56
A Successive Approximation ADC based on a new Segmented DAC

(葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

  • Upload
    spweda

  • View
    37

  • Download
    0

Embed Size (px)

Citation preview

Page 1: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

A Successive Approximation ADC based on a new Segmented DAC

Page 2: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

I

segmented current-mode DAC

successive approximation ADC bi-direction segmented

current-mode DAC DAC

INL 0.47 LSB DNL 0.154 LSB DAC 3V

8 2MS/s successive approximation ADC

TSMC 1P4M 0.35 m CMOS INL

0.82 LSB DNL 0.31 LSB ENOB 7 2.6mW

Page 3: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

II

A Successive Approximation ADC based on a

new Segmented DAC

ABSTRACT

A successive approximation analog-to-digital converter (ADC) based on a new

segmented digital-to-analog converter (DAC) architecture is presented. A more

efficient method which is the bi-direction segmented current-mode approach is

proposed to implement the high-resolution and high speed DAC. This DAC has the

maximum integral nonlinearity (INL) error of 0.47 LSB, and the maximum differential

nonlinearity (DNL) error of 0.154 LSB. Based on this new DAC, a 3-V, 8-bit, 2-MS/s

ADC is realized. The whole circuit is implemented by the TSMC 1P4M 0.35 m

CMOS process. The experimental results show that the INL of ADC is less than 0.82

LSB. Meanwhile, the DNL is less than 0.31 LSB. The power consumption is only

2.6mW with the effective number of bits of 7.

Page 4: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

III

Page 5: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

IV

...........................................................................................................................I ABSTRACT..................................................................................................................... II

........................................................................................................................ III ........................................................................................................................ IV ........................................................................................................................VI .......................................................................................................................VII

Chapter 1 INTRODUCTION............................................................................................ 1 1.1 Motivation........................................................................................................... 1 1.2 Organization of the Dissertation ......................................................................... 2 1.3 SAR ADC versus other ADCs ............................................................................ 2

1.3.1 Pipelined Converter ................................................................................. 2 1.3.2 Flash Converter........................................................................................ 3 1.3.3 Sigma-Delta Converter ............................................................................ 4

1.4 Circuit Characteristic .......................................................................................... 4 Chapter 2 BASIC CONCEPTS......................................................................................... 5

2.1 Successive Approximation ADC Architecture.................................................... 5 2.2 Algorithm............................................................................................................ 6 2.3 SAR ADC Techniques ........................................................................................ 8

2.3.1 R-2R-Based Converter............................................................................. 8 2.3.2 Charge-Redistribution Converter............................................................. 9 2.3.3 Resistor-Capacitor Hybrid Converter .................................................... 10 2.3.4 Current-Mode Converter........................................................................ 10

Chapter 3 CIRCUIT DESIGN OF SAR ADC ................................................................ 12 3.1 Sample / Hold (S/H) Amplifier Architecture .................................................... 12

3.1.1 Clock Divider......................................................................................... 13 3.1.2 Simulation results of the S/H................................................................. 14

3.2 Comparator ....................................................................................................... 17 3.2.1 Comparator Circuit ................................................................................ 17 3.2.2 Clock of the Comparator........................................................................ 20

3.3 Segmented Current-Mode DAC ....................................................................... 21 3.3.1 3-way switch controller ......................................................................... 27 3.3.2 I-V Converter ......................................................................................... 30

3.3.2.1 Operational Amplifier ................................................................. 30 3.3.3 Simulation results of the DAC............................................................... 33

3.4 SAR Controller ................................................................................................. 34

Page 6: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

V

Chapter 4 EXPERIMENTAL RESULTS........................................................................ 38 4.1 ADC Test........................................................................................................... 38 4.2 Layout Arrangement ......................................................................................... 40

Chapter 5 CONCLUSIONS & FUTURE WORKS........................................................ 43 5.1 Conclusions....................................................................................................... 43 5.2 Future Works..................................................................................................... 43

REFERENCES ............................................................................................................... 45 ........................................................................................................................ 47

Page 7: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

VI

1 Size of the comparator ........................................................................................ 18 2 3 8 binary-to-thermometer decoder ............................................................... 28 3 P-channel (B7=0).................................................... 28 4 N-channel (B7=1)................................................... 29 5 OPA ............................................................................................ 32 6 8 SAR ................................................................ 36 7 Effective number of bits...................................................................................... 40 8 Experimental results of the proposed ADC ........................................................ 42 9 successive approximation ADC ................................................ 43

Page 8: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

VII

1. 1 General Pipelined ADC architecture.................................................................... 3 1. 2 N-bit Flash ADC ..................................................................................... 3 2. 1 Successive approximation ADC ......................................................... 5 2. 2 Various values of the DAC output voltage .......................................................... 6 2. 3 N-bit successive approximation approach .......................................... 7 2. 4 4-bit successive approximation ADC conversion................................................ 8 2. 5 DAC.................................................................................................... 9 2. 6 Charge-redistribution converter ........................................................................... 9 2. 7 Resistor-Capacitor Hybrid converter ................................................................. 10 2. 8 Binary-weighted current-mode converter .......................................................... 11 3. 1 Double sampling S/H architecture. .................................................................... 12 3. 2 Execution period of the double sampling. ......................................................... 13 3. 3 Transmission Gate circuit .................................................................................. 13 3. 4 clock divider circuit ........................................................................................... 14 3. 5 clock .................................................................................................. 14 3. 6 Simulation result of the S/H circuit. .................................................................. 15 3. 7 Output power spectrum density of the S/H........................................................ 16 3. 8 Comparator ....................................................................................... 17 3. 9 Circuit design of the comparator........................................................................ 18 3. 10 Auto-zeroing circuit. ........................................................................................ 19 3. 11 Clock circuit of the comparator........................................................................ 20 3. 12 Simple RC model............................................................................................. 20 3. 13 Clock simulation of the comparator................................................................. 21 3. 14 Basic N-bit segmented D/A converter.............................................................. 22 3. 15 Non-monotonic behavior of the DAC. ............................................................ 23 3. 16 Monotonic N-bit segmented D/A converter..................................................... 23 3. 17 Monotonic behavior of the DAC ..................................................................... 23 3. 18 Segmented N-bit inherently monotonic current DAC ........................ 24 3. 19 N-bit bi-direction segmented DAC ..................................................... 25 3. 20 DAC P .................................................................... 26 3. 21 MOS ................................................................................................ 27 3. 22 2-way switches circuit ..................................................................................... 29 3. 23 Two-stage OPA ............................................................................... 31 3. 24 Two-stage OPA ............................................................................... 31 3. 25 Simulation result of the DAC .......................................................................... 33

Page 9: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

VIII

3. 26 DAC INL .................................................................................. 34 3. 27 DAC DNL .................................................................................. 34 3. 28 N-bit SAR ..................................................................... 35 3. 29 N-bit SAR controller based on the non-redundant structure ........................... 35 3. 30 Nth ........................................................................................ 36 3. 31 D-latch ............................................................................................... 37 4. 1 ADC INL .................................................................................. 38 4. 2 ADC DNL ................................................................................ 39 4. 3 Output power spectrum density of the ADC...................................................... 39 4. 4 ENOB versus input frequency ........................................................................... 40 4. 5 Layout arrangement ........................................................................................... 41 4. 6 I/O PAD arrangement ........................................................................................ 41 4. 7 Layout view ....................................................................................................... 42

Page 10: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

1

Chapter 1 INTRODUCTION

1.1 Motivation

Analog-to-Digital Converter ADC

Digital-to-Analog Converter DAC

(Bluetooth) ADC DAC

ADC

ADC successive approximation register (SAR) ADC

5MS/s (8~16 bits)

ADC successive approximation ADC

ADC DAC

successive approximation ADC

successive approximation ADC DAC

current-steering with resistance ladder [1] charge-redistribution with

capacitance array [2] successive

approximation ADC

Page 11: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

2

current-mode

successive approximation ADC DAC segmented current-mode [3]

1.2 Organization of the Dissertation

ADC

successive approximation ADC

successive approximation ADC

1.3 SAR ADC versus other ADCs

ADC SAR ADC ADC SAR

ADC

1.3.1 Pipelined Converter

Pipelined ADC 1. 1 parallel (stage)

(conversion rate)

(Latency) Latency

ADC ADC

Pipelined ADC clock Latency successive

approximation ADC clock Latency Pipelined ADC

successive approximation ADC stage

Page 12: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

3

OPA S/H

1. 1 General Pipelined ADC architecture

1.3.2 Flash Converter

Flash ADC 1. 2

wideband low-gain preamp(s) latch Flash ADC ADC

2n

Flash 10 12 ADC

successive approximation ADC

Flash

ADC

1. 2 N-bit Flash ADC

Page 13: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

4

1.3.3 Sigma-Delta Converter

Sigma-Delta ( oversampling)

Sigma-Delta modulators ( )

(multi-bit) Sigma-Delta modulators

( 16 )

digital decimation filter

1.4 Circuit Characteristic

successive approximation ADC

1.

2.

3.

Page 14: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

5

Chapter 2 BASIC CONCEPTS

2.1 Successive Approximation ADC Architecture

Successive approximation ADC 2. 1

(S/H) (Comparator) Successive

Approximation Register (SAR) N N

Successive approximation ADC N

2. 1 Successive approximation ADC

N successive approximation ADC

(Vin) Sample/Hold (S/H)

comparator N DAC SAR (binary

search) DAC comparator

(MSB) (LSB) N

register (D-latch)

successive approximation ADC

Page 15: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

6

comparator DAC successive approximation ADC

comparator Vin VDAC

DAC ADC

1/2 LSB comparator DAC

2.2 Algorithm

Successive approximation ADC (

) N successive approximation ADC

DAC VFS (VFS DAC full-scale voltage)

Vin VD/A (DAC )

1 0 DAC

VFS /2 ( )

VD/A Vin

(Vin) N N (N cycles) (LSB)

4 successive approximation ADC DAC

2. 2

2. 2 Various values of the DAC output voltage

Page 16: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

7

2. 3

i N

2. 3 N-bit successive approximation approach

4 successive approximation ADC 2.

4 Y DAC X

DAC 10002 Vin > VDAC B3

1 DAC 11002 Vin < VDAC

B2 0 DAC 10102

Vin > VDAC B1 1 DAC 10112

Page 17: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

8

Vin < VDAC B0 0 10102

N successive approximation ADC N 4

successive approximation ADC

2. 4 4-bit successive approximation ADC conversion

2.3 SAR ADC Techniques

successive approximation ADC DAC

2.3.1 R-2R-Based Converter

DAC [1][4] 2. 5

binary-weighted ( )

DAC

MSBs thermometer

(Glitch)

(

) (Layout area)

Page 18: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

9

2. 5 DAC

2.3.2 Charge-Redistribution Converter

[2] 2. 6 (

binary-weighted) DAC

SAR ADC S/H

[5]

[6]

2. 6 Charge-redistribution converter

Page 19: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

10

2.3.3 Resistor-Capacitor Hybrid Converter

[7][8] 2. 7

binary-weighted

DAC DAC

binary-weighted

2. 7 Resistor-Capacitor Hybrid converter

2.3.4 Current-Mode Converter

[9] 2. 8

( binary-weighted)

Page 20: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

11

DAC

segmented current-mode [3]

segmented current-mode

2. 8 Binary-weighted current-mode converter

Page 21: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

12

Chapter 3 CIRCUIT DESIGN OF SAR ADC

3-V 8

16MHz data rate 2 MS/s 1V~2V successive

approximation ADC

successive approximation ADC

3.1 Sample / Hold (S/H) Amplifier Architecture

Clock

Double sampling

operational amplifiers (OPAs) Buffer 3. 1

S/H 3. 2

Clock (Sample) (Hold)

Clock (Hold)

(Sample) Double sampling

3. 1 Double sampling S/H architecture.

Page 22: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

13

3. 2 Execution period of the double sampling.

Sample-and-Hold circuit Charge

Injection Clock Feedthrough Transmission Gate ( 3. 3 )

MOS Charge Injection PMOS NMOS

CLK CLK PMOS NMOS channel channel

q1 q2 MOS gate-source overlap

capacitance Charge Injection

OPAs Offset Error Sample-and-Hold circuit OPAs

Offset

3. 3 Transmission Gate circuit

3.1.1 Clock Divider

S/H D

D 2 16MHz 16

Page 23: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

14

4 D 1MHz 3. 4

3. 5 D

3. 4 clock divider circuit

3. 5 clock

3.1.2 Simulation results of the S/H

3. 6 S/H 1-VPP

62.5KHz S/H 1MHz S/H

tracking

Page 24: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

15

3. 6 Simulation result of the S/H circuit.

8

S/H 1MHz 1-VPP 62.5KHz

32 1024 (FFT)

3. 7

500fF Signal-to-(Noise + distortion)

Ratio(SNDR) 59.35dB S/H

8-bit

Page 25: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

16

−120

−100

−80

−60

−40

−20

3. 7 Output power spectrum density of the S/H.

49.76dB (8-bit )

(3.1)[10]

2)(rmsnVTKC (3.1)

Vn(rms) 1/4 VLSB(=1mV) K Boltzmann�s constant

( 1.38 10-23JK-1 ) T 300¢K 4.14fF

500fF S/H

Page 26: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

17

3.2 Comparator

successive approximation ADC

16MHz

1/2 LSB Latch Latch

Latch

( 0V~3V) -1mV +1mV 63.5dB

Latch Latch

3. 8 Comparator

3. 8 Differential

preamplifier Latch

preamplifier

3.2.1 Comparator Circuit

3. 9 ph2 high M1 M2 M3 M4 M7

Differential Preamplifier ph2 low M3 M4 M5 M6

M7 Bistable Multivibrator [11]

Page 27: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

18

3. 9 Circuit design of the comparator.

ph1 ph2 ph3 high preamplifier

C1 C2 VcVIN DIN VV ph1 low C1 C2

node C D ph3 low C1 C2 Vin-

Vin+ node A B ph2

low Multivibrator latch BA VV

highVVV OUTININ 0

1 Size of the comparator

(W/L)M1 (1.1/1) M2 (1.1/1) M3 (7.5/1)*2 M4 (7.5/1)*2 M5 0.9/0.35 M6 0.9/0.35 M7 (7.6/1)*2 S1 0.9/0.35 S2 0.9/0.35

Page 28: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

19

50 A

(3.2) (3.3)[12] Channel-Length modulation

Latch

1

multiple fingers

2)(

21

THGSoxnD VVL

WCI (3.2)

2)(

21

THGSoxpD VVL

WCI (3.3)

208 W 2mV ( 1/2

LSB) (Offset)

3. 10 node A B

Auto-zeroing

3. 10 Auto-zeroing circuit.

Page 29: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

20

3.2.2 Clock of the Comparator

clock delay

3. 11

3. 11 Clock circuit of the comparator.

RC

3. 12 Rp Rn PMOS NMOS

CL Cgs Cgd (3.4) (3.5)

L RC

L i td (3.6)

3. 12 Simple RC model.

Page 30: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

21

)(

1

THGSoxp

p

VVL

WCR (3.4)

)(

1

THGSoxn

n

VVLWC

R (3.5)

i

iid CRt (3.6)

3. 13 CLK 16MHz ph1 ph3 3.2ns

ph2 ph3 12.5ns

3. 13 Clock simulation of the comparator.

3.3 Segmented Current-Mode DAC

successive approximation ADC DAC

ADC DAC successive

approximation ADC DAC segmented

CLK

ph1

ph2

ph3

Page 31: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

22

current-mode [3][13][14] DAC

Current Switching Matrix [11] 3. 14 N-bit

segmented D/A converter m coarse current source (Iu)

(coarse current source) (Im) current divider (fine

currents) Iout

3. 14 Basic N-bit segmented D/A converter.

DAC ( MSBs )

thermometer (monotonicity) thermometer

( MSBs ) current

divider ( LSBs )

VLSB DAC

(monotonic) 3.

15 DAC

( VLSB ) (Non-monotonic)

(three-way switch)

3. 16

Page 32: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

23

3. 15 Non-monotonic behavior of the DAC.

3. 16 Monotonic N-bit segmented D/A converter

3. 17 Monotonic behavior of the DAC

Page 33: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

24

I1 ~ Im-1

Im fine current divider

3. 17

DAC

Im

(segment current) Iseg

3. 18 N C MSBs

F LSBs

3. 18 Segmented N-bit inherently monotonic current DAC

MSBs Binary-to-Thermometer thermometer

LSBs

8 MSBs 4 LSBs 4

24 current divider 24

Iout (=Iout(coarse)+Iout(fine)) (I-V converter)

Vref

Page 34: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

25

Vref Vref OPA

VDS

3. 19

P-channel

N-channel

Rout

3. 19 N-bit bi-direction segmented DAC

8 3V 1V~2V

8 1 (sign bit) 3 (coarse) 4 (fine)

3 ( MSBs)

3 8 binary-to-thermometer 4

( LSBs) (2-way)

Page 35: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

26

P-channel ( Iout(coarse)+

Iout(fine)+) 1~Vref N-channel ( Iout(coarse)

-

Iout(fine)-) Vref ~2V Vref VDD/2(

) 8 ( )

P-channel N-channel 3 MSBs

thermometer m-1 Iout(coarse) (

Iout(coarse) MSBs

) m binary-weighted current divider

(Iseg) binary-weighted current divider binary-weighted LSBs

binary-weighted

Iout(fine) DAC Iout Iout(coarse) Iout(fine)

(Idump) Vref

3. 20

3. 20 DAC P

Page 36: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

27

Ma1~Ma8 P-channel Mb1~Mb24

Mc1~Mc16

Md1~Md5 current divider DAC N

P-channel N-channel

P-channel

N-channel Integral nonlinearity (INL)

error (current mirror) 3. 21

MOS VDS VGS DAC

3. 21 MOS

3.3.1 3-way switch controller

segmented DAC

MSBs binary-to-thermometer thermometer

2N-1 2N

N 2N

N 3 2

Page 37: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

28

2 3 8 binary-to-thermometer decoder

Binary Code Thermometer Code

B3 B2 B1 T7 T6 T5 T4 T3 T2 T1

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1 1

1 0 1 0 0 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

thermometer

1. Differential nonlinearity (DNL) error

2. (monotonicity)

3. Glitch

4 16

binary -to- thermometer

3 4 P-channel

PMOS N-channel

NMOS

3 P-channel (B7=0)

B6 B5 B4 Sw8 Sw7 � Sw2 Sw1

0 0 0 1 1 0 1 0 1 � 1 0 1 1 0 1

0 0 1 0 1 1 1 1 0 � 1 0 1 1 0 1

0 1 0 0 1 1 0 1 1 � 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1 � 1 0 1 1 0 1

1 0 0 0 1 1 0 1 1 � 1 0 1 1 0 1

1 0 1 0 1 1 0 1 1 � 1 0 1 1 0 1

1 1 0 0 1 1 0 1 1 � 1 1 0 1 0 1

1 1 1 0 1 1 0 1 1 � 0 1 1 1 1 0

Page 38: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

29

4 N-channel (B7=1)

B6 B5 B4 Sw16 Sw15 � Sw10 Sw9

0 0 0 1 0 0 1 0 0 � 1 0 0 0 0 1

0 0 1 1 0 0 1 0 0 � 0 0 1 0 1 0

0 1 0 1 0 0 1 0 0 � 0 1 0 0 1 0

0 1 1 1 0 0 1 0 0 � 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0 � 0 1 0 0 1 0

1 0 1 1 0 0 1 0 0 � 0 1 0 0 1 0

1 1 0 1 0 0 0 0 1 � 0 1 0 0 1 0

1 1 1 0 0 1 0 1 0 � 0 1 0 0 1 0

Idump Iout Iseg

2N*3(N ) 48

LSBs 3. 22 Iseg

Binary-weighted current divider

VDS Binary-weighted current

divider

3. 22 2-way switches circuit

Page 39: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

30

3.3.2 I-V Converter

DAC

OPA

OPA ( ) Vref 1.5V

(3.7)

IINrangeOutput

R unitout2

_ (3.7)

Output_range Iunit

I N DAC Iunit

I HSPICE

( N, Output_range, Iunit, I ) = ( 8, 1V, 1 A, 23nA ) Rout

3.83k

3.3.2.1 Operational Amplifier

OPA

OPA

OPA two -

stage

3. 23

Page 40: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

31

3. 23 Two-stage OPA

OPA DAC S/H DAC

(Bandwidth) slew

rate (DC gain) Phase Margin ( )

(3.8)

)1()( tstepout eVtV (3.8)

Vstep Vout(t)

Vstep 1V 0.999V( 1/4 LSB) DAC

(16MHz) 7 OPA

112 MHz 60dB Phase Margin 65 slew rate

3. 24

3. 24 Two-stage OPA

Page 41: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

32

PMOS Slew Rate Unity-gain frequency

Flicker

(3.9)[10]

5

6

4

7

)/()/(2

)/()/(

LWLW

LWLW

(3.9)

OPA 200MHz DC gain 65.2dB Phase Margin

61.3 2mV ADC OPA

OPA DAC

DAC OPA S/H Buffer

705 W

5

5 OPA

M1 8.1/1

M2 8.1/1

M3 4.2/1

M4 4.2/1

M5 (10/1)*2

M6 (10/1)*6

M7 (4.2/1)*6

M8 0.9/1

Page 42: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

33

3.3.3 Simulation results of the DAC

3. 25 Simulation result of the DAC

3. 25 DAC 8 000000002 ~ 111111112

1V~2V 1 A

16 A ADC

INL 3. 26 0.47 LSB

DNL 3. 27 0.154 LSB

Page 43: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

34

3. 26 DAC INL

3. 27 DAC DNL

3.4 SAR Controller

N SAR

[15] 3. 28 (memory register)

(shift register) non

- redundant successive approximation register [16] 3. 29

N 2N Flip-Flop(FF) N FF FF

finite state machine (FSM)

Page 44: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

35

3. 28 N-bit SAR

3. 29 N-bit SAR controller based on the non-redundant structure

SAR start low

MSB 1 0 DAC 1.5V(1/2 full scale)

low MSB 0

high MSB

1 high

comparator high low 8 8 6

Page 45: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

36

8 LSB

1 MSB

6 8 SAR

Conversion step D/A converter input Comparator output0 1 0 0 0 0 0 0 0 B7 1 B7 1 0 0 0 0 0 0 B6 2 B7 B6 1 0 0 0 0 0 B5 3 B7 B6 B5 1 0 0 0 0 B4 4 B7 B6 B5 B4 1 0 0 0 B3 5 B7 B6 B5 B4 B3 1 0 0 B2 6 B7 B6 B5 B4 B3 B2 1 0 B1 7 B7 B6 B5 B4 B3 B2 B1 1 B0

Result B7 B6 B5 B4 B3 B2 B1 B0 -

8 non-redundant structure SAR 8 (CU)

3. 30 D-FF

shift register load data hold data

(3.10)

BitNHoldLoadBitNHoldShiftBitNHoldBitN next)( (3.10)

3. 30 Nth

Page 46: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

37

1. ( )

2.

3. ( OR � 1 � )

3. 29 D-latch

D-latch D-latch 3. 31

6 clk high Vin Vout clk

low Vout

3. 31 D-latch

Page 47: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

38

Chapter 4 EXPERIMENTAL RESULTS

TSMC 1P4M 0.35 m CMOS

3V

2.6mW 2MS/s

4.1 ADC Test

Static test

ADC ADC 1V~2V ramp

1. Integral Nonlinearity Error (INL)

best-fit line INL 4. 1 INL

0.82 LSB

4. 1 ADC INL

2. Differential Nonlinearity Error (DNL)

DNL 0.5 LSB ADC monotonic

Page 48: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

39

DNL 0.31 LSB 4. 2

4. 2 ADC DNL

Dynamic test

ADC ADC 1Vpp

62.5kHz 32 32 1024

MATLAB 1024 Fast Fourier transform (FFT) 4. 3

signal-to-(noise and distortion) ratio (SNDR) 43.4dB

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

4. 3 Output power spectrum density of the ADC

Page 49: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

40

Effective number of bits (ENOB) 7

ENOB 4. 4 post layout simulation

7 Effective number of bits

SNDR ENOB

31.25kHz 44.01dB 7

62.5kHz 43.4dB 6.9

125kHz 42.82dB 6.8

250kHz 42.9dB 6.8

4. 4 ENOB versus input frequency

4.2 Layout Arrangement

poly Guard ring

Page 50: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

41

(Poly-Metal1-Metal2)

Guard ring 4. 5

4. 5 Layout arrangement

I/O PAD 4. 6

4. 6 I/O PAD arrangement

Layout view ( I/O PAD) 4. 7

Page 51: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

42

350 *430 I/O PAD

4. 7 Layout view

8-bit successive approximation ADC 8

8 Experimental results of the proposed ADC

Supply voltage 3V Total power dissipation < 2.6mW

Technology 0.35 m CMOSSampling rate 2MS/s

Resolution 8 bits Input swing 1V

INL < 0.82 LSB DNL < 0.31 LSB

SNDR@ fin = 62.5KHz 43.4 dB ENOB@ fin = 62.5KHz 6.9 bits

Active area < 0.15mm2

Page 52: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

43

Chapter 5

CONCLUSIONS & FUTURE WORKS

5.1 Conclusions

segmented current-mode DAC

segmented current-mode DAC 3V 8-bit 2MS/s successive

approximation ADC 2.6mW offset 2mV

ENOB 7-bit ADC

ADC successive approximation ADC 9

9 successive approximation ADC

Process Resolution Sampling rate Supply voltage Power consumption Active area

1.2um[1] 8-bit 50kS/s 1V 0.34mW 3.24mm2

3um [8] 8-bit 1.3MS/s 5V 70mW 3750mil2

3um [9] 8-bit 5MS/s N/A 50mW 0.903mm2

*0.35um 8-bit 2MS/s 3V 2.6mW 0.15mm2

* ADC

5.2 Future Works

1. Low voltage design ( VVDD 1 )

Page 53: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

44

2.

3. BIST (Built-In Self-Test)

4. Programmable resolution

Page 54: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

45

REFERENCES

1. S. Mortezapour, E.K.F. Lee, �A 1-V, 8-bit successive approximation ADC in standard CMOS process,� IEEE Journal of Solid-State Circuits, vol.35 Issue.4, pp.642-646, April 2000.

2. H. Neubauer, T. Desel, H. Hauer, �A successive approximation A/D converter with

16 bit 200 kS/s in 0.6 m CMOS using self calibration and low power techniques,� The 8th IEEE International Conference on Electronics Circuits and Systems, vol. 2 pp.859-862, 2001.

3. H. J. Schouwenaers, D. W. J. Greeneveld, and H. A. H. Tremeer, �A low-power

stereo 16-bit CMOS D/A converter for Digital Audio,� IEEE Journal of Solid-State Circuits, vol.23, no.6, pp.1290-1297, December 1988.

4. C. J. B. Fayomi, G. W. Roberts, and M. Sawan, �A 1-V, 10-bit rail-to-rail

successive approximation analog-to-digital converter in standard 0.18 m CMOS technology,� The 2001 IEEE International Symposium on Circuits and Systems, vol. 1, pp.460-463, 2001.

5. S. Ogawa, K. Watanabe, �A switched-capacitor successive-approximation A/D

converter,� IEEE Transactions on Instrumentation and Measurement, Vol.42, Issue: 4, pp.847-853, Aug. 1993.

6. Z. Zheng, U. Moon, J. Steensgaard, B. Wang, G. C. Temes, �Capacitor mismatch

error cancellation technique for a successive approximation A/D converter,� IEEE International Symposium on Circuits and Systems, vol.2, pp.326-329, 1999.

7. KH. Hadidi, V. S. Tso, and G. C. Temes, �Fast successive-approximation A/D

converters,� IEEE 1990 Custom Integrated Circuits Conference, pp.6.1/1-6.1/4, 1990.

8. KH. Hadidi, V. S. Tso, �An 8-b 1.3-MHz successive-approximation A/D

converter,� IEEE Journal of Solid-State Circuits, vol. 25, Issue: 3, pp.880-885, June 1990.

Page 55: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

46

9. K. Chen, C. Svensson, and J. Yuan, �A CMOS implementation of a video-rate successive approximation A/D converter,� IEEE International Symposium on Circuits and Systems, vol. 3, pp.2577-2580, 1988.

10. David A. Johns, Ken Martin, �Analog integrated circuit design,� John Wiley &

Sons, Inc., 1997. 11. Roubik Gregorian, �Introduction to CMOS OP-AMPs and comparators,�

Wiley-Interscience Publication, 1999. 12. Behzad Razavi, �Design of analog CMOS integrated circuit,� The McGraw-Hill

Companies, Inc., 2000. 13. John A. Schoeff, �An inherently monotonic 12 bit DAC,� IEEE Journal of

Solid-State Circuits, vol.sc-14, no.6, pp.904-911, December 1979. 14. D. W. J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A.

Bastiaansen, �A self-calibration technique for monolithic high-resolution D/A converter,� IEEE Journal of Solid-State Circuits, vol.24, no.6, pp.1517-1522, December 1989.

15. David F. Hoeschele, Jr., �Analog-to-digital and digital-to-analog conversion

techniques,� Wiley-Interscience Publication, 1994. 16. A. Rossi and G. Fucili, �Nonredundant successive approximation register for A/D

converters,� IEE of Electronics Letters, vol.32, Issue.12, pp.1055-10576, June 1996.

Page 56: (葉晨光)a Successive Approximation ADC Based on a New Segmented DAC

47

1978 3 6

( )

( )

2002 VLSI Design/CAD symposium accepted, �A Successive Approximation ADC

based on a new segmented DAC,� June, 2002.