Antioxidant Dll Tumbuhan Yaman

Embed Size (px)

Citation preview

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    1/10

    Journal of Ethnopharmacology 111 (2007) 657666

    Antioxidant, antimicrobial and cytotoxic activitiesof selected medicinal plants from Yemen

    Mohamed Al-Fatimi a, Martina Wurster c,Gudrun Schroder b, Ulrike Lindequist c,

    a Faculty of Medicine and Health Sciences, Pharmacy Section, Department of Pharmacognosy, Aden University, Aden, Yemenb Friedrich Loffler Institute of Medical Microbiology, Ernst-Moritz-Arndt-University Greifswald, Germany

    cInstitute of Pharmacy, Department of Pharmaceutical Biology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany

    Received 4 September 2006; received in revised form 9 January 2007; accepted 13 January 2007

    Available online 19 January 2007

    Abstract

    Ninety crude extracts, including dichloromethane, methanol and aqueous extracts from 30 medicinal plants used in the Yemeni ethnomedicine to

    treat common infections, were screened in vitro for antimicrobial activities against three Gram-positive bacteria and two Gram-negative bacteria,

    Candida maltosaand five opportunistic human fungal pathogens (two yeasts, three hyphomycetes).

    Most of the plants showed antibacterial activities. Extracts fromTamarindus indicaflowers andFicus vastafruits have been the most active.

    Of the30 plants tested, 13 showed antifungal activity (40%) against oneore more human pathogenic fungi. Thestrongest inhibition was exhibited

    byAzima tetracantha(fruits),Sansevieria ehrenbergii(fruits) andSolanum incanum(fruits).

    Ten methanol extracts, especially those ofAcacia asakbarks andSolanum nigrumfruits, showed effective free radical scavenging activities in

    the DPPH assay.

    Remarkable cytotoxic activity against FL-cells was shown only for five plants, among them Plicosepalus curviflorus(stems).

    2007 Elsevier Ireland Ltd. All rights reserved.

    Keywords: Medicinal plants; Yemen; Antimicrobial; Cytostatic; Antioxidant

    1. Introduction

    The use of traditional medicine at the primary health care

    level is widespread in Yemen (Schopen, 1983; Badib, 1991; Al-

    Fatimi,1999; Miller and Morris, 2004).But only a few species

    from Yemeni natural sources have been scientifically investi-

    gated for their biological activity (Ali et al., 2001; Al-Fatimi et

    al., 2005a, 2005b, 2006; Mothana and Lindequist, 2005).

    Because of the resistance that pathogenic build against antibi-

    otics, there is a great interest in the search for new antimicrobialdrugs also from nature. Natural crude drug extracts and bio-

    logically active compounds isolated from plant species used in

    traditional medicine canbe prolific resourcesfor such new drugs.

    Therefore in the present study, medicinal plants were

    collected from differentlocalitiesin Yemento studytheir antimi-

    Corresponding author. Tel.: +49 3834 864868; fax: +49 3834 864885.

    E-mail address:[email protected](U. Lindequist).

    crobial, antioxidant and cytotoxic properties according to their

    use in Yemeni traditional medicine and to investigate their in

    vitro activity in order to discover resources for new lead struc-

    tures or to improve the traditional medicine.

    2. Materials and methods

    2.1. Plant material

    The plant material (Table 1) was collected from different

    localities of Yemen based on the information provided in the

    ethnobotanical survey conducted in the time from January 2002

    to August 2003.

    The collected plants were identified in the Pharmacog-

    nosy Department Aden University, Aden, Yemen and at the

    Botanischer Garten and Botanisches Museum Berlin-Dahlem,

    Freie University, Berlin, Germany. Voucher specimens

    (Table 1/FT 001-FT 030) for each plant are deposited in the

    Department of Pharmacognosy, Aden University, Aden, Yemen.

    0378-8741/$ see front matter 2007 Elsevier Ireland Ltd. All rights reserved.

    doi:10.1016/j.jep.2007.01.018

    mailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.jep.2007.01.018http://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.jep.2007.01.018mailto:[email protected]
  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    2/10

    658 M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666

    Table 1

    Ethnobotanical data of the investigated Yemeni plants

    Family/botanical name (voucher specimen no.) Part (tested) Local name Site of collection Major traditional usesa

    Amaranthaceae/Aerva javanica(Burm. fil.) Juss. (FT 004) Fruits (Diaspores) ra Dhamar Sedative (3)

    Aloaceae/Aloe veraL. Burm.f. (FT 005) Seeds Saber Tahama Malaria (3)

    Asclepiadaceae/Caralluma penicillata(Deflers) N.E. Br.

    (FT 009)

    Fruits Uluth Taiz Skin rash, scabies (3)

    Asclepiadaceae/Leptadenia pyrotechnica(Forssk.) Decne.(FT 018)

    Whole plant Marh Schuqura Wound (3)

    Asclepiadaceae/Orbea deflersiana(Lavranos) Bruyns. (FT

    012)

    Whole plant Urza Imkhudeera Diabetes, wound (3)

    Asclepiadaceae/Rhytidocaulon tortum(N.E. Br.) M.G.

    Gilbert (FT 023)

    Whole plant Quaran Alhudidah Wound, allergy (3)

    Burseraceae/Commiphora foliaceaSprague (FT 012) Stem cortex Rashaha Alraqub Wound, antiseptic

    Burseraceae/Commiphora kua(R.Br. ex Royle) Vollesen

    (FT 011)

    Leaves Murr Gischan Detergent for mouth and throat,

    bronchitis (2); face and skin

    antiseptic (1); cough (4)

    Caesalpiniaceae/Tamarindus indicaL. (FT 029) Flowers Humar Hadramut Skin antiseptic, insecticides (3)

    Capparaceae/Cadaba farinosaForssk. (MAB 007) Leaves Gurduma Taiz Urinary infection, haemorrhoids (3)

    Capparaceae/Cadaba glandulosaForssk. (FT 008) Leaves Gurduma Gaheen Haemorrhoids (3)

    Capparaceae/Maerua aff. oblongifolia vel macrantha(FT

    019)

    Gall Gurduma Gaheen Asthma, skin diseases (3)

    Cucurbitaceae/Zehneria anomalaC. Jeffrey (FT 030) Gall Madh Imkhudeera Skin diseases, burns, wound (3)

    Dracaenaceae/Sansevieria ehrenbergiiSchweinf. ex Baker

    (FT 026)

    Fruits Seni Lawdar Warts, antiseptic (3)

    Euphorbiaceae/Euphorbia hadramauticaBaker (FT 013) Whole plant Nafeez Almahra Bruises, eczema, wound (3)

    Fabaceae/Indigofera spinosaForssk. (MAB 017) Leaves Hassar Imaeen Kidney stones (3); cough, cold (4)

    Labiatae/Ocimum forskoleiBenth. (FT 020) Herb Dhumaran Imshaa Cosmetic, fever, skin infections (3)

    Loranthaceae/Plicosepalus curviflorusTiegh. (FT 022) Stems Saquar Lawdar Cancer (3)

    Malvaceae/Gossypium areysiamumDefl. (FT 015) Leaves afra Imshaa Wound, dermatitis (3)

    Malvaceae/Gossypium barbadenseL. (FT 016) Seeds Uttub Zingebar Cosmetic (2); acne, rheumatism (3)

    Mimosaceae/Acacia asakWilld. (FT 001) Stem cortex Talah Aldhala Gastric ulcer, antiseptic, skin

    diseases (3)

    Mimosaceae/Acacia nilotica(L.) Delile (FT 002) Leaves Qarad Yafa Expectorating, wounds, pharyngitis,

    bronchitis (2); diabetes (1)

    Mimosaceae/Acacia tortilisHayne (FT 003) Fruits Sumyrr Shabwah Stomach ache, digestive (3)

    Moraceae/Ficus vastaForssk. (FT 014) Fruits Tawlaq Radaa Cough, expectorant (3)

    Salvadoraceae/Azima tetracanthaLam. (FT 006) Fruits Sor Lawdar Rheumatism, cough (3)

    Salvadoraceae/Salvadora persicaL. (FT 025) Gall Rak Modyah Dermatitis (3)

    Solanaceae/Solanum incanumL. (FT 027) Fruits Nuqum Hadramut Teeth antiseptic, toothache (1, 4);

    skin diseases (2)

    Solanaceae/Solanum nigrumL. (FT 028) Fruits Qumqam Lahaj Skin antiseptic (1); diarrhea,

    expectorant, laxative (2);

    hemorrhages (3)

    Vitaceae/Cissus rotundifoliaVahl (FT 010) Leaves Alfaq Hagah Digestive (3); foodstuff, fever (4)

    Zygophyllaceae/Fagonia luntiiBaker (FT 024) Whole Hell Lawdar Antiseptic, burns (3)

    a References for uses: (1)Al-Fatimi (1999); (2)Badib (1991);(3)Oral interview (2002, 2003);(4)Schopen (1983).

    2.2. Extraction

    The plant materials were allowed to air dry and afterwardspulverized in grinder.

    Thirty grams of the pulverized materials were successively

    extracted with 300 ml of dichloromethane, 300 ml of methanol

    and 300 ml of water at room temperature for 8 h. The extracts

    were then concentrated under reduced pressure at 40 C, freeze-

    dried and stored in exsiccator until use.

    2.3. Determination of antimicrobial activities

    2.3.1. Microorganisms

    The following bacterial strains were employed in the screen-

    ing: Staphylococcus aureus (ATCC 29213), Bacillus subtilis

    (ATCC 6059), Escherichia coli (ATCC 25922), Pseudomonas

    aeruginosa(ATCC 27853) andMicrococcus flavus(SBUG 16).

    As fungal strains Candida maltosa (SBUG 17), Candida albi-cans (ATCC 90028), Candida krusei (ATCC 90878),Aspergillus

    fumigatus (13550/99), Trichophyton mentagrophytes (05/2004),

    Absidia corymbifera (100798). The SBUG strains were given

    from the strain collection of the Institute of Microbiology

    (SBUG) and the strains 13550/99, 05/2004 and 100798 from

    the Friedrich Loffler Institute of Medical Microbiology of the

    Ernst-Moritz-Arndt-University Greifswald, Germany.

    2.3.2. Antimicrobial assays

    Modified agar diffusion method (Bauer et al., 1966) was used

    to determine antibacterial and antifungalactivities. The bacterial

    cell suspension was prepared from a 24 h culture and adjusted

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    3/10

    M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666 659

    Table 2

    In vitro antibacterial activity of selected plants from Yemen

    Botanical name Extract and % yield Inhibition zones (mm) against

    S. a. B. c. M. f. E. c. P. a.

    Acacia asak D (2.8) 15 10

    M (18.5) 15 20 8

    W (16.2)

    Acacia nilotica D (2.9) 10 10

    M (17.2) 15 20 10

    W (14.8) 15 15 20 15

    Acacia tortilis D (2.6) 20 20 15

    M (11.3) 10 8 8 10

    W (15.4) 10 8 8

    Aerva javanica D (1.8)

    M (10.5) 8 8 15

    W (9.7) 10 10 15

    Aloe vera D (1.3) 8 8

    M (12.8)

    W (11.8) 8 10 10

    Azima tetracantha D (1.9) 15 10 15

    M (18.7) 10 20 10

    W (7.9) 15 10 20

    Cadaba farinosa D (3.4) 15 15 18

    M (17.2) 8 20 10

    W (9.5) 8 8

    Cadaba glandulosa D (3.1) 10 8

    M (16.8) 15

    W (1.3) 8 8 8 8

    Caralluma penicillata D (2.7) 15

    M (9.5) 8

    W (8.6) 10 8 10

    Cissus rotundifolius D (3.2) 10 10 10 M (14.5) 15 15 18

    W (11.2)

    Commiphora foliacea D (1.7) 10 8 8

    M (17.1) 10 10

    W (11.8) 15 10 8 10

    Commiphora kua D (2.8) 8 20

    M (12.5) 10 8 25

    W (16.3) 8

    Euphorbia hadramautica D (1.5) 8 8

    M (16.7) 15 10

    W (9.1)

    Fagonia luntii D (1.7) 18 12

    M (15.9) 20 15 10W (12.4) 15 8 15

    Ficus vasta D (2.3) 8

    M (18.7) 18 25 10 15

    W (12.2) 15 15 18

    Gossypium areysiamum D (1.8) 10 15

    M (16.8) 15 15 10

    W (18.8) 20 8 10

    Gossypium barbadense D (9.9) 10 10

    M (17.1) 10 15 20

    W (6.6) 8 15 10

    Indigofera spinosa D (2.6) 8

    M (14.3) 15 15

    W (9.4) 8

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    4/10

    660 M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666

    Table 2 (Continued)

    Botanical name Extract and % yield Inhibition zones (mm) against

    S. a. B. c. M. f. E. c. P. a.

    Leptadenia pyrotechnica D (1.9) 10 8

    M (14.8) 15 10 10

    W (9.6) 8

    Maerua oblongifolia D (2.7) 8

    M (18.5) 10

    W (14.8)

    Ocimum forskolei D (2.6) 10 15 18

    M (16.9) 8 15

    W (17.4) 8 8 10 10

    Orbea deflersiana D (1.2) 8 8 15

    M (12.3) 10 10 8 15

    W (10.1) 8 8 8 8

    Plicosepalus curviflorus D (2.1) 15 20 15 8 10

    M (18.9) 10 8 10 10

    W (13.7) 15 8

    Rhytidocaulon cf. tortum D (1.6) 15 15

    M (12.3) 10

    W (11.7)

    Salvadora persica D (1.7) 15

    M (16.9) 15 10 15 10 15

    W (14.8) 10

    Sansevieria aff.ehrenbergii D (1.6) 8 8 15

    M (15.6) 15 20 15 10

    W (14.8) 15 10 20

    Solanum incanum D (2.9) 8

    M (17.3) 12 15

    W (13.1) 10 8 10

    Solanum nigrum D (2.6) 12 10

    M (18.5) 15 10 10 15 15

    W (16.2) 10 10 10

    Tamarindus indica D (2.3) 25 15

    M (19.4) 28 20 18 20

    W (17.6) 20 20 15 20 20

    Zehneria anomala D (2.1) 15

    M (18.8) 16 15

    W (17.5) 8

    Ampicillin 10g/disc 26 28 31 N.T. N.T.

    Gentamicin 10 mg/disc N.T. N.T. N.T. 15 18

    S. a.: Staphylococcus aureusATCC 29213; B. c.:Bacillus subtilisATCC 6059; E. c.:Escherichia coliATCC 25922; P. a.:Pseudomonas aeruginosaATCC 27853;

    M. f.: Micrococcus flavus SBUG 16. Extracts: D, dichloromethane; M, methanol; W, water. Values are inhibition zone diameter (mm); (conc. 2 mg/disc); : no

    inhibition; N.T.: not tested; negative controls did not show any activity.

    to an inoculation of 1 106 colony forming units per ml. Sterile

    nutrient agar (Immunpraparate, Berlin, D, 26 g agar/l distilled

    water) was inoculated with bacterial cells (200 l of bacterial

    cell suspension in 20 ml medium) and poured into dishes to give

    a solid plate. Yeasts and hyphomycetes (1 105 colony forming

    units per ml) were inoculated into sterile Mueller-Hinton-agar

    (Becton Dickinson, Heidelberg) according to DIN E 58940-3

    (DIN, 2004)for the agar disc-diffusion assay.

    Forty microliters of test material (equivalent to 2 mg of the

    dried extract), dissolved in the same solvent like for extrac-

    tion, were applied on sterile paper discs (6 mm diameter, Schlei-

    cher and Schuell, D, ref. no. 321860). Ampicillin, gentamicin

    and nystatin were used as positive control, and the solvents

    dichloromethane and methanol as negative control. The sol-

    vents were allowed to evaporate in a stream of air. The discs

    were deposited on the surface of inoculated agar plates. Plates

    were kept for 3 h in refrigerator to enable prediffusion of the

    substances into the agar. Plates with bacteria were incubated for

    24h at 37 C, plates with yeasts for 48 h at 36 C and plates

    with hyphomycetes for 72 h at 30 C. Inhibition zone diameters

    around each of the disc (diameter of inhibition zone plus dia-

    meter of the disc) were measured and recorded at the end of the

    incubation time. An average zone of inhibition was calculated

    for the three replicates.

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    5/10

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    6/10

    662 M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666

    Table 3 (Continued)

    Botanical name Extract MIC (g/ml)

    S. a. B. c. M. f. E. c. P. a.

    Leptadenia pyrotechnica D 1000 NA NA NA NA

    M 500 1000 NA NA 1000

    W NA NA NA NA NA

    Maerua oblongifolia D NA NA NA NA NAM NA NA NA 1000 NA

    W NA NA NA NA NA

    Ocimum forskolei D 1000 500 250 NA NA

    M NA NA 500 NA NA

    W NA NA 1000 NA 1000

    Orbea deflersiana D NA NA 500 NA NA

    M 1000 1000 NA NA 500

    W NA NA NA NA NA

    Plicosepalus curviflorus D 500 125 500 NA 1000

    M 1000 NA 1000 NA 1000

    W NA NA 500 NA NA

    Rhytidocaulon cf. tortum D 500 500 NA NA NA

    M 1000 NA NA NA NAW NA NA NA NA NA

    Salvadora persica D NA NA 500 NA NA

    M 500 1000 500 1000 500

    W 1000 NA NA NA NA

    Sansevieria aff.ehrenbergii D NA NA 500 NA NA

    M 500 125 500 NA 1000

    W 500 1000 125 NA NA

    Solanum incanum D NA 1000 NA NA NA

    M 1000 NA 500 NA NA

    W NA 1000 NA 1000 1000

    Solanum nigrum D 1000 1000 NA NA NA

    M 500 1000 1000 500 500

    W NA 1000 1000 NA 1000Tamarindus indica D 125 500 NA NA NA

    M 25 125 NA 125 125

    W 125 125 125 125 125

    Zehneria anomala D NA NA 15 NA NA

    M 1000 1000 NA NA NA

    W NA NA NA NA NA

    Ampicillin 0.05 N.T. 0.25 N.T. N.T.

    S. a.:Staphylococcus aureusATCC 29213; B. c.:Bacillus subtilisATCC 6059;

    E. c: Escherichia coli ATCC 25922; P. a.: Pseudomonas aeruginosa ATCC

    27853; M. f.:Micrococcus flavusSBUG 16. Extracts: D, dichloromethane; M,

    methanol; W, water. NA, not active (MIC > 1000g/ml); N.T., not tested.

    3. Results

    The paper describes the antimicrobial, antioxidant and cyto-

    toxic activity of 30 different plant species belonging to twenty

    families and used in Yemeni ethnomedicine.

    A summary of the ethnobotanical data of the medicinal plants

    studied is given inTable 1.

    The results of the antibacterial screening of a total of 90

    extracts of 30 species against five bacteria species are summa-

    rized in Table 2 (inhibition zones in the agar diffusion assay) and

    Table 3 (MIC values). Extracts of the following plants showed in

    the agar diffusion assay antibacterial activity against at least four

    bacterial strains: Acacia nilotica, Acacia tortilis, Commiphora

    foliacea, Ficus vasta, Ocimum forskolei, Plicosepalus curvi-

    florus,Salvadora persica,Sansevieria aff.ehrenbergii,Solanum

    nigrumandTamarindus indica.

    Gram-positive bacteria are more sensitive against the

    extracts than Gram-negative bacteria. In the agar diffusion

    assay 45 extracts were found to be active against Staphylo-

    coccus aureus, 51 extracts against Bacillus subtilis and 49

    against Micrococcus flavus. 31 extracts inhibited the growth

    of Pseudomonas aeruginosa and 2 that of Escherichia coli

    (Table 2).

    The lowest MIC values against Staphylococcus aureus

    showed the methanol extracts ofAzima tetracantha(10g/ml),

    Ficus vasta (50g/ml) and Tamarindus indica (25g/ml)

    and the water extract of Gossypium areysiamum (25g/ml).

    Remarkable are also the low MIC values of the methanol extract

    ofAzima tetracantha and of the dichlormethan extract ofZehne-

    ria anomalaagainstMicrococcus flavus(20 and 15g/ml resp.,

    Table 3).

    On the other hand five plant species, namely Caralluma

    penicillata,Euphorbia hadramautica,Leptadenia pyrotechnica,Maerua oblongifolia, Rhytidocaulon cf. tortum, showed only

    very weak activities.

    Table 4

    In vitro antifungal activity of methanol extracts of tested Yemeni plant species

    Botanical name Inhibition zones (mm) against

    Cm Ca Ck Af Ac Tm

    Acacia asak 8 11 11 10

    Acacia nilotica 19 11 14 14

    Acacia tortilis 8

    Aerva javanica

    Aloe vera 11 Azima tetracantha 25 17 18 16 16 30

    Cadaba farinosa

    Cadaba glandulosa

    Caralluma penicillata

    Cissus rotundifolius

    Commiphora foliacea 9

    Commiphora kua 12 15

    Euphorbia hadramautica

    Fagonia luntii 10

    Ficus vasta

    Gossypium areysiamum

    Gossypium barbadense

    Indigofera spinosa 8 8

    Leptadenia pyrotechnica

    Maerua oblongifolia Ocimum forskolei 30

    Orbea deflersiana

    Plicosepalus curviflorus

    Rhytidocaulon cf. tortum

    Salvadora persica

    Sansevieria ehrenbergii 15 17 8 18 24

    Solanum incanum 15 24 18 25 26 42

    Solanum nigrum

    Tamarindus indica 8

    Zehneria anomala

    Nystatin (100g/disc) 25 26 22 22 25 25

    Fungi: Cm, Candida maltosa; Ca,Candida albicans; Ck, Candida krusei; Af,

    Aspergillus fumigatus; Ac, Absidia corymbifera; Tm, Trichophyton mentagro-

    phytes.

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    7/10

    M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666 663

    Table 5

    Free radical scavenging activities of the methanolic extracts of plant species, which were positive in the thin layer chromatography assay

    Extracts concentration Radical scavenging activity (%)

    10g/ml 50g/ml 100g/ml 500g/ml 1000g/ml

    Acacia asak 40.77 89.7 91.85 92.6 92.77

    Acacia nilotica 33.8 77.1 94.46 94.62 94.62

    Acacia tortilis 5 11.9 26.17 92.06 92.6Aerva javanica 8.6 13.6 29.4 91.6 91.8

    Gossypium barbadense 30.8 34.66 44.35 94.07 95.21

    Indigofera spinosa 40.6 44.9 92.92 93.08 92.92

    Ocimum forskolei 0.17 1.7 12.1 53.8 90.26

    Plicosepalus curviflorus 8.6 16.7 32 90.8 92.8

    Solanum nigrum 40.1 93.6 94 94.5 95.3

    Tamarindus indica 35.38 59.39 80.87 94.98 93.86

    Ascorbic acid 87 96.9 96.9 97.0 97.2

    Comparing the activities of the extracts prepared by differ-

    ent solvents methanol extracts exhibited the most interesting

    results. Therefore these extracts were tested also for other

    activities. The results of antifungal tests of methanol extractsare presented in Table 4. Thirteen extracts showed antifungal

    activity (40%). The most active plants against opportunistic

    human pathogens were Azima tetracantha, Sansevieria ehren-

    bergii and Solanum incanum. They showed broad spectrum

    antifungal activities. The strongest effect was observed with

    the extracts of Solanum incanum against Trichophyton men-

    togrophytes (inhibition zone 42 mm) and with the extracts of

    Table 6

    In vitro cytotoxicity of plant methanol extracts tested against FL-cells

    Extract IC50% (g/ml) against FL-cells

    Acacia asak >1000Acacia nilotica >1000

    Acacia tortilis >1000

    Aerva javanica >1000

    Aloe vera 780

    Azima tetracantha >1000

    Cadaba farinosa 720

    Cadaba glandulosa 800

    Caralluma penicillata >1000

    Cissus rotundifolius 900

    Commiphora foliacea 430

    Commiphora kua 25

    Euphorbia hadramautica >1000

    Fagonia luntii 490

    Ficus vasta 980

    Gossypium areysiamum >1000Gossypium barbadense >1000

    Indigofera spinosa >1000

    Leptadenia pyrotechnica 550

    Maerua oblongifolia 740

    Ocimum forskolei 880

    Orbea deflersiana >1000

    Plicosepalus curviflorus 5

    Rhytidocaulon cf. tortum 980

    Salvadora persica >1000

    Sansevieria ehrenbergii 30

    Solanum incanum 35

    Solanum nigrum 450

    Tamarindus indica 9

    Zehneria anomala >1000

    Azima tetracanthaagainstTrichophyton mentogrophytes(inhi-

    bition zone 30 mm). Remarkable are also the specific effects of

    the methanol extract ofOcimum forskoleiagainstTrichophyton

    mentogrophytes (inhibition zone diameter 30 mm). Seventeenplant species did not show any antifungal activity against the

    tested human pathogenic fungi.

    The methanol extracts of 10 plant species showed effec-

    tive free radical scavenging in the DPPH assay. The methanol

    extracts ofSolanum nigrumfruits andAcacia asakbarks exhib-

    ited the highest antioxidant activity (Table 5).

    Among the 30 methanol extracts tested for cytotoxicity

    against FL-cells only fiveextracts(Commiphora kua, Plicosepa-

    lus curviflorus,Sansevieria ehrenbergii,Solanum incanumand

    Tamarindus indica) showed remarkable activities with IC50val-

    ues below 50g/ml (Table 6).

    4. Discussion and conclusions

    The results of our screening assays justify the use of the

    investigated plants in the Yemeni ethnomedicine. It is the first

    report about biological tests with Acacia asak, Azima tetra-

    cantha, Cadaba farinose, Cissus rotundifolius, Commiphora

    foliacea, Gossypium areysiamum, Euphorbia hadramautica,

    Ficus vasta, Indigofera spinosa, Leptadenia pyrotechnica,

    Maerua oblongifolia, Ocimum forskolei, Orbea deflersiana, Pli-

    cosepalus curviflorus,Rhytidocaulon cf. tortum,Fagonia luntii,

    Sansevieria ehrenbergiiand Zehneria anomala. Whereas other

    parts of Aloe vera, Tamarindus indica andSansevieria ehren-

    bergiiare well investigated, we describe the effects of the seedsofAloe vera,thefruitsofSansevieriaehrenbergii andthe flowers

    ofTamarindus indicafor the first time. The existing knowledge

    about the other investigated plants is in the most cases very

    limited.

    Some authors describe antimicrobial effects of extracts of

    the roots of Acacia nilotica against Gram-positive and Gram-

    negative bacteria (Elnabi et al., 1992; Kambizi and Afolayan,

    2001; Srinivasan et al., 2001). Tung et al. (2007)reported the

    antioxidant activities of other species of the genusAcacia, espe-

    cially of ethanolic extracts from the bark ofAcacia confuse.

    The antimicrobial activity and cytotoxicity ofAerva lanata

    was reported byChowdhury et al. (2002).Some flavonoid gly-

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    8/10

    664 M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666

    cosides (Zadorozhny et al., 1986)and alkaloids (Zapesochnaya

    et al., 1991)could be found and are possibly responsible for the

    weak activities observed by us.

    Aloe vera is well known for its polysaccharides and

    anthraquinone derivatives. Besides, two new dihydrocoumarin

    derivatives with strong antioxidant activity could be isolated

    (Zhang et al., 2006). This activity could be shown also

    for some aloesin derivatives, e.g. isorabaichromone, feruloyl-

    aloesin and p-coumaroylaloesin (Yagi et al., 2002). In our

    investigation the seed extracts do not show strong bioact-

    ivities.

    For Azima tetracantha only some phytochemical results

    are known. Daulatabad et al. (1991) identified some fatty

    acids, namely ricinoleic acid and cyclopropenoid acid from

    the seed oil. Besides, the seeds contain a complex mixture of

    26 flavonoids, predominantly as glycosides and acyl-glycosides

    (Bennett et al., 2004).Isorhamnetin 3-O-rutinoside was identi-

    fied in the leaves(Williams and Nagarajans, 1988). Rao and Rao

    (1978)reported the occurrence of triterpenoids and Rall et al.

    (1967)that of dimeric piperidine alkaloids (azimine, azcarpineand carpaine). Flavonoids as well as triterpenoids and alkaloids

    could be responsible for the observed antimicrobial activities.

    InCadaba glandulosaflavonol glycosides have been identi-

    fied byGohar (2002).In Cadaba farinosaAhmad et al. (1990)

    found the sesquiterpene lacton cadabicilone.

    Oxypregnane glycosides, the penicillosides D-G, have been

    identified in the aerial parts ofCaralluma penicillata (Abdel-

    Sattaret al., 2002).

    From Cissus quadrangularis tetracyclic triterpenoids

    (Bhutani et al., 1984; Guta and Verma, 1990) and stilbene

    derivatives (Adesanya et al., 1999)are known.

    The resins of Commiphora kua contain terpenes from bi-sabolen and dammaran type. Antifungal activities against plant

    pathogenic fungi could be shown (Dekebo et al., 2002; Manguro

    et al., 2003). Whether similar compounds are responsible for the

    observed antimicrobial and cytotoxic activities of the extracts of

    the leaves remains unclear.

    Whereas no reports about Ficus vasta are existing,

    Baumgartner et al. (1990) isolated two indolizidine alka-

    loids from the methanol extract of leaves of the related

    species Ficus septica. The chloroform extract of Gossyp-

    ium hirsutum leaves was active against Staphylococcus

    aureus (Rojas et al., 2001). Bell et al. (1975) showed

    the antimicrobial activity of six terpenoids from Gossypium

    sp., namely gossypiumhemigossypol, 6-methoxyhemigossypoland 6-deoxyhemigossypol, gossypium-6-methoxygossypol and

    6,6-dimethoxygossypol. Possibly Gossypium areysiamum,

    tested here for the first time, contains similar compounds.

    A pentacyclic triterpenoid named leptadenol was isolated

    from the hexane extract ofLeptadenia pyrotechnica (Noor et

    al., 1992).The seeds ofLeptadenia reticulataare rich in hyper-

    oside and rutin (Subramanian and Nair, 1968) and the aerial part

    ofLeptadenia arborea has been shown to contain pinoresinol,

    syringaresinol, leucanthemitol and E-ferulaldehyde (El-Hassan

    et al., 2003).FromLeptadenia reticulataSrivastav et al. (1994)

    had isolated three pregnane glycosides. We did not found strong

    activities ofLeptadenia pyrotechnica.

    Besides the paper ofElegami et al. (2001)about the antimi-

    crobial activities of some Plicosepalus species there are no

    further reports about this genus.

    The antimicrobial effects of bark and pulp extracts of mis-

    wak, Salvadora persica, were previously evaluated (Almas

    and Al-Bagieh, 1999). Abdelrahman et al. (2003) identified

    volatile compounds, oleic, linolic and stearic acids, esters of fatty

    acids and aromatic acids in crude Salvadora persica extracts,

    which have antimicrobial effects. Presently it cannot be decided

    whether these compounds are related to the effects observed by

    us.

    Like other Solanum speciesSolanum incanumandSolanum

    nigrum contain steroidal alkaloid glycosides. In Solanum

    incanum solamargin has been found. This compound shows

    cytotoxicity against human hepatoma cells (Kuo et al., 2000).

    Antitumor effects have also been described forSolanum nigrum

    (Son et al., 2003; Lee and Lim, 2006).The observed antibacte-

    rial and antifungal activities of Solanum species are well known

    and probably caused by the alkaloids (Mohamed et al., 1996;

    Kambizi and Afolayan, 2001).Besides, flavonoids and chloro-genic acids have been documented for Solanum incanum (Lin

    et al., 2000).

    The antimicrobial activity of Tamarindus indica has been

    attributed to lupeol (Ali et al., 1998). The reported antioxi-

    dant activity of the leaves of this plant (Perez et al., 2003;

    Ramos et al., 2003) was similar to the activity of the

    flowers observed by us. It should be caused by polyphe-

    nolic compounds which have been already isolated from

    the seeds (Luengthanaphol et al., 2004; Sudjaroen et al.,

    2005).

    The results of these screeninginvestigations confirm the great

    potential of plants of the Yemeni ethnomedicine for productionof bioactive compounds and are useful for rationalizing the use

    of medicinal plants in primary health care. The phytochemical

    characterization of the extracts, the identification of responsible

    bioactive compounds and quality standards are necessary.

    Acknowledgements

    The authors would like to thank Deutscher Akademi-

    scher Austauschdienst (DAAD) for a grant enabling the stay

    of Dr. Al-Fatimi at Ernst-Moritz-Arndt-University Greifswald

    that was used to carry out this research. Besides this we thank

    Mrs. Ruth Ball, University Greifswald, for technical assistance

    and Dr. Norbert Kilian, Botanischer Garten and Botanisches

    Museum Berlin-Dahlem Freie University, Berlin, for the assis-

    tance by the taxonomical identification of some plant species.

    References

    Abdelrahman, R.F., Skaug, N., Whyatt, A.M., Francis, G.W., 2003. Volatile

    compounds in crude Salvadora persica extracts. Pharmaceutical Biology

    41, 399404.

    Abdel-Sattar, E., Meselhy, M.R., Al-Yahya, M.A., 2002. New oxypregnane

    glycosides fromCaralluma penicillata. Planta Medica 68, 430434.

    Adesanya, S.A.,Nia, R., Martin, M.T., Boukamcha, N., Montagnac, A., Pais, M.,

    1999. Stilbene derivatives from Cissus quadrangularis. Journal of Natural

    Products 62, 16941695.

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    9/10

    M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666 665

    Ahmad, V.U., Amber, A.U.R., Fizza, K., Kamal, A., 1990. Cadabicilone,

    a sesquiterpene lactone from Cadaba farinose. Zeitschrift fuer Natur-

    forschung B: A Journal of Chemical Sciences 45, 11001102.

    Al-Fatimi, M., 1999. From the Nature to the Pharmacy. Obadi Center for

    Researches, Sanaa.

    Al-Fatimi, M., Friedrich, U., Jenett-Siems, K., 2005a. Cytotoxicity of plants

    used for traditional medicine in Yemen. Fitoterapia 34, 355358.

    Al-Fatimi, M.,Juelich,W.D., Jansen, R., Lindequist, U., 2006. Bioactive compo-

    nents of the traditionallyused mushroomPodaxis pistillaris. Evidence-basedComplementary and Alternative Medicine 3, 8792.

    Al-Fatimi, M., Wurster, M., Kreisel, H., Lindequist, U., 2005b. Antimicrobial,

    cytotoxic and antioxidant activity of selected basidiomycetes from Yemen.

    Pharmazie 60, 776780.

    Ali, M.S., Ahmad, V.U., Azhar, I., Usmanghani, K., 1998. Chemotropism and

    antimicrobial activity ofTamarindus indica. Fitoterapia 69, 4346.

    Ali, N.A., Juelich, W.-D., Kusnick, C., Lindequist, U., 2001. Screening of

    Yemeni medicinal plants for antibacterial and cytotoxic activities. Journal

    of Ethnopharmacology 74, 173179.

    Almas, K., Al-Bagieh, N.H., 1999. The antimicrobial effects of bark and pulp

    extracts of miswak,Salvadora persica. Biomedical Letters 60, 7175.

    Badib, A.S., 1991. The Medicinal Plants of Yemen. Maktabat Alirshad, Sanaa.

    Bauer, A.W., Kirby, W.M.M., Sheriss, J.C., Turck, M., 1966. Antibiotic suscep-

    tibility testing by standardised single method. American Journal of Clinical

    Pathology 45, 493496.Baumgartner, B., Erdelmeier, C.A.J., Wright, A.D., Rali, T., Sticher, O.,

    1990. An antimicrobial alkaloid from Ficus septica. Phytochemistry 29,

    33273330.

    Bell, A.A., Stipanovic, R.D., Howell, C.R., Fryxell, P.A., 1975. Antimicro-

    bial terpenoids of gossypiumhemigossypol, 6-methoxyhemigossypol and

    6-deoxyhemigossypol. Phytochemistry 14, 225231.

    Bennett,R.N., Mellon,F.A.,Rosa, E.A.,Perkins,L., Kroon, P.A., 2004. Profiling

    glucosinolates, flavonoids, alkaloids, and other secondary metabolites in

    tissues ofAzima tetracantha L. (Salvadoraceae). Journal of Agricultural and

    Food Chemistry 22, 58565862.

    Bhutani, K.K., Kapoor, R., Atal, C.K., 1984. Investigation of medicinal plants.

    2.2. Unsymmetric tetracyclic triterpenoids from Cissus quadrangularis.

    Phytochemistry 23, 407410.

    Brand, W.W., Cuvelier, H.E., Berset, C., 1995. Use of a free radical method to

    evaluate antioxidant activity. Food Science and Technology 82, 2530.

    Chowdhury, D., Sayeed, A., Islam, A., Bhuiyan, M.S.A., Khan, G.R.M.A.M.,

    2002. Antimicrobial activity and cytotoxicity ofAerva lanata. Fitoterapia

    73, 9294.

    Daulatabad, C.D., Desai, V.A., Hosamani, K.M.,Jamkhandi, A.M., 1991. Novel

    fatty acids in Azima tetracantha seed oil. Journal of the American Oil

    Chemists Society 68, 978979.

    Dekebo, A., Dagne, E., Hansen, L.K., Gautun, O.R., Aasen, A.J., 2002. Two

    octanordammarane triterpenes fromCommiphora kua. Phytochemistry 59,

    399403.

    DIN, Deutsche Institution fur Normung e.V., 2004. DIN Taschenbuch 222,

    Medizinische Mikrobiologie und Immunologie. Beuth-Verlag, Berlin.

    Elegami, A.A., Elnima, E.I., Muddathir, A.K., Omer, M.E.,2001. Antimicrobial

    activity ofPlicosepalus acaciae. Fitoterapia 72, 431434.

    El-Hassan, A., El-Sayed, M., Hamed, A.I., Rhee, I.K., Ahmed, A.A., Zeller,

    K.P., Verpoorte, R., 2003. Bioactive constituents ofLeptadenia arborea.

    Fitoterapia 74, 184187.

    Elnabi, O.M.A., Reisinger, E.C., Reinthaler, F.F., Still, F., Eibel, U., Kreis,

    G., 1992. Activity of Acacia nilotica (L.) Willd-Ex-Del. Var Nilotica

    (Mimosaceae). Journal of Ethnopharmacology 37, 7779.

    Gohar, A.A., 2002. Flavonol glycosides from Cadaba glandulosa. Zeitschrift

    fuer Naturforschung C: A Journal of Biosciences 57, 216220.

    Guta, M.M., Verma, R.K., 1990. Unsymmetric tetracyclic triterpenoid from

    Cissus quadrangularis. Phytochemistry 29, 336337.

    Hilgenfeld, M., Jacob, W., Oehme, P., 1979. Patent DDR 120550, January 30.

    Kambizi, L., Afolayan, A.J., 2001. An ethnobotanical study of plants for the

    treatment of sexually transmitted diseases (njovhera) in Guruve District,

    Zimbabwe. Journal of Ethnopharmacology 77, 59.

    Kuo, K.-W., Hsu, S.-H., Li, Y.-P., Lin, W.-L., Liu, L.-F., Chang, L.-C., Lin,

    C.-C., Lin, C.-N., Sheu, H.-M., 2000. Anticancer activity evaluation of the

    Solanum glycoalkaloid solamargine apoptosis on human hepatoma cells.

    Biochemical Pharmacology 60, 18651873.

    Lee, S.-J., Lim, K.-T., 2006. 150kDa glycoprotein isolated from Solanum

    nigrumL. stimulates caspase-3 activation and reduces inducible nitric oxide

    production in HCT-116 cells. Toxicology in Vitro 20, 10881097.

    Lin, Y.L., Wang, W.L., Kuo, Y.H., Chen, C.F., 2000. Nonsteroidal constituents

    from Solanum incanum L. Journal of the Chinese Chemical Society 74,

    247251.

    Lindl, T., Bauer, J., 1989. Zell und Gewebekultur. Gustav-Fischer-Verlag Jena,Berlin, p. 181.

    Luengthanaphol,S., Mongkholkhajornsilp,D., Douglas,S., Douglas,P.L., Peng-

    sopa, L., Pongamphai, S., 2004. Extraction of antioxidants from sweet Thai

    tamarind seed coatpreliminary experiments. Journal of Food Engineering

    63, 247252.

    Manguro, L.O., Ugi, I., Lemmen, P., 2003. Further bisabolenes and dammarane

    triterpenes ofCommiphora kua resin. Chemical Pharmacological Bulletin

    (Tokyo) 51, 479482.

    Miller, A.G., Morris, M., 2004. Ethnoflora of the Socotra Archipelago. Royal

    Botanic Garden Edinburgh.

    Mohamed, S., Saka, S., Elsharkawy, S.H., Ali, A.M., Muid, S., 1996. Antimy-

    cotic screening of 58 Malaysian plants against plant pathogens. Pesticide

    Science 47, 259264.

    Mothana, R.A.A., Lindequist, U., 2005. Antimicrobial activities of somemedic-

    inal plants of the Island Soquotra. Journal of Ethnopharmacology 96,177181.

    Noor, F., Ahmed, A., Imtiazuddin, S.M., Khan, B., 1992. A triterpenoid from

    Lepetadenia pyrotechnica. Phytochemistry 32, 211212.

    Oral interview with the people in the place of plant collection, 2002, 2003.

    Perez, E., Rodriguez-Malaver, A., Padilla, N., Medina-Ramirez, G., La Penna,

    E., 2003. Free Radical Biology and Medicine 35, S45.

    Rajbhandari, M., Schopke, T., 1999. Antimicrobial activity of some Nepalese

    medicinal plants. Pharmazie 54, 232233.

    Rall, G.J.H., Smalberg, T.M., Dewaal, H.L., Arndt, R.R., 1967. Dimeric piperi-

    dine alkaloids from Azima tetracantha Lam.azimine, azcarpine and

    carpaine. Tetrahedron Letters 36, 34653469.

    Ramos, A., Visoza, A., Piloto, J., Garcia, A., Rodriguez, C.A., Rivero, R., 2003.

    Screening of antimutagenicity via antioxidant activity in Cuban medicinal

    plants. Journal of Ethnopharmacology 87, 241246.

    Rao,E.V., Rao,P.R.S.P., 1978. Occurrence of triterpenoidsinAzima tetracantha.

    Current Science 47, 8571857.

    Rojas, G., Levaro, J., Tortoriello, J., Navarro, V., 2001. Antimicrobial evaluation

    of certain plants used in Mexican traditional medicine for the treatment of

    respiratory diseases. Journal of Ethnopharmacology 74, 97101.

    Schopen, A., 1983. Traditionelle Heilmittel in Jemen. Franz Steiner Verlag

    GmbH, Berlin.

    Sievers, A., Oshinowo, L., Schultze, W., Koch, A., Richter, R., 2000. Einfache

    dunnschicht-chromatographische Prufung auf antioxidative Verbindungen

    mit dem DPPH-test. C35. Camag Bibliography Service 88, 1415.

    Son, Y.-O., Kim, J., Lim, J.-C., Chung, Y., Chung, G.-H., Lee, J.-C., 2003. Ripe

    fruits ofSolanum nigrum L. inhibits cell growth and induces apoptosis in

    MCF-7 cells. Food and Chemical Toxicology 41, 14211428.

    Srinivasan, D., Nathan, S., Suresh, T., Perumalsamy, P.L., 2001. Antimicrobial

    activityof certain Indian medicinalplantsused in folkloricmedicine. Journal

    of Ethnopharmacology 74, 217220.

    Srivastav, S., Deepak, D., Khare, A., 1994. Three novel pregnane glycosides

    fromLeptadenia reticulataWight and Arn. Tetrahedron 50, 789798.

    Subramanian, S.S., Nair, A.G.R., 1968. Flavonoids of some Asclepiadaceous

    plants. Phytochemistry 7, 17031704.

    Sudjaroen, Y., Haubner, R., Wurtele, G., Hull, W.E.,Erben, G., Spiegelhalder,B.,

    Changbumrung, S., Bartsch, H., Owen, R.W., 2005. Isolation and structure

    elucidation of phenolic antioxidants from Tamarind (Tamarindus indicaL.)

    seeds and pericarp. Food and Chemical Toxicology 43, 16731682.

    Tung, Y.-T., Wu, J.-H., Kuo, Y.-H., Chang, S.-T., 2007. Antioxidant activi-

    ties of natural phenolic compounds fromAcacia confusabark. Bioresource

    Technology 98, 11201123.

    Williams, U.V., Nagarajans, S., 1988. Isorhamnetin-3-O-rutinoside from leaves

    ofAzima tetracanthaLam. Indian Journal of Chemistry Section B: Organic

    Chemistry including Medicinal Chemistry 27, 3871387.

  • 8/13/2019 Antioxidant Dll Tumbuhan Yaman

    10/10

    666 M. Al-Fatimi et al. / Journal of Ethnopharmacology 111 (2007) 657666

    Yagi, A., Kabash, A., Okamura, N.H., Haraguchi, H., Moustafa, S.M., Khal-

    ifa, T.I., 2002. Antioxidant, free radical scavenging and anti-inflammatory

    effects of Aloesin derivatives in Aloe vera. Planta Medica 68, 957960.

    Zadorozhny, A.M., Zapesochnaya, G.G., Pervykh, L.N., 1986. Investigation

    of the herb Aerva lanata. 1. O-Acylglycosides of flavonoids. Khimiko-

    Farmatsevtichskii Zhurnal 20, 855858.

    Zapesochnaya, G.G., Pervykh, L.N., Kurkin, V.A., 1991. Study ofAerva lanata

    grass. 3. Alkaloids, Khimiya Prirodnykh Soedinenii 3, 388394.

    Zhang, X.F., Wang, H.M., Song, Y.L., Nie, L.H., Wang, L.F., Liu, B.,

    Shen, P.P., Liu, Y., 2006. Isolation, structure elucidation, antioxidative and

    immunomodulatory properties of two novel dihydrocoumarins from Aloe

    vera. Bioorganic Medicinal Chemical Letters 16, 949953.