14
1 Gases 1643 Torricelli (1608-1647) designed barometer Hg vacuum 760 mmHg = 1 atm ~ 1 bar = 14.7 lb/in 2 (psi) 1 bar = 10 5 Pa = 10 5 N/m 2 1 atm = 1.01325 × 10 5 pa 1654 Guericke (1602-1686) invented vacuum pump 5 (1 mmHg = 1 Torr) The Gas Laws Boyl’s law (1627 – 1691) gas for study Hg add Hg PV = k A constant P V V 1/P

add Hg gas for study V Hg V 1/P - 臺大開放式課程 (NTU ...ocw.aca.ntu.edu.tw/ocw_files/103S115/103S115_CS10L01.pdf(collision frequency) ux x t mu t u F ma m x x x x ( ) 6 Since

Embed Size (px)

Citation preview

  • 1

    Gases

    1643 Torricelli (1608-1647) designed barometer

    Hg

    vacuum

    760 mmHg= 1 atm ~ 1 bar= 14.7 lb/in2

    (psi)

    1 bar = 105 Pa= 105 N/m2

    1 atm= 1.01325 105 pa

    1654 Guericke (1602-1686) invented vacuum pump

    5

    (1 mmHg = 1 Torr)

    The Gas Laws

    Boyls law (1627 1691)

    gasfor study

    Hg

    add HgPV = k

    A constant

    P

    V

    V

    1/P

  • 2

    Charless law (1746 1823)

    1787 At constant P(1802 also by Gay-Lussac)

    V temperatureV

    T (oC)273.2 oC

    CH4

    Kelvin temperature scaleT (in K) = t (in oC) + 273 V = bT

    Avogadros law(explain Gay-Lussacs law of combining volumes)

    V = an

    Number of moles

    The ideal gas law

    Avogadros law V n (n: number of particles)Boyles law V 1/P (P: pressure)Charless law V T (T: temperature in K)

    Combined form: )(PTnRV

    Universal gas constant: 0.08206 LatmK1mol1

    Ideal gas law PV = nRT

    At STP (0 oC, 1 atm)V = 22.42 L for 1 mol of gas

    Molar volume

  • 3

    Vmd

    PdnRTdVm

    PdRT

    mass molar

    Knowing d of a gas at a given T and P Molar mass can be calculated

    (mass with n = 1 mol)

    Application

    Density

    Daltons law of partial pressures

    (1803) 321 PPPPtotal

    VRTn

    VRTn

    VRTn 321

    VRTn

    VRTnnn total )( 321

    Mole fractionTtotal P

    PnnX 111

    P1 = X1PT

  • 4

    The kinetic molecular theory of gases

    Ideal gas law Determined from experimentsCan be used for predictionDoes not tell why

    To understand whyBuild a theory (a model)

    SimpleComplex

    A simple model of an ideal gas

    Particles are very smallV of particles can be neglectedInter-particle distance is large: diffusibility

    compressibility

    In constant motionExert pressure on the wallsFact: very light gas can exert high pressure collide the walls in high frequency and velocityAlso explains diffusion

    No inter-particle forces: elastic collisionNo lost of pressure

  • 5

    Average KE T (in K)Mixing of two different gases at the same T no change of average KEAlso explains Daltons law

    Qualitative agreement with ideal gas lawconstant T: V P constant V: T P

    Quantitative treatment

    1857 Clausius (1822 1857)

    u

    L

    Particle in a box with a velocity u

    Velocity components on x, y, and z axis:ux , uy , and uz

    u2 = ux2 + uy2 + uz2

    ux

    uz

    uy

    u

    Lux frequency) (collision x

    tmu

    tummaF xxxx

    )(

  • 6

    Since

    Lmu

    uLmu

    tmuF x

    x

    xxx

    22/

    2)(

    Lmu

    Lmu

    Lmu

    LmuF zyx

    2222

    total2222

    The average

    LumF

    2

    total2

    Vum

    Lum

    LumFP

    3362

    Area

    2

    3

    2

    3

    2total

    6L2

    :( 2u the avg. of the square of the velocity)

    xuLt

    For nNA of particles

    moles Avogadros # VumnNP

    3

    2

    A

    Kinetic E per particle 221 um (1 J = 1 kgm2/s2)

    joule

    V

    umnN

    VumnN

    VumnNP

    )21(

    32

    322

    3

    2A2

    A

    2

    A

    Define (KE)avg as average kinetic E for 1 mol of particles

    Vn

    P avg)KE(

    32

    or avg(KE)32

    n

    PV

  • 7

    RT23(KE)avg

    Postulation: KE T

    Tn

    PV

    From experiment: RTnPV

    RTn

    PV avg(KE)3

    2 or

    Derived from theory

    RTumN23)

    21((KE) 2Aavg

    RTumN 32A MRTu 32

    Qualitatively: M 2u

    (M: molecular weight)

    MRTu 32

    urms : root mean square velocity

    R = 8.3145 JK1mol1 = 8.3145 kgm2s2K1mol1

    For O2 at STP: urms ~ 500 m/sHowever, mean free path = 1 107 m at STP

    (the distance between collisions)

  • 8

    Distribution of udescribed by Maxwell-Boltzmann distribution law

    (1831-1879) (1844-1906)

    Tkmu

    B

    BeuTk

    muf 2/22/32

    )2

    (4)(

    (kB : Boltzmanns constant; kB 6.02 1023 = R)

    200 400 600 800 1000 1200 velocity (m/s)

    O2 at T = 300 K

    prob

    abi l it

    y

    umax

    urms

    uavg

    MRT

    mTku B 22max

    MRT

    mTku B

    88

    avg

    MRT

    mTku B 33rms

    Qualitatively: umax, uavg, urms M1

    M

  • 9

    Effusion and diffusion

    vacuum

    1846 Graham (1805 1869)Two gases at the same T, P

    Rate of effusion:1

    2

    2

    1

    dd

    RR

    From kinetic molecular theory:

    1

    2

    1

    2

    2

    1

    2

    1

    2

    1

    /8/8

    dd

    MM

    MRTMRT

    uu

    RR

    avg

    avg

    1. A demonstration of the validity of the theory2. Determine MW3. Separation of gases

    Similar for diffusion

    Ex. Enrichment of U23592 )U(238

    92

    Natural abundance: 0.7%

    UF6: 0043.16

    6

    UF235

    UF238

    238

    235 MM

    RR

    Abundance: 36

    2386

    235

    1005.73.99

    700.0UFUF

    (7.05 103)(1.0043) = 7.08 103

    Enriched for one step

    3345 109.300.97

    00.3)0043.1)(3.99

    700.0(

  • 10

    Collisions of gas particleswith the container wall

    Collision frequency per sec.

    VAN

    MRT

    VNAuZ

    8

    avg

    ActuallyM

    RTVAN

    MRT

    VANZ

    28

    41

    Ex. Impact rate of O2 on 1.00 cm2 at 1.00 atm, 27 oC?Soln:

    Lmol1006.4

    K) 300)(molatm

    KL (0.08206

    atm00.1 2RTP

    Vn

    325232

    mmolecule 1044.210001002.61006.4

    VN

    123

    2

    32524

    s 102.72

    )molkg1020.3)(14.3(2

    K) 300)(molKJ3145.8(

    )m 1044.2)(m 1000.1(

    Z

  • 11

    Intermolecular collisions

    For ideal gas, not so importantDoes not effect P, V, and T

    d 2d

    Collision volume per second= d2uavg

    MRTd

    VN

    VN

    MRTd

    VNud

    8)(8))((

    secondpercollisions of Number

    22avg

    2

    Consider relative velocity avg)2( u

    MRTd

    VN

    MRTd

    VNZ 22collision 4

    82

    For O2 at 1.0 atm, 27 oC, assuming 300 pm diameterZ = 4 109 s1

    Mean free path The time between collision is 1/ZThe distance between collision = (1/Z)uavg =

    ))((2

    1

    4

    8

    22 dVN

    MRTd

    VN

    MRT

    = 1 107 m for O2

  • 12

    Real gases

    Ideal gas: 1nRTPV

    200 400 600 800 1000

    2.0

    1.5

    1.0

    0.5

    PVnRT

    P (atm)

    N2CH4

    H2

    CO2

    ideal gasat 200 K

    200 400 600 800

    1.8

    1.4

    1.0

    0.6

    203 K

    293 K

    673 Kideal gas

    PVnRT

    P (atm)

    N2

    Real gases approach ideal behavior at low P and high T

    Van der Waals modification (1873)Videal Vobs nb

    Pideal Pobs a 2)(obsVn

    van der Walls equation

    nRTnbVV

    naP obsobs

    obs )]()([2

    Concentration term

    a, b determined by exp.

    gas a (L2atmmol2) b (Lmol1)

    He 0.0341 0.0237H2 0.244 0.0266O2 1.36 0.0318

    CH4 2.25 0.0428CO2 3.59 0.0427

  • 13

    nbVnRT

    VanP

    obsobsobs

    22

    2

    2

    obsobsobs V

    annbV

    nRTP

    For 1 mol of gas

    2Va

    bVRTPobs

    Cf. ideal gasV

    RTP

    b increases P

    a decreases P

    volume factor

    Intermolecular forces

    nRTnbVV

    naP obsobs

    obs )]()([2

    RTVa

    VbRTV

    abV

    VRTPV

    1

    1

    At low P V is large a outweighs b PV/RT < 1

    At high P b outweighs a PV/RT > 1

    At high T V is largeFast moving interparticle interaction is relatively small

    Overall Approaching ideal

    at high T and low P (higher V)

    (for 1 mole)

    Another view

    21 RTVab

    RTVa

    RTbP

    RTPV

  • 14

    Chemistry in the atmosphere

    Ozone in troposphere ()

    NO2(g) NO(g) + O(g)

    From exhaust (also include NO)

    h

    O(g) + O2(g) O3(g)ozone

    NO(g) + O2(g) NO2(g)

    Overall: 3/2 O2(g) O3(g)

    Other pollutants

    Coal burning

    S(s) + O2(g) SO2(g)

    In coal

    2SO2(g) + O2(g) 2SO3(g)

    SO3(g) + H2O(l) H2SO4(aq)

    Formation of acid rainExhaust treatment

    Lime stone: CaCO3(s) CaO(s) + CO2(g)powdered lime

    CaO(s) + SO2(g) CaSO3(s)Calcium sulfite

    CaCO3

    coal

    air

    CO2 + CaO

    S + O2

    CaSO3SO2

    scrubber

    combustion chamber

    CaSO3 slurry

    tosmokestack

    water + CaO