68
하하하하하하 1. 1. 하 하 하 하 2. 2. 하하하하 하하하하 하하하하 하하하하 3. 3. 하하하하하 하하 하하하하하 하하 4. 4. 하하하하하 하하 하하하하하 하하 5. 5. 하하하하하 하하 하하하하하 하하

하천설계실무

Embed Size (px)

DESCRIPTION

1. 개 론 2. 유역현황 자료조사 3. 설계강우량 산정 4. 설계홍수량 산정 5. 설계홍수위 산정. 하천설계실무. 1.1 수문순환 ( Hydrologic Cycle) ⊙ 3 Major System Ocean (Hydrosphere; 水圈 ) : major source of water Land (lithosphere; 地殼 ) : user of water Atmosphere ( 大氣 ) : deliverer of water. 1. 개 론. - PowerPoint PPT Presentation

Citation preview

  • 1. 2. 3. 4. 5.

  • 1. 1.1 (Hydrologic Cycle)

    3 Major System

    Ocean (Hydrosphere; ) : major source of waterLand (lithosphere; ) : user of waterAtmosphere () : deliverer of water

  • (Components of Hydrologic Cycle)

    Precipitation () Runoff () Evaporation () Transpiration () Infiltration () Percolation () Interception () Depression storage ()

  • 1.1 (Hydrologic Cycle)385+39=42461+39=100

  • 1.1 [Chow, et al. Applied Hydrology)

    = 1,386,000,000,000,000,000 m3

    (km2)(km3) (%)(%) 361.31061,338106 96.5- 134.8106 23.4106 1.7- 134.8106 10.5106 0.76 30.1 82.0106 16.5106 0.001 0.05 16.2106 24.1106 1.74 68.7 21.0106 0.3106 0.022 0.86 1.24106 91.0106 0.007 0.26 0.82106 85.4106 0.006- 2.68106 11.5106 0.0008 0.03 148.8106 2.12106 0.00015 0.006Biological water510.0106 1.12106 0.0001 0.003 510.0106 12.9106 0.001 0.043 510.01061,386106 100.0- 148.410635.03106 2.53 100.0

  • Sources : (2001-2020) U.S.G.S. Circular 1001 (1983)

    =(161)+(133)+(37)1.2

    (km2)99,600 7,828,000 (mm)1,283750 (m3)1,27658,700 (m3)73116,480 (m3)54542,220 (m3)331 (25.94%)5,710 (9.7%)

  • 1.3

    (Precipitation)

    = (rainfall) + , , ,

  • AIR MASS LIFTINGCOOLINGWATER CONDENSATIONDROPLET GROWINGFALLINGthree main mechanism of liftingtemperature as height from vapor to liquid stateby condensationgravity force > friction force droplet size diminish (evaporation)

  • 3 Main Mechanism of Air Mass Lifting

    Frontal lifting ( )- warm air is lifted over cooler air by frontal passage Orographic lifting ( )- air mass rises to pass over a mountain range Convective lifting ( )- air is drawn upward by convective action (by surface heating)

  • 1.4 (Runoff)

  • (overland flow)- (streamflow)-

    (direct runoff)- , , (base flow)- : +

  • 2. 2.1 ( 2.1) ( 2.2, 2.3)2.2 , , , ( )2.3 , , , , , ( )

  • 3. -

  • Lognormal (2/3)Gamma (2/3)Log-Pearson type III (3)GEV (3)Gumbel (2)Log-Gumbel (2/3)Weibull (2/3)Wakeby (4/5) (MOM) (ML) (PWM)- Kolmogorov - Smirnov Cramer von Mises PPCC 3.1 FARD98 (,1998)

  • 3.1

    : 30 , : Correlogram test, run test, Spearmans rank correlation coefficient test

    - , , , (), ()

  • 3.2 NormalLognormalGammaLog-Pearson type IIIGEVGumbelLog-GumbelWakebyWeibull

  • (Method of Moments ; MOM) (Method of Probability Weighted Moments ; PWM) (Method of Maximum Likelihood ; ML) L- (Method of L-moments)

    = L-

  • - 3.2

    - vs.

  • vs.

    ( 1962 , 24)

  • vs. ( 1962 , 24)

  • -test Kolmogorov-Smirnov test Cramer von Mises test Probability plot correlation coefficient test (PPCC) -test, PPCC test

    , ,

  • -(cumulative distribution function ; CDF) (inverse function) - -

  • () (Gumbel)CDF

    Inverse function

    100(T=100)

  • (rainfall intensity)- -

    : , : (0.2 ~ 0.5) :

    - (mm/hr)

  • [3.1] ()0~1010~2020~3030~4040~5050~60(mm)3.04.08.03.06.04.020min30min40min50min60min()102030405060(mm)8.012.017.021.025.028.0(mm/hr)48.036.034.031.530.028.0 10 : 8.0mm / 10min = 6 X 8.0 mm/hr = 48 mm/hr 20 : 12.0mm / 20min = 3 X 12.0 mm/hr = 36 mm/hr 40 : 21.0mm / 40min = (60/40) X 21.0 mm/hr = 31.5 mm/hr

  • : -

    : Talbot

    : Sherman

    : Japanese

    : (mm/hr) : (min):

  • - (, 1993) (mm/hr)

    3.4 abnc ()2858.39300.560.6855.25630.6674.36050.6513.667100.6392.992200.6312.505300.6272.263500.6232.006700.6211.8641000.6191.7052000.6161.4245000.6131.096

  • ( , 1999)

    - : 22 - 5, 10, 30, 60, 120, 180, 360, 720, 1440 : GEV 2, 3, 5, 10, 20, 30, 50, 100, 200, 500 (mm/hr)

  • 3.5 a482.5332.7291.1396.4300.4408.5710.9441.5344.4397.1229.7248.1305.6203.9226.6332.7363.0318.5395.8328.0346.6298.4b175.963.1121.0174.2143.7141.1141.185.191.184.259.467.985.6117.6116.0125.060.1120.543.2243.6c4.2860.4853.1931.6812.3030.3214.3711.2861.5821.396-0.1220.5001.4691.0700.8632.2660.4282.1462.4880.5311.8659.402d-2.281-0.5010.461-0.1670.789-0.603-0.763-0.8210.0440.1240.013-0.1450.3780.5110.8280.517-0.1500.655-0.198-0.1340.1382.890143.9118.2

  • ( , 2000): 1962

  • : 3

  • () 10, 2 ? (1993)

    (1999)

    (2000)

  • -- (Intensity-Duration-Frequency Curve)

  • 3.3 -

    Keifer Chu : Pilgrim Cordery : () Yen Chow : (SCS) Huff 4 : 1, 2, 3, 4(quartile) () , , ()

  • 3.4

    - - = + (interchangable) volume = volume

  • 3.4

  • (constant fraction method)- (constant loss rate method)- - (initial loss-constant loss rate)- (infiltration curve method) Horton- SCS -

  • 3.5

  • 4. 4.1

    -

  • 4.1 (, 2000) : (, 1993)

    () (1993)A200 B100 200 C 80 100150-100,D 30 100230-100E30,

  • 4.2 (, 1999) : (1990)

    (,1999)(,1990) 50 ~ 1005030 ~ 803030 ~ 5010 ~ 30

    10km210 ~ 5km25km21005020 ~ 30 5020~ 3010 ~ 20 3010 ~ 3010

  • 4.3 (,2000)

    1993 5 ~ 505 ~ 50 5 ~2525 ~5010 ~20 50 ~10050 ~2002 ~2550 ~200() 50 ~SPFPMF10 ~SPF5 ~SPF2 ~50

  • 4.3 (,2000)

    1993 ( )

    50 ~100100

    50 ~100% ( )

    100

    50%50 ~100%100% ( )

    50 ~100%100%100%

  • 4.2

    (time to peak)- (time of concentration)- (lag time)- -

  • - Manning Chezy - (Kraven , Rziha , SCS ) -Kirpich , McCuen , Eagleson

    (4.4 , 4.5 )

  • - -

    (4.6)

  • 4.3

    -

    - : - :

  • (1) (Kuichling, 1889)

    I : , C : , A :

    -I Q - - - -

  • 4.7

    CC0.70~0.950.50~0.70 0.75 ~0.85 0.75 ~0.950.30 ~0.500.40 ~0.600.60 ~0.750.25 ~0.400.50 ~0.70 0.05 ~0.100.10 ~0.150.15 ~0.20 0.13 ~0.170.18 ~0.220.25 ~0.350.50 ~0.800.60 ~0.90 0.30 ~0.600.20 ~0.50, 0.10 ~0.25 0.30 ~0.60 0.20 ~0.350.20 ~0.50 0.20 ~0.400.20 ~0.400.10 ~0.300.10 ~0.250.70 ~0.95 0.15 ~0.450.80 ~0.95 0.05 ~0.25 0.70 ~0.850.05 ~0.25

  • 4.8 (Stephenson, 1981)

    () 0.400.350.300.18

    < 5% : - 0.05 > 10% : + 0.05 < 20 : - 0.05 < 50 : + 0.05 < 600mm : - 0.03 > 900mm : + 0.03

  • (2) -

    Snyder (SCS) (Nakayasu)

  • (3) -

    : Clark, Nash :

  • 4.4

    - , - (), () -, ,

  • increasefaster

  • Design models- sizes and other geometric dimensions for specified design return period Flow prediction models-simulate the flow of stromwater in existing system Planning models-plan urban stormwater problems for a relatively large space and long period (quantity and quality)

  • CHM (Chicago Hydrograph Method, 1959) RRL (British Transportation Road Research Lab., 1962) ILLUDAS (Illinois Urban Drainage Area Simulation, 1974) UCURM (Univ. of Cincinnati Urban Runoff Model, 1972) WASSP (Wallingford Storm Sewer Package, 1981) STORM (Storage, Treatment, Overflow, Runoff Model,1976) RUNQUAL (RUNoff QUALity, 1977) SWMM (Storm Water Management Model, 1971) HSPF (Hydrocomp Simulation Program-Fortran, 1980) MITCAT (MIT CATchment model, 1970)

  • (Viessman & Lewis)

    CharateristicsRRLCHMSTORMSWMMHSPFMITCATUCURMILLUDASMultiple catchment inflowsSnowmeltRunoff from impervious areasRunoff from pervious areaWater balance between stormsFlow routing in sewersUp and downstream flow control DiversionsPumping stationsStorageStormwater qualityQuality routingSedimentation and scourWastewater treatmentQuality balance between stormsReceiving water flow simulationReceiving water quality simulationContinuous simulationDesign computationsReal-time control

  • - - -

  • 5. 5.1

    - , - , - , , , ,

  • 5.2

    (steady flow)- , , (unsteady flow)- , ,

  • 5.2

    (uniform flow)- (nonuniform flow)- : :

    :

  • 5.2

    (subcritical flow)- (supercritical flow)-

  • 5.3

  • 5.3

    -

    , : :

  • 5.4

    ()