43
PACS Instrument The Promise of FIRST 12 Dec 2000 1 Albrecht Poglitsch, MPE Garching Albrecht Poglitsch, MPE Garching RST Photodetector Array Camera & Spectrometer (PACS RST Photodetector Array Camera & Spectrometer (PACS

Albrecht Poglitsch, MPE Garching

  • Upload
    mab

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

FIRST Photodetector Array Camera & Spectrometer (PACS). Albrecht Poglitsch, MPE Garching. Science Requirements. Basis for PACS design Main scientific drivers Investigations of the distant universe: galaxy formation and evolution - history of star formation and nuclear activity - PowerPoint PPT Presentation

Citation preview

Page 1: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

1

Albrecht Poglitsch, MPE GarchingAlbrecht Poglitsch, MPE Garching

FIRST Photodetector Array Camera & Spectrometer (PACS)FIRST Photodetector Array Camera & Spectrometer (PACS)

Page 2: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

2

Science Requirements• Basis for PACS design• Main scientific drivers

– Investigations of the distant universe: galaxy formation and evolution - history of star formation and nuclear activity

– Studies of star formation and the origin of the Initial Mass Function in our own Galaxy

– Physics and chemistry of the interstellar medium, Galactic and extragalactic

– Giant planets and the history of the Solar System

• Required observing capabilities– Imaging photometry in 3 bands in the 60 - 210µm range with

requirements on sensitivity per detector and field of view– Imaging line spectroscopy in the 60 - 210µm (goal: 55 -

210µm) range with requirements on sensitivity per detector, spectral resolution and instantaneous bandwidth, and field of view

Page 3: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

3

PACS In A Nutshell• Imaging photometry

– two bands simultaneously (60-90 or 90-130 µm and 130-210 µm) with dichroic beam splitter

– two filled bolometer arrays (32x16 and 64x32 pixels, full beam sampling)

– point source detection limit ~3 mJy (5, 1h)

• Integral field line spectroscopy

– range 57 - 210 µm with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500)

– two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed)

– point source detection limit 2…8 x10-18 W/m2 (5, 1h)

Focal Plane Footprint

Page 4: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

4

PACS Design: Focal Plane FootprintPACS FOV

Y Direction [arcmin]

-8 -6 -4 -2 0 2 4 6 8

Z D

irec

tio

n [

arcm

in]

-12

-11

-10

-9

-8

3.5 x 3.0

3.5 x 1.75

0.78 x 0.78

PACS 5.Mai 2000

Focal Surface (seen from M2)

0 2 4 6 8 10 12 140

2

4

6

8

10

12

14

024681012140

2

4

6

8

10

12

14

0

30

60

90

120

150

180

210

240

270

300

330

BB Fields: 3.5 x 3.9 arcmin

Bolometer Fields: 3.5 x 1.75 arcmin2 / Two Point choppingSpectrometer Fields: 0.78 x arcmin2 Three Point Chopping

+Z

+Y

[arc

min

]PACS FOV on Sky

BB Field 1 BB Field 2Bolometer Field 1 Bolometer Field 2

Spectrometer Fields

0.78 x 0.78 arcmin2

3.5 x 3.0 arcmin2

Page 5: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

5

Definition of the FOV for the Photometer

Physical pixel size: 0.75 x 0.75 mm2

Page 6: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

6

Definition of the FOV for the Spectrometer

• Pixel scale has to be a compromise – small number of spatial pixels

limits field of view– diffraction introduced by image

slicer does not allow full sampling

– large wavelength range requires compromise

• Physical optics analysis shows that 9.4”/pixel gives low enough diffraction losses (15% at 175 µm) with acceptable spatial resolution/

47”

sampling

• Pixel scale has to be a compromise – small number of spatial pixels

limits field of view– diffraction introduced by image

slicer does not allow full sampling– large wavelength range requires

compromise

• Physical optics analysis shows that 9.4”/pixel gives low enough diffraction losses (15% at 175 µm) with acceptable spatial resolution/

• Full spatial sampling in the long-slightly offset pointings

wave band with two,

Page 7: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

7

• Optical “image slicer” re-arranges 2-D field of view (5x5 pixels) along 1-D slit (1x25 pixels)

• Grating spectrograph disperses light

• Dispersed slit image is projected on 2-D detector array

• 16 spectral channels recorded simultaneously for each spatial element

PACS Integral Field Line Spectrometer

Page 8: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

8

PACS FPU

Page 9: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

9

PACS FPU

Page 10: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

10

PACS FPU

Page 11: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

11

PACS FPU

Page 12: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

12

PACS FPU

Page 13: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

13

PACS FPU

Page 14: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

14

PACS FPU

Page 15: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

15

PACS FPU

Page 16: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

16

PACS FPU

Page 17: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

17

PACS FPU

Page 18: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

18

PACS FPU

Chopper

sGe:GaDetectorRed Spectrometer

Blue Bolometer

Red Bolometer

Black Body I and II

0.3 K Cooler

Filter Wheel I

Filter Wheel II

Grating

sGe:Ga DetectorBlue Spectrometer

Encoder

Grating Drive

Entrance Optics

PhotometerOptics

Calibrator Optics

SlicerOptics

SpectrometerOptics

Page 19: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

19

Photometer Image Quality

Aberrations of full optical train (telescope + PACS) included

• Strehl ratio 0.99• Distortion < 1 pixel

• Strehl ratio >0.95• Distortion < 1 pixel

Page 20: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

20

Distortion in spatial direction: ~0.1 pixel

Spectrometer Image Quality

Center of Array, center

Corner of Array, extreme

re-imaged telescope focus

“slice” throughpoint spread function

capture mirrorentrance

slit field mirror

grating pixel

detectorarray

PACS SpectrometerDiffraction Analysis

Page 21: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

21

PACS Ge:Ga Photoconductor

Arrays

• 16x25 pixel filled arrays– 25 linear modules– integrated cryogenic

readout electronics

16 pixel stressed detector module

Feed optics: light cone array

Page 22: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

22

PACS Photoconductor Modules

• Ge:Ga photoconductors– unstressed: 40 - 120µm– stressed: 110 - 210µm– background-limited in both,

photometry and spectroscopy,if amplifier noise is low enough

Wavelength (µm)

T=1.7K, P=9x10-14W, tint=1 s, Cint=10 pF

NE

P [W

/H

z]

NEP vs. bias

Page 23: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

23

PACS Cryogenic Readout Electronics

• Capacitive feedback transimpedance amplifier (CTIA) for each pixel, based on AC-coupled inverter stage in silicon CMOS technology

• 16 CTIAs multiplexed on each CRE chip for each linear detector module

• CRE chips integrated in detector modules

• Amplifier noise compatible with background-limited performance in spectroscopy

In

Out-A

Cf

CAC

CTIA architecture

AnalogBus

18-Bit Shift Register

Detectors

Clock

Switch Control Logic

CA2 CA18

Sync

Reset

Sample

CA1

Page 24: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

24

Bolometer Array Assembly

Support300 mKfilter

Strap 300 mK

Mechanical interfaceRibbon cable 300 mK

2 K buffer amplifiers

(top view)

(bottom view)

Page 25: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

25

Bolometer Arrays: 16x16 Subarray

Pixel

Interconnection circuit withreflectors

I/C 1 Multiplexer

I/C 2 MOS Followers

will be integratedin the interconnectioncircuit in next models

-Mechanical suspension-Thermal link to the substrate-Electrical connection

pixel efficiency

Page 26: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

26

Bolometer Readout & Performance

10-16W/Hz1/2

Page 27: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

27

PACS Grating

• Diamond ruled reflection grating• Optical size 320 x 80 mm• Used in 1st, 2nd, and 3rd order,

angle range 48° ± 20°– 1st order (red detector) 210 -

105 µm

– 2nd order (blue detector) 105 - 72 µm

– 3rd order (blue detector)72 - 55 µm

• Groove profile optimized for highest efficiency over all 3 orders using PCgrate full EM-code

• Cryogenic torquer motor drive• Inductosyn angular resolver

Grating efficiency (above) and resolution (below)

100 ms

Page 28: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

28

PACS Chopper

• Chopper with variable throw and arbitrary waveform used for spatial modulation and for observation of internal calibration sources

• Electromagnetic linear drive

• Monolithic flexural pivots

• Magnetoresistive position sensors

• Duty cycle > 80%

Page 29: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

29

Instrument Units and Subsystem Responsibilities

Page 30: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

30

Observing Modes

• Observing modes are combinations of instrument modes and satellite pointing modes

• Instrument modes:– dual-band photometry– single-band photometry– line spectroscopy– range spectroscopy

• Pointing modes:– stare/raster/line scan– with/without nodding

Page 31: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

31

Dual-Band Photometry• Both arrays operating

– full spatial sampling in each band– long-wave array imaging 130-210µm band– short-wave array imaging 60-90 or 90-130µm

band• sub-band selected by filter

• Standard mode for PACS as prime instrument• Observing parameters

– chopper mode (off/on; waveform, throw)– pointing parameters (stare/raster/scan;nod)– integration time per pointing

Page 32: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

32

Single-Band Photometry

• One array operating– long-wave array imaging 130-210µm band

or– short-wave array imaging 60-90 or 90-

130µm band

• Standard mode for PACS/SPIRE parallel mode

• Observing parameters– chopper mode (off/on; waveform, throw)– pointing parameters (stare/raster/scan;nod)– integration time per pointing

Page 33: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

33

Line Spectroscopy

• One or two arrays operating– observation of individual lines– long-wave array in 105-210µm band– short-wave array in 57-72 or 72-105µm band– wavelength in primary band determines

wavelength in secondary band

• Observing parameters– scan width (default 0)– chopper mode (off/on; waveform, throw)– pointing parameters (stare/raster/scan;nod)– integration time per pointing

Page 34: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

34

Range Spectroscopy

• Two arrays operating– observation of extended wavelength ranges

• continuous scan (full resolution) or steps (SED sampling)

– long-wave array in 105-210µm band– short-wave array in 57-72 or 72-105µm band

• Observing parameters– start- and end wavelength– resolution mode– chopper mode (off/on; waveform, throw)– pointing parameters (stare/raster/scan;nod)– integration time per pointing

Page 35: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

35

(a) Values for the photometry modes from 60-90 / 90-130 µm and 130-210 µm, respectively.

(b) The formal transmission of >1 takes into account the acceptance solid angle of the light cones / bolometer pixels which differs from the beam solid angle.

Parameters of PACS Instrument Model

Page 36: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

36

PACS Sensitivityd

ete

ctio

n lim

it (

5,

1h)

[mJy

]

dete

ctio

n lim

it(5

, 1

h)

[10

-18 W

/m2]

wavelength [µm]

Sensitivity (photometry)

Sensitivity (spectroscopy)

wavelength [µm]

FIRST/PACS 5confusion limit

Page 37: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

37

Deep extragalactic surveys

• Characterize the obscured part of high redshift star and galaxy formation, especially in the range z~1-3 where most star formation happened and most metals formed.

• Resolve the cosmic FIR background• Multiwavelength information essential

for starburst/AGN discrimination and redshift indication.

• PACS spatial resolution crucial to beat confusion and for identification.

• Photometric/spectroscopic followup.• Example: A 1000 hour dual-band

PACS survey to 5 depths of 10mJy at 110m and 170m will cover ~15 square degrees and detect tens of thousands of galaxies.

Simulated deep PACS survey of 10-5sr at 75, 110, 170 µm (false colors) to a 1 limit of 0.7, 0.7, 0.5 mJy. Such a survey will need ~40 hours

0 2 4 6 8 10 [arcmin]

[arc

min

]0

2

4

6

8

1

0

Page 38: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

38

IMF in cores and clusters

• Understanding the origin of the stellar mass distribution

• Efficient mapping of large areas to get good statistics

• Good SED coverage including maximum to get accurate masses/luminosities

• Probing down to equivalent brown dwarf masses

• Individual cores observable in few hours

• 3-band survey to the same limit for 6 star forming regions within 500pc (total 12 sq. degree): ~500 hours

Serpens core – PACS 100 m simulation 0.08 M, 5 limit – 2 hours map, 2 hours SED photometry

Page 39: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

39

Spatially resolved study of the ISM in galaxies

• What is the nature and distribution of the various gas and dust phases?

• How do these vary in galaxies of different types and metallicity?

• What are the heating/cooling mechanisms and the relation to energy sources (star formation / AGN)?

• Observations: Deep FIR imaging and spectroscopic mapping of galaxies

• Time: Several hours for broad-band imaging and spectroscopic mapping in [CII] / [OI] of a nearby large galaxy like M83.

• Spatial resolution decisive in separating nuclei / arms / interarms / star forming complexes

M31 175m: Haas et al. 1998

Page 40: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

40

Stellar mass loss

• Establish mass loss history through high resolution imaging of dust shells

• Determine physical and chemical conditions in the inner circumstellar envelopes, through PACS spectroscopy of the important coolants CO, HCN, and H2O, and of various other species participating in the initial chemistry of the escaping gas.

Y CVn ISOHOT 90µm: Izumiura et al. 1997

W Hya ISO-LWS:Barlow et al. 1996

Page 41: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

41

HD • Estimate baryon density –

ratio D/H• HD observable from solar

system to galaxies• Survey of 18 Galactic PDRs

within 1.1kpc. Integration times for spectra between 1min and 4h, total 28 hours

Wright et al. (1999)

Page 42: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

42

The PACS Consortium

· PI Albrecht Poglitsch MPE Garching, Germany· Co-PI Christoffel Waelkens KU Leuven, Belgium

Co-I´s :

· Austria: Franz Kerschbaum UVIE Wien

· Belgium: Chris van Hoof IMEC Leuven

Rik Huygen KU Leuven

Claude Jamar CSL Liège

· France: Suzanne MaddenLouis Rodriguez CEA SaclayMarc Sauvage

Hervé Wozniak OAMP Marseille

Page 43: Albrecht Poglitsch, MPE Garching

PACS Instrument

The Promise of FIRST 12 Dec 2000

43

· Germany: Otto H. BauerHelmut Feuchtgruber Reinhard GenzelReinhard Katterloher MPE GarchingDieter LutzEckhard SturmLinda Tacconi

Ulrich Klaas MPIA HeidelbergDietrich Lemke

Thomas Henning AIU Jena

· Italy: Paola Andreani OAP Padova

Paolo Saraceno IFSI Roma

Gianni Tofani OAA Arcetri

· Spain: Jordi Cepa IAC Tenerife