7/2019 4.DC1 Biasing - BJTs

    87/89

    Tim e int e r val (continu e d )Tim e int e r val (continu e d )

  • 8/7/2019 4.DC1 Biasing - BJTs

    88/89

    Troubl e shootingTroubl e shooting

    How to define and encounter transistor circuit problem?

  • 8/7/2019 4.DC1 Biasing - BJTs

    89/89