articulo cesar.pdf

Embed Size (px)

Citation preview

  • 8/19/2019 articulo cesar.pdf

    1/8

    Inuence of temporomandibular joint discdisplacement on craniocervical posture

    and hyoid bone position

    Jung-Sub An,a Da-Mi Jeon,a Woo-Sun Jung,b Il-Hyung Yang,c Won Hee Lim,d and Sug-Joon Ahne

    Seoul, Korea

    Introduction: The purpose of this study was to evaluate craniocervical posture and hyoid bone position in or-

    thodontic patients with temporomandibular joint (TMJ) disc displacement.  Methods:  The subjects consisted

    of 170 female orthodontic patients who consented to bilateral magnetic resonance imaging of their TMJs.

    They were divided into 3 groups based on the results of magnetic resonance imaging of their TMJs: bilateral

    normal disc position, bilateral disc displacement with reduction, and bilateral disc displacement without reduc-

    tion. Twenty-

    ve variables from lateral cephalograms were analyzed with 1-way analysis of variance toinvestigate differences in craniocervical posture and hyoid bone position with respect to TMJ disc

    displacement status. Pearson correlation coefcients were calculated to analyze the relationships between

    craniofacial morphology and craniocervical posture or hyoid bone position.  Results:  Subjects with TMJ disc

    displacement were more likely to have an extended craniocervical posture with Class II hyperdivergent patterns.

    Themost signicant differences werefound between patients with bilateral normal disc position and bilateral disc

    displacement without reduction. However, hyoid bone position in relation to craniofacial references was not

    signicantly different among the TMJ disc displacement groups, except for variables related to the mandible.

    Pearson correlation coefcients indicated that extended craniocervical posture was signicantly correlated

    with backward positioning and clockwise rotation of the mandible.  Conclusions: This suggests that craniocer-

    vical posture is signicantly inuenced by TMJ disc displacement, which may be associated with hyperdivergent

    skeletal patterns with a retrognathic mandible. (Am J Orthod Dentofacial Orthop 2015;147:72-9)

    Disc displacement of the temporomandibular joint(TMJ) is a common temporomandibular disorder(TMD)1 and refers to an abnormal positional rela-

    tionship between thearticular disc and thecondyle, fossa,and articular eminence.2 TMJ disc displacementgenerally progresses from a reducing to a nonreducing state andmay lead to TMJ clicking, crepitus, and in some cases,pain and jaw movement limitations.2-4 Common causesof TMJ disc displacement include trauma andparafunctional habits, such as clenching and bruxism.4

     Various imaging techniques are available for evalua-tion of the TMJ, such as transcranial radiography,arthrography, tomography, computed tomography,

    and magnetic resonance imaging (MRI).5 Among them, MRI is the only modality that directly depicts the discand is the gold standard in determining articular disc po-sition relative to the condyle and articular eminence

     because of its high diagnostic accuracy.6 In addition, italso offers other advantages, such as noninvasiveness,lack of soft tissue distortion, minimal pain, minimal

    risk potential, and lack of ionizing radiation exposure.7

    Approximately 30% of asymptomatic adults and 82%of symptomatic patients have some  f orm of TMJ discdisplacement, as determined by MRI.6

     Previous studies have investigated the relationship between TMJ disc displacement and dentofacial charac-teristics in orthodontic patients, reporting that patients

     with TMJ disc displacement have decreased posteriorfacial height as well as backward positioning and clock-

     wise rotation of the mandible.8,9 Since craniocervical

    posture and hyoid bone position can be associated with dentofacial morphology, both of these featurescould be signicantly inuenced by TMJ disc

     From the Dental Research Institute and Department of Orthodontics, School of  Dentistry, Seoul National University, Seoul, Korea.a Postgraduate student. b Researcher.cAssistant professor.dAssociate professor.e Professor.

    All authors have completed and submitted the ICMJE Form for Disclosure of 

     Potential Conicts of Interest, and none were reported.

    Address correspondence to: Sug-Joon Ahn, Dental Research Institute and

     Department of Orthodontics, School of Dentistry, Seoul National University,

    101 Deahak-ro, Jongno-Gu, Seoul 110-768, Korea; e-mail,  [email protected].

    Submitted, April 2014; revised and accepted, September 2014.

    0889-5406/$36.00

    Copyright 2015 by the American Association of Orthodontists.

    http://dx.doi.org/10.1016/j.ajodo.2014.09.015

    72

    ORIGINAL ARTICLE

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.ajodo.2014.09.015http://dx.doi.org/10.1016/j.ajodo.2014.09.015mailto:[email protected]://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/19/2019 articulo cesar.pdf

    2/8

    displacement.10,11  However, the associations between

    TMJ disc displacement and craniocervical posture orhyoid bone position have not yet been fully investigated. Although the effects of TMD on

    craniocervical posture and hyoid bone position have been investigated, the results remain controversial.Several studies have reported an   association between

    TMD and craniocervical posture,12-16  but others donot support the connection between T MD   andcraniocervical posture or hyoid bone position.17-20 Thepurpose of this study was to investigate therelationships between TMJ disc displacement andcraniocervical posture, and between TMJ discdisplacement and hyoid bone position, using MRI. The

    null hypothesis was that no signicant relationships would be found between TMJ disc displacement andcraniocervical posture, or between TMJ discdisplacement and hyoid bone position.

    MATERIAL AND METHODS

     Female subjects were recruited from patients whoconsented to bilateral MRI of their TMJs. All subjectshad a primary complaint of malocclusion, and routinelateral cephalograms were taken in natural head position

     with an Asahi CX-90SP II (Asahi Roentgen, Kyoto, Japan). Natural head position was determined by having the sub-

     jects look straight into a mirror in a standing position.21 Achain plumb line was suspended in front of the cassetteto indicate a true vertical line. The MRI images were takento evaluate TMJ status mainly because of TMJ symptomsincluding TMJ sounds, pain, masticatory muscle tender-ness, limited mandibular movement, and locking. Exclu-

    sion criteria were (1) age less than 17 years, (2) any systemic disease, (3) history of orthodontic treatment,(4) history of facial cosmetic or orthognathic surgery,(5) history of trauma involving the TMJ, (6) juvenile rheu-matoid arthritis, (7) history of TMJ treatment, (8) airway 

    obstruction, (9) oral habits, (10)TMJ discdisplacementof a greater severity on the unilateral side, and (11) partial

    TMJ disc displacement or TMJ disc displacement withpartial reduction. This research protocol was approved

     by the institutional review board of the Seoul National University Dental Hospital (CRI11040).

     Radiologists with MRI experience with the TMJ inter-preted the images blinded to the clinical information.According to disc position, TMJ disc status was dividedinto 3 categories as follows.

    1 Normal disc position.In theclosed-mouthposition,the

    intermediate zone of the disc was interposed betweenthe condyle and the posterior slope of the articulareminence, with the anterior and posterior bandsequally spacedon eitherside of thecondylar loadpoint.

    2 Disc displacement with reduction. The disc was ante-riorly displaced relative to the posterior slope of thearticular eminence and the head of the condyle in theclosed-mouth position, but the disc was reduced on

    mouth opening.3 Disc displacement without reduction. The disc wasanteriorly displaced relative to the posterior slopeof the articular eminence and the head of thecondyle, and the disc was not reduced on mouthopening.

    The position and shape of the articular disc of theTMJ were carefully evaluated according to the classica-tion criteria. We excluded patients with a unilaterally 

    different disc displacement status because the possibleskeletal morphologies associated with unilateral discdisplacement would be obscured by averaging of the

    right and left landmarks used to determine their loca-tion, and unilaterally different disc displacement statusmay asymmetrically inuence craniocervical posture orhyoid bone position, which is   dif cult to measure in

    lateral cephalometric analysis.22  From the originally selected patients, only those with bilateral normal discstatus (BN), bilateral disc displacement with reduction(DDR), and bilateral disc displacement without reduction

    (DDNR) were included in this study.One investigator (S-J.A.), who was blinded to the

    clinical information and the disc position, traced alllateral cephalograms. Eighteen landmarks were recorded

    on each radiograph using a digitizer with a desktopcomputer, and 25 variables were calculated from these

    landmarks: 9 variables for craniocervical posture, 7for hyoid bone position, and 9 for craniofacialmorphology (4 for vertical and 5 for sagittal craniofacialmorphologies). The positions and denitions of thelandmarks are shown in  Figure 1, and the locations of the reference planes are shown in   Figure 2. Measure-ments for craniocervical posture, hyoid bone position,

    and craniofacial morphology are shown in Figures 3, 4,and 5, respectively.

     Lateral cephalograms of 20 randomly selected sub-

     jects were measured again to test the magnitude of mea-surement errors. The intraclass correlation coef cientsfor the reliability of tracing, landmark identication,

    and analytic measurements were greater than 0.98. Descriptive statistics were calculated for all vari-

    ables. The differences in the cephalometric variablesfor craniocervical posture, hyoid bone position, and

    craniofacial morphology with respect to the TMJ discdisplacement status (BN, DDR, and DDNR) were tested

     with 1-way analysis of variance. Scheff e multiple com-parisons were performed at a signicance level of 0.05to analyze between-group relationships. To investigate

     An et al    73

     American Journal of Orthodontics and Dentofacial Orthopedics January 2015    Vol 147    Issue 1

  • 8/19/2019 articulo cesar.pdf

    3/8

    the correlations between craniofacial morphology and

    craniocervical posture or hyoid bone position, Pearsoncorrelation coef cients were calculated.

    RESULTS

    A total of 170 female subjects were included in thisstudy (Table I). Their age range was 17.0 to 50.8 years(mean age, 24.5 6 5.7 years). There were no signicantdifferences in age distribution among the 3 study groups

    (data not shown).Table II   presents the differences in craniocervical

    posture, hyoid bone position, and craniofacialmorphology with respect to TMJ disc displacement sta-tus (BN, DDR, and DDNR). Signicant differences werefound in craniocervical posture between the BN and

     DDNR groups (Table II). Subjects with DDNR had larger

    angles between the craniofacial reference planes and thecervical vertebrae (FH/CVT, NL/CVT, FH/OPT, and NL/OPT) than did the subjects with BN, indicating that sub-

     jects with DDNR had extended craniocervical posturecompared with those with BN. Although the subjects

     with DDR demonstrated intermediate values, there was

    no signicant difference in craniocervical posture be-tween the BN and DDR groups, or between the DDRand DDNR groups. Angles between the cervical vertebraeand the true horizontal plane (HOR/CVT and HOR/OPT)

    or the mandibular plane (MP/CVT and MP/OPT) werenot signicantly different among the 3 groups. Cervical

    curvature (OPT/CVT) also did not vary signicantly among the different TMJ disc displacement groups.

    Among the variables for hyoid bone position, only measurements related to the mandible were signicantly 

    inuenced by TMJ disc displacement status. Subjects with DDNR had a decreased hyoid angle (Go/Hy/Me)compared with those with BN or DDR (BN   5

     DDR. DDNR). In addition, the hyoidale to the most pro-trusive point of retrognathion distance (Hy-RGn)decreased as TMJ disc displacement status increased inseverityfromBNtoDDNR(BN. DDR. DDNR). However,

    distances between craniocervical landmarks or referenceplanes and the hyoid bone (Hy-Ba, Hy to NSL, Hy to NL,

     Hy-cv3ia, and Hy to cv3ia-RGn) did not show signicantdifferences according to TMJ disc displacement status(Table II).

    Fig 2.   Craniocervical reference planes used in this study:

    1, nasion-sella line (NSL,planethroughnasion and sella);

    2 , true horizontal plane (HOR, true horizontal plane pass-

    ing through sella); 3 , Frankfort horizontal plane (FH, plane

    through porion and orbitale);   4 , nasal line (NL, line

    through the posterior nasal spine and anterior nasal

    spine);   5 , mandibular plane (MP, line through gonion

    and menton);   6 , cervical vertebrae tangent (CVT, line

    through cv2tg and cv4ip);   7 , odontoid process tangent

    (OPT, line through cv2tg and cv2ip).

    Fig 1.   Landmarks used in this study:1, nasion;2 , sella;3 ,

    orbitale;   4 , porion;   5 , basion;   6 , anterior nasal spine;  7 ,

    posterior nasal spine; 8 , Point A;9 , Point B;10 , pogonion;

    11, menton; 12 , gonion; 13 , RGn (most protrusive point of

    retrognathion);  14 , hyoidale (Hy, most superior and ante-

    rior point on the body of the hyoid bone);   15 , cv2tg

    (tangent point of the superoposterior extremity of the sec-

    ond cervical vertebra);   16 , cv2ip (most posteroinferior 

    point on the second cervical vertebra);17 , cv3ia (most an-

    teroinferior point on the third cervical vertebra);  18 , cv4ip

    (most posteroinferior point on the fourth cervical

    vertebra).

    74   An et al 

     January 2015    Vol 147    Issue 1 American Journal of Orthodontics and Dentofacial Orthopedics

  • 8/19/2019 articulo cesar.pdf

    4/8

    As previously reported, subjects with TMJ discdisplacement have a retrognathic mandi ble  with a hy-perdivergent skeletal pattern (Table II).8,9 Our study 

    showed that increased ANB, and decreased SNB and Nperpendicular to pogonion (PNP), are specic sagittal

    craniofacial morphologies in subjects with TMJ discdisplacement. In addition, these skeletal characteristics

     became more severe as TMJ disc displacementprogressed from BN to DDNR. However, variables

    representing maxillary position (SNA and Nperpendicular to point A [ANP]) were not signicantly different among the 3 groups. Subjects with DDNRhad a hyperdivergent skeletal pattern: eg, increased

     Frankfort-mandibular plane angle (FMA), decreasedposterior facial height (PFH), and decreased facial heightratio (FHR) compared with those with BN or DDR. In

    contrast to sagittal craniofacial morphology, verticalcraniofacial morphology did not vary signicantly be-tween the BN and DDR groups (Table II).

    Correlations between craniofacial morphology andcraniocervical posture or hyoid bone position are

    presented in Table III. Generally, craniocervical posture

    (FH/CVT, NL/CVT, FH/OPT, and NL/OPT) was signi-cantly correlated with variables representing sagittal(ANB, SNB, and PNP) and vertical (FMA and FHR)craniofacial morphologies, and subjects with extendedcraniocervical posture had a retrognathic mandible

     with a hyperdivergent skeletal pattern. However, cervical

    curvature (OPT/CVT) was not signicantly correlated with craniofacial morphology.

    The hyoid angle (Go/Hy/Me) and the distance be-

    tween the hyoidale and the most protrusive point of ret-rognathion (Hy-RGn) were signicantly correlated with

    craniofacial morphologic variables (Table III). Both values decreased as the skeletal pattern became more hy-

    perdivergent (increased FMA and decreased FHR) and asthe mandible was located more posteriorly (increasedANB and decreased SNB and PNP).

    DISCUSSION

    The relationships between TMJ status and craniocer- vical posture have not been fully addressed, specically in orthodontic patients. This may be due to the

    Fig 4.  Variables of the hyoid bone position (all are linear 

    measurements except for Go/Hy/Me):  1, linear distance

    between the hyoidale and basion (Hy-Ba);  2 , perpendic-

    ular distance between the hyoidale to nasion-sella line

    (Hy to NSL);  3 , perpendicular distance between the hyoi-

    dale to nasal line (Hy to NL);  4 , linear distance between

    the hyoidale and RGn (Hy-RGn);   5 , linear distance be-

    tween the hyoidale and cv3ia (Hy-cv3ia);6 , perpendicular 

    distance between the hyoidale and cv3ia-RGn plane (Hy

    to cv3ia-RGn, positive when the Hy is located below the

    cv3ip-RGn plane);   7 , hyoid angle, angle of Go-Hy-Me

    (Go/Hy/Me, the angle is larger when the hyoidale is

    located above the mandibular plane).

    Fig 3.   Variables of craniocervical posture (all are angular 

    measurements):  1, true horizontal plane to cervical verte-

    brae tangent angle (HOR/CVT);   2 , Frankfort horizontal

    plane to cervical vertebrae tangent angle (FH/CVT);   3 ,

    nasal line to cervical vertebrae tangent angle (NL/CVT);

    4 , mandibular plane to cervical vertebrae tangent angle

    (MP/CVT);   5 , true horizontal plane to odontoid process

    tangent angle (HOR/OPT);  6 , Frankfort horizontal plane

    to odontoid process tangent angle (FH/OPT);   7 , nasal

    line to odontoid process tangent angle (NL/OPT);   8 ,

    mandibular plane to odontoid process tangent angle

    (MP/OPT);  9 , the cervical curvature, downward-opening

    angle between odontoid process tangent and cervical

    vertebrae tangent (OPT/CVT, positive when the cv4ip is

    located on the left side of odontoid process tangent).

     An et al    75

     American Journal of Orthodontics and Dentofacial Orthopedics January 2015    Vol 147    Issue 1

  • 8/19/2019 articulo cesar.pdf

    5/8

    methodologic problems of previous studies, such asinadequate sample sizes and subjective criteria for clas-sifying TMJ status.12,13,17,18,23 In this study, we used alarge sample size (170 subjects) including a control

    group (BN TMJs). In addition, the subjects wereobjectively classied with MRI of their TMJs, not withsubjective signs and symptoms. Furthermore, thesubjects were carefully controlled. Only subjects withthe same TMJ disc displacement conditions bilaterally 

     were included. Men were excluded to prevent skewingthe cephalometric measurements with sex-related dif-

    ferences. To prevent growth-related size differences,only female patients over the age of 17 years wereselected.24

    This study showed an association between TMJ discdisplacement and craniocervical posture. Subjects with

     DDNR had increased FH/CVT, NL/CVT, FH/OPT, and

     NL/OPT compared with those with BN (Table II).Although there were no signicant differences in the an-gles between the BN and DDR groups, or between the

     DDR and DDNR groups, there was a tendency towardincreased angles between the craniofacial referenceplanes and the cervical vertebrae as TMJ disc displace-

    ment progressed from BN to DDNR. This means thathead or cervical posture can change according to TMJdisc displacement status. Since neither angle betweenthe cervical vertebrae and the true horizontal plane(HOR/CVT and HOR/OPT) or the cervical curvature(OPT/CVT) was signicantly different among the 3 discdisplacement statuses, head posture may rotate above

    the second vertebra without changes in cervical vertebralposition in relation to the true horizontal plane.Although direct comparison was not possible, our  nd-ings are similar to those of previous studies reporting

    that patients with TMD have a more extended craniocer- vical posture than the control group, without signicantdifferences in cervical curvature,12 and that there are nosignicant differences in the curvature of the cervical

     vertebrae between the third and seventh vertebrae aftercomparing cervical vertebral alignment bet ween sub-

     jects with TMD and volunteers without TMD.19

     Despite changes in head posture, the positional rela-tionships between the cervical vertebrae and themandibular plane (MP/CVT and MP/OPT) did not showsignicant differences among the 3 TMJ groups. This

    might be because mandibular position is signicantly associated with TMJ disc displacement status. Subjects

     with TMJ disc displacement generally had an increasedmandibular plane angle with extended craniocervicalposture (Table II). Because both cervical vertebrae andthe mandible are rotated clockwise in relation to the

    craniofacial reference planes in subjects with TMJ discdisplacement, there may be no signicant differences

    in relationships between the cervical vertebrae and themandibular plane.

    The association between TMJ disc displacement andextended craniocervical posture can be explained in 2

     ways. The  rst possibility is that extended craniocervicalposture may inuence TMJ disc displacement. Previousstudies have reported that abnormal craniocervicalposture is an etiologic factor of TMD, postulating thatas the cranium rotates backward, the mandibular denti-tion will be located more posteriorly in relation to themaxillary dentition; in turn, the mandible will be

    advanced to obtain occlusal support.12,13 Increasedmuscular activity  that  develops as a result will lead todisc displacement.12,13 Although the subjects with TMJdisc displacement had a more extended craniocervicalposture in this study, they had a more posteriorly 

    Fig 5.  Variables of craniofacial morphology:  1, Frankfort

    horizontal plane to mandibular plane angle (FMA);   2 ,

    anterior facial height (AFH, linear distance between na-

    sion and menton);  3 , posterior facial height (PFH, linear 

    distance between sella and gonion);   4 , ANB angle;   5 ,

    SNA angle;  6 , SNB angle;  7 , N perpendicular to Point A

    (ANP);   8 , N perpendicular to pogonion (PNP);   9 , facial

    height ratio (FHR, ratio of posterior facial height [3 ] to

    anterior facial height [2 ]).

    Table I.  Number and age distribution of subjects with

     BN, DDR, and DDNR

    Group BN DDR DDNR Total  

    Subjects, n (%) 53 (31.2) 55 (32.4) 62 (36.5) 170 (100)

    Age (y)

     Mean 23.7 6 6.6 25.1 6 5.4 24.6 6 5.3 24.5 6 5.7

     Range 18.3-50.8 17.3-42.0 17.0-41.0 17.0-50.8

    76   An et al 

     January 2015    Vol 147    Issue 1 American Journal of Orthodontics and Dentofacial Orthopedics

  • 8/19/2019 articulo cesar.pdf

    6/8

    located mandible than did subjects with BN (Table II);this differs from previous studies.

    The second possibility is that TMJ disc displacement

    may induce extended craniocervical posture. Previousstudies have reported that the severity of TMJ discdisplacement increases as the sagittal skeletal classica-tion changes from skeletal Class III to skeletal Class II,and the vertical skeletal classication changes from hy-podivergent to hyperdivergent.8,9,25 As a result, subjects

     with skeletal Class II or hyperdivergent deformities have

    a high possibility of severe TMJ disc displacement. Inaddition, experimentally induced TMJ discdisplacement leads to signicant impairment of 

     vertical and horizontal mandibular growth, and theamount of vertical or horizontal skeletal changegradually increased as TMJ disc displacement increased

    in severity in animal studies.26,27  Because TMJ discdisplacement frequently occurs during puberty, itseems that TMJ disc displacement can lead to aretrognathic mandible with a hyperdivergent skeletal

    pattern; this in turn may reduce upper   airway space with the same craniocervical posture.28 Therefore,

    extended craniocervical posture associated with TMJdisc displacement may result from protective responsesto maintain upper airway space. This hypothesis is sup-

    ported by our  ndings, indicating that extended cranio-cervical posture is positively related to a hyperdivergentand Class II skeletal pattern (Table III). de Farias Netoet al16 also postulated that in the patients with TMD,altered mobility of the articular disc limits the biome-chanics of mouth opening and triggers compensatory extension of the cervical vertebrae to prevent compres-

    sion of the upper airway. However, the cause-and-effect relationships are not clear because the results

     were derived from cross-sectional data.Interestingly, TMJ disc displacement did not signi-

    cantly inuence the positional relationships of the hyoid bone to the craniofacial references and the cervical

     vertebrae, but it signicantly inuenced the positionalrelationships of the hyoid bone to the mandible (Go/

     Hy/Me and Hy-RGn) (Table II). Subjects with TMJ discdisplacement, and specically those with DDNR, had a

    smaller hyoid angle (Go/Hy/Me) and a shorter hyoidaleto the most protrusive point of retrognathion distance

    Table II.   Comparisons of cephalometric variables among the BN, DDR, and DDNR groups

    Variable BN DDR DDNR Signi cance z Multiple comparisons

    Craniocervical posture

     HOR/CVT () 98.7 6 6.9 99.5 6 5.8 99.6 6 5.9 NS

     FH/CVT () 96.6 6 8.2 98.3 6 6.3 100.3 6 7.1   *   BN\ DDNR NL/CVT () 96.1 6 8.7 98.3 6 6.4 99.6 6 6.9   *   BN\ DDNR

     MP/CVT () 67.3 6 8.8 67.6 6 7.0 64.7 6 8.5 NS

     HOR/OPT () 93.6 6 7.4 94.9 6 7.1 94.7 6 6.4   NS

     FH/OPT () 91.5 6 8.5 93.7 6 7.3 95.4 6 7.4   *   BN\ DDNR

     NL/OPT () 91.0 6 8.8 93.7 6 7.2 94.7 6 7.1   *   BN\ DDNR

     MP/OPT () 62.2 6 8.6 63.0 6 7.9 59.8 6 8.5 NS

    OPT/CVT () 5.1 6 2.8 4.6 6 2.9 4.9 6 2.5 NS

     Hyoid bone position

     Hy-Ba (mm) 76.3 6 5.6 77.0 6 6.0 75.1 6 6.1 NS

     Hy to NSL (mm) 107.0 6 6.4 108.2 6 7.6 108.4 6 6.4 NS

     Hy to NL (mm) 60.7 6 5.2 61.8 6 6.0 62.6 6 5.7 NS

     Hy-RGn (mm) 38.4 6 5.7 35.5 6 5.5 32.3 6 5.5   y  BN . DDR . DDNR

     Hy-cv3ia (mm) 36.2 6 3.8 36.5 6 3.0 35.2 6 3.4 NS

     Hy to cv3ia-RGn (mm) 

    1.56

    6.1 0.06

    5.0 0.56

    5.9   NSGo/Hy/Me () 154.3 6 18.0 151.0 6 14.8 143.4 6 15.1   *   BN 5  DDR . DDNR

     Vertical craniofacial morphology 

     FMA () 28.9 6 7.0 30.6 6 6.7 35.5 6 7.0   y  BN 5  DDR\ DDNR

     FHR (ratio) 0.63 6 0.06 0.62 6 0.05 0.59 6 0.06   y  BN 5  DDR . DDNR

    AFH (mm) 132.8 6 5.5 133.7 6 6.5 133.3 6 6.0 NS

     PFH (mm) 83.7 6 7.6 82.6 6 6.6 77.9 6 6.7   y  BN 5  DDR . DDNR

    Sagittal craniofacial morphology 

    ANB () 2.4 6 4.5 5.1 6 2.4 7.7 6 2.8   y  BN\ DDR\ DDNR

    SNA () 81.1 6 3.1 81.6 6 3.2 81.4 6 2.8 NS

    SNB () 78.7 6 4.9 76.5 6 2.9 73.8 6 3.6   y  BN . DDR . DDNR

    ANP (mm) 1.7 6 3.0 2.3 6 2.8 1.5 6 3.2 NS

     PNP (mm)   1.32 6 10.43   6.32 6 6.65   14.05 6 7.73   y  BN . DDR . DDNR

     NS , Not signicant.

    *P \

    0.05;

     y

    P \

    0.001;

     z

    Scheff e multiple comparisons were used to analyze the intergroup difference at the level of 

     a 50.05.

     An et al    77

     American Journal of Orthodontics and Dentofacial Orthopedics January 2015    Vol 147    Issue 1

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/19/2019 articulo cesar.pdf

    7/8

    (Hy-RGn) than did the subjects with BN, whereas the dis-tances between the hyoid bone and the craniofacial ref-erences (Hy-Ba, Hy to NSL, and Hy to NL) or the cervical

     vertebrae (Hy-cv3ia), and the relationship between the

    hyoid bone and the craniocervical reference (Hy tocv3ia-RGn), were not signicantly different among the

    3 TMJ disc displacement groups. The relationship be-tween the hyoid bone and the mandible can be explained

     by the compensatory response of the hyoid bone to pre-serve upper airway space. It seems that the position of the hyoid bone may not signicantly change duringthe protective process, which maintains the pharyngealairway space and swallowing functions against back-

     ward positioning and clockwise rotation of the mandibleassociated with TMJ disc displacement. As a result, the

    subjects with TMJ disc displacement have backwardpositioning and clockwise rotation of the mandible

     with a relatively stable hyoid bone position, which may 

    change the positional relationships of the hyoid boneto the mandible signicantly. This hypothesis is partly supported by previous research that found no signicant

    differences in hyoid bone   positions between subjects with and without TMD.19 Other research regardingTMJ disc displacement status with MRI also documentedthat the position of the hyoid bone was not signicantly 

    different between subjects with a  normal disc positionand those with disc displacement.20

    Generally, the facial prole is important in the diag-nosis and treatment planning for orthodontic patients.This study showed that TMJ disc displacement can

    inuence craniocervical posture, although the cause-and-effect relationship remains unclear. As a result,in subjects with TMJ disc displacement, the retro-gnathic prole is compromised by extending their

    craniocervical posture despite the backward positioningand rotation of the mandible. Recently, the importance

    of the soft tissue paradigm has been emphasized, and anormal soft tissue proportion is considered a primary 

    treatment goal in orthodontic or surgical-orthodontictreatment.29-31  Because craniocervical posture isdirectly related to the soft tissue prole of the face,this study suggests that clinicians should carefully evaluate relationships between the craniocervicalposture and the facial prole in patients withpotential TMJ disc displacement before orthodontic

    treatment.This study has the following limitations. The causal

    relationships between TMJ disc displacement and cra-

    niocervical posture, or between TMJ disc displacementand the hyoid bone position, are not clear becauseour results were derived from cross-sectional data. In

    addition, these results are based on lateral cephalo-grams with static posture; hence, they do not showthe function associated with mandibular kinetics.

     Further studies with longitudinal data are needed to

    clarify the relationships of intra-articular distance,mandibular kinematics, and mandibular loading with

    craniocervical posture. This would be helpful for thediagnosis and treatment planning of patients withTMJ disc displacement.

    Table III.   Correlations between craniofacial morphology and craniocervical posture or hyoid bone position

    Variable 

    Correlation

    FMA FHR AFH PFH ANB SNA SNB ANP PNP  

    Craniocervical posture HOR/CVT () 0.241y  NS 0.196*   NS 0.240y 0.169*   0.332y 0.153*   0.334y

     FH/CVT () 0.381y 0.247y 0.270y  NS 0.399y 0.205y 0.499y 0.316y 0.591y

     NL/CVT () 0.256y 0.192*   0.262y  NS 0.315y 0.248y 0.454y 0.193*   0.416y

     MP/CVT ()   0.547y 0.556y  NS 0.512y  NS NS NS NS NS

     HOR/OPT () 0.258y 0.154*   0.153*   NS 0.242y 0.168*   0.333y  NS   0.325y

     FH/OPT () 0.396y 0.256y 0.234y  NS 0.399y 0.207y 0.501y 0.290y 0.578y

     NL/OPT () 0.283y 0.208y 0.231y  NS 0.326y 0.253y 0.467y 0.178*   0.422y

     MP/OPT ()   0.498y 0.519y  NS 0.468y  NS NS NS NS NS

    OPT/CVT () NS NS NS NS NS NS NS NS NS

     Hyoid bone position

     Hy-Ba (mm) NS 0.152*   0.247y 0.281y 0.162*   0.162*   0.257y  NS 0.174*

     Hy to NSL (mm) NS NS 0.341y 0.289y  NS 0.281y  NS NS NS

     Hy to NL (mm) 0.237y  NS 0.247y  NS 0.236y  NS   0.161*   NS   0.267y

     Hy-RGN (mm)   0.519y 0.388y  NS 0.396y 0.584y  NS 0.421y  NS 0.562y

     Hy-cv3ia (mm)   0.181*   0.191*   0.165*   0.278y  NS NS NS NS NS

     Hy to cv3ia-RGn (mm) NS NS NS NS 0.174*   NS NS NS NS

    Go/Hy/Me ()   0.385y 0.358y 0.168*   0.447y 0.324y  NS 0.339y 0.151*   0.367y

     NS , Not signicant.

    *Pearson correlation is signicant at the .05 level;  y Pearson correlation is signicant at the .01 level.

    78   An et al 

     January 2015    Vol 147    Issue 1 American Journal of Orthodontics and Dentofacial Orthopedics

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/19/2019 articulo cesar.pdf

    8/8

    CONCLUSIONS

    This study was performed to evaluate the relation-

    ships between TMJ disc displacement and craniocervicalposture, and between TMJ disc displacement and hyoid

     bone position, in adult orthodontic patients. The sub- jects with TMJ disc displacement were more likely tohave an extended craniocervical posture with Class II hy-perdivergent patterns. In contrast, hyoid bone position

     was relatively stable irrespective of TMJ disc displace-

    ment status. Therefore, the null hypothesis of our study  was partially rejected. Extended craniocervical posture was signicantly correlated with backward positioningand clockwise rotation of the mandible. This study sug-gests that craniocervical posture is signicantly inu-enced by TMJ disc displacement, which may be

    associated with a hyperdivergent skeletal pattern with

    a retrognathic mandible.

    REFERENCES

    1.   Liu MQ, Chen HM, Yap AU, Fu KY. Condylar remodeling accompa-

    nying splint therapy: a cone-beam computerized tomography 

    study of patients with temporomandibular joint disk displacement.

    Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:259-65.

    2.  Dolwick MF, Katzberg RW, Helms CA. Internal derangements of 

    the temporomandibular joint: fact or   ction? J Prosthet Dent

    1983;49:415-8.

    3.  Murakami S, Takahashi A, Nishiyama H, Fujishita M, Fuchihata H.

     Magnetic resonance evaluation of the temporomandibular joint

    disc position and conguration. Dentomaxillofac Radiol 1993;

    22:205-7.

    4.   Okeson JP. Management of temporomandibular disorders and

    occlusion. St Louis: Elsevier/Mosby; 2013.

    5.   Westesson PL. Reliability and validity of imaging diagnosis of 

    temporomandibular joint disorder. Adv Dent Res 1993;7:137-51.

    6.  Tasaki MM, Westesson PL, Isberg AM, Ren YF, Tallents RH. Classi-

    cation and prevalence of temporomandibular joint disk displace-

    ment in patients and symptom-free volunteers. Am J Orthod

     Dentofacial Orthop 1996;109:249-62.

    7.   Nebbe B, Major PW. Prevalence of TMJ disc displacement in a pre-

    orthodontic adolescent sample. Angle Orthod 2000;70:454-63.

    8.  Nebbe B, Major PW, Prasad N. Female adolescent facial pattern

    associated with TMJ disk displacement and reduction in disk

    length: part I. Am J Orthod Dentofacial Orthop 1999;116:

    168-76.

    9.   Kwon HB, Kim H, Jung WS, Kim TW, Ahn SJ. Gender differences indentofacial characteristics of adult patients with temporomandib-

    ular disc displacement. J Oral Maxillofac Surg 2013;71:1178-86.

    10.  Solow B, Sandham A. Cranio-cervical posture: a factor in the

    development and function of the dentofacial structures. Eur J

    Orthod 2002;24:447-56.

    11.   Adamidis IP, Spyropoulos MN. Hyoid bone position and orienta-

    tion in Class I and Class III malocclusions. Am J Orthod Dentofacial

    Orthop 1992;101:308-12.

    12.   Huggare JA, Raustia AM. Head posture and cervicovertebral and

    craniofacial morphology in patients with craniomandibular

    dysfunction. Cranio 1992;10:173-7.

    13.  Nicolakis P, Nicolakis M, Piehslinger E, Ebenbichler G, Vachuda M,

     Kirtley C, et al. Relationship between craniomandibular disorders

    and poor posture. Cranio 2000;18:106-12.

    14.  D'Attilio M, Epifania E, Ciuffolo F, Salini V, Filippi MR, Dolci M,

    et al. Cervical lordosis angle measured on lateral cephalograms;

    ndings in skeletal Class II female subjects with and withoutTMD: a cross sectional study. Cranio 2004;22:27-44.

    15.  Munhoz WC, Marques AP, Siqueira JT. Radiographic evaluation of 

    cervical spine of subjects with temporomandibular joint internal

    disorder. Braz Oral Res 2004;18:283-9.

    16.  de Farias Neto JP, de Santana JM, de Santana-Filho VJ, Quintans-

     Junior LJ, de Lima Ferreira AP, Bonjardim LR. Radiographic mea-

    surement of the cervical spine in patients with temporomandibular

    dysfunction. Arch Oral Biol 2010;55:670-8.

    17.   HackneyJ, Bade D, Clawson A. Relationship between forward head

    posture and diagnosed internal derangement of the temporoman-

    dibular joint. J Orofac Pain 1993;7:386-90.

    18.  Visscher CM, De Boer W, Lobbezoo F, Habets LL, Naeije M. Is there

    a relationship between head posture and craniomandibular pain?

     J Oral Rehabil 2002;29:1030-6.

    19.  Andrade AV, Gomes PF, Teixeira-Salmela LF. Cervical spine align-ment and hyoid bone positioning with temporomandibular disor-

    ders. J Oral Rehabil 2007;34:767-72.

    20.   Matheus RA, Ramos-Perez FM, Menezes AV, Ambrosano GM,

     Haiter-Neto F, Boscolo FN, et al. The relationship between tempo-

    romandibular dysfunction and head and cervical posture. J Appl

    Oral Sci 2009;17:204-8.

    21.  Solow B, Tallgren A. Natural head position in standing subjects.

    Acta Odontol Scand 1971;29:591-607.

    22.  Ahn SJ, Lee SP, Nahm DS. Relationship between temporomandib-

    ular joint internal derangement and facial asymmetry in women.

    Am J Orthod Dentofacial Orthop 2005;128:583-91.

    23.  Olivo SA, Bravo J, Magee DJ, Thie NM, Major PW, Flores-Mir C.

    The association between head and cervical posture and temporo-

    mandibular disorders: a systematic review. J Orofac Pain 2006;20:

    9-23.

    24.  Lee SJ, An H, Ahn SJ, Kim YH, Pak S, Lee JW. Early stature predic-

    tion method using stature growth parameters. Ann Hum Biol

    2008;35:509-17.

    25.  Ahn SJ, Baek SH, Kim TW, Nahm DS. Discrimination of TMJ inter-

    nal derangement by lateral cephalometric analysis. Am J Orthod

     Dentofacial Orthop 2006;130:331-9.

    26.   Bryndahl F, Eriksson L, Legrell PE, Isberg A. Bilateral TMJ disk

    displacement induces mandibular retrognathia. J Dent Res 2006;

    85:1118-23.

    27.   Legrell PE, Isberg A. Mandibular height asymmetry following

    experimentally induced temporomandibular joint disk displace-

    ment in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod

    1998;86:280-5.

    28.  Isberg A, Hagglund M, Paesani D. The effect of age and gender onthe onset of symptomatic temporomandibular joint disk displace-

    ment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:

    252-7.

    29.   Prof t WR, Fields HW, Sarver DM. Contemporary orthodontics. St

     Louis: Elsevier/Mosby; 2013.

    30.  Yu YH, Kim YJ, Lee DY, Lim YK. The predictability of dentoskeletal

    factors for soft-tissue chin strain during lip closure. Korean J

    Orthod 2013;43:279-87.

    31.  Toureno L, Kook YA, Bayome M, Park JH. The effect of western

    adaptation of Hispanic-Americans on their assessment of Korean

    facial proles. Korean J Orthod 2014;44:28-35.

     An et al    79

    A i J l f O th d ti d D t f i l O th di J 2015 V l 147 I 1

    http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref4http://refhub.elsevier.com/S0889-5406(14)00867-1/sref4http://refhub.elsevier.com/S0889-5406(14)00867-1/sref5http://refhub.elsevier.com/S0889-5406(14)00867-1/sref5http://refhub.elsevier.com/S0889-5406(14)00867-1/sref5http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref7http://refhub.elsevier.com/S0889-5406(14)00867-1/sref7http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref9http://refhub.elsevier.com/S0889-5406(14)00867-1/sref9http://refhub.elsevier.com/S0889-5406(14)00867-1/sref9http://refhub.elsevier.com/S0889-5406(14)00867-1/sref10http://refhub.elsevier.com/S0889-5406(14)00867-1/sref10http://refhub.elsevier.com/S0889-5406(14)00867-1/sref10http://refhub.elsevier.com/S0889-5406(14)00867-1/sref11http://refhub.elsevier.com/S0889-5406(14)00867-1/sref11http://refhub.elsevier.com/S0889-5406(14)00867-1/sref11http://refhub.elsevier.com/S0889-5406(14)00867-1/sref12http://refhub.elsevier.com/S0889-5406(14)00867-1/sref12http://refhub.elsevier.com/S0889-5406(14)00867-1/sref12http://refhub.elsevier.com/S0889-5406(14)00867-1/sref13http://refhub.elsevier.com/S0889-5406(14)00867-1/sref13http://refhub.elsevier.com/S0889-5406(14)00867-1/sref13http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref15http://refhub.elsevier.com/S0889-5406(14)00867-1/sref15http://refhub.elsevier.com/S0889-5406(14)00867-1/sref15http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref18http://refhub.elsevier.com/S0889-5406(14)00867-1/sref18http://refhub.elsevier.com/S0889-5406(14)00867-1/sref18http://refhub.elsevier.com/S0889-5406(14)00867-1/sref19http://refhub.elsevier.com/S0889-5406(14)00867-1/sref19http://refhub.elsevier.com/S0889-5406(14)00867-1/sref19http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref21http://refhub.elsevier.com/S0889-5406(14)00867-1/sref21http://refhub.elsevier.com/S0889-5406(14)00867-1/sref22http://refhub.elsevier.com/S0889-5406(14)00867-1/sref22http://refhub.elsevier.com/S0889-5406(14)00867-1/sref22http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref24http://refhub.elsevier.com/S0889-5406(14)00867-1/sref24http://refhub.elsevier.com/S0889-5406(14)00867-1/sref24http://refhub.elsevier.com/S0889-5406(14)00867-1/sref25http://refhub.elsevier.com/S0889-5406(14)00867-1/sref25http://refhub.elsevier.com/S0889-5406(14)00867-1/sref25http://refhub.elsevier.com/S0889-5406(14)00867-1/sref26http://refhub.elsevier.com/S0889-5406(14)00867-1/sref26http://refhub.elsevier.com/S0889-5406(14)00867-1/sref26http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref29http://refhub.elsevier.com/S0889-5406(14)00867-1/sref29http://refhub.elsevier.com/S0889-5406(14)00867-1/sref29http://refhub.elsevier.com/S0889-5406(14)00867-1/sref29http://refhub.elsevier.com/S0889-5406(14)00867-1/sref30http://refhub.elsevier.com/S0889-5406(14)00867-1/sref30http://refhub.elsevier.com/S0889-5406(14)00867-1/sref30http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref31http://refhub.elsevier.com/S0889-5406(14)00867-1/sref30http://refhub.elsevier.com/S0889-5406(14)00867-1/sref30http://refhub.elsevier.com/S0889-5406(14)00867-1/sref30http://refhub.elsevier.com/S0889-5406(14)00867-1/sref29http://refhub.elsevier.com/S0889-5406(14)00867-1/sref29http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref28http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref27http://refhub.elsevier.com/S0889-5406(14)00867-1/sref26http://refhub.elsevier.com/S0889-5406(14)00867-1/sref26http://refhub.elsevier.com/S0889-5406(14)00867-1/sref26http://refhub.elsevier.com/S0889-5406(14)00867-1/sref25http://refhub.elsevier.com/S0889-5406(14)00867-1/sref25http://refhub.elsevier.com/S0889-5406(14)00867-1/sref25http://refhub.elsevier.com/S0889-5406(14)00867-1/sref24http://refhub.elsevier.com/S0889-5406(14)00867-1/sref24http://refhub.elsevier.com/S0889-5406(14)00867-1/sref24http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref23http://refhub.elsevier.com/S0889-5406(14)00867-1/sref22http://refhub.elsevier.com/S0889-5406(14)00867-1/sref22http://refhub.elsevier.com/S0889-5406(14)00867-1/sref22http://refhub.elsevier.com/S0889-5406(14)00867-1/sref21http://refhub.elsevier.com/S0889-5406(14)00867-1/sref21http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref20http://refhub.elsevier.com/S0889-5406(14)00867-1/sref19http://refhub.elsevier.com/S0889-5406(14)00867-1/sref19http://refhub.elsevier.com/S0889-5406(14)00867-1/sref19http://refhub.elsevier.com/S0889-5406(14)00867-1/sref18http://refhub.elsevier.com/S0889-5406(14)00867-1/sref18http://refhub.elsevier.com/S0889-5406(14)00867-1/sref18http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref17http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref16http://refhub.elsevier.com/S0889-5406(14)00867-1/sref15http://refhub.elsevier.com/S0889-5406(14)00867-1/sref15http://refhub.elsevier.com/S0889-5406(14)00867-1/sref15http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref14http://refhub.elsevier.com/S0889-5406(14)00867-1/sref13http://refhub.elsevier.com/S0889-5406(14)00867-1/sref13http://refhub.elsevier.com/S0889-5406(14)00867-1/sref13http://refhub.elsevier.com/S0889-5406(14)00867-1/sref12http://refhub.elsevier.com/S0889-5406(14)00867-1/sref12http://refhub.elsevier.com/S0889-5406(14)00867-1/sref12http://refhub.elsevier.com/S0889-5406(14)00867-1/sref11http://refhub.elsevier.com/S0889-5406(14)00867-1/sref11http://refhub.elsevier.com/S0889-5406(14)00867-1/sref11http://refhub.elsevier.com/S0889-5406(14)00867-1/sref10http://refhub.elsevier.com/S0889-5406(14)00867-1/sref10http://refhub.elsevier.com/S0889-5406(14)00867-1/sref10http://refhub.elsevier.com/S0889-5406(14)00867-1/sref9http://refhub.elsevier.com/S0889-5406(14)00867-1/sref9http://refhub.elsevier.com/S0889-5406(14)00867-1/sref9http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref8http://refhub.elsevier.com/S0889-5406(14)00867-1/sref7http://refhub.elsevier.com/S0889-5406(14)00867-1/sref7http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref6http://refhub.elsevier.com/S0889-5406(14)00867-1/sref5http://refhub.elsevier.com/S0889-5406(14)00867-1/sref5http://refhub.elsevier.com/S0889-5406(14)00867-1/sref4http://refhub.elsevier.com/S0889-5406(14)00867-1/sref4http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref3http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref2http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1http://refhub.elsevier.com/S0889-5406(14)00867-1/sref1