22
II. TINJAUAN PUSTAKA 2.1 ARUS 2.1.1 Definisi Arus laut adalah proses pergerakan massa air laut yang menyebabkan perpindahan horizontal dan vertikal massa air laut tersebut yang terjadi secara terus (Gross,1972). Pergerakan massa air ini ditimbulkan oleh beberapa gaya sehingga Herunadi (1996) dalam Kurniawan (2004) mengemukakan bahwa sinyal arus merupakan resultan dari berbagai sinyal yang mempunyai frekuensi terstentu yang dibagkitkan oleh beberapa gaya yang berbeda-beda. Sedangkan menurut Hutabarat dan Evans (1984) arus merupakan gerakan air yang terjadi pada seluruh lautan di dunia. Gambar dinamika arus

Arus

Embed Size (px)

DESCRIPTION

current

Citation preview

II. TINJAUAN PUSTAKA2.1 ARUS

2.1.1 Definisi

Arus laut adalah proses pergerakan massa air laut yang menyebabkan perpindahan horizontal dan vertikal massa air laut tersebut yang terjadi secara terus (Gross,1972). Pergerakan massa air ini ditimbulkan oleh beberapa gaya sehingga Herunadi (1996) dalam Kurniawan (2004) mengemukakan bahwa sinyal arus merupakan resultan dari berbagai sinyal yang mempunyai frekuensi terstentu yang dibagkitkan oleh beberapa gaya yang berbeda-beda. Sedangkan menurut Hutabarat dan Evans (1984) arus merupakan gerakan air yang terjadi pada seluruh lautan di dunia.

Gambar dinamika arus

Arus laut mampu mengalir mengarungi ribuan kilometer dan sangat penting untuk menentukan iklim dari sebuah benua, khususnya wilayah yang berbatasan dengan laut. Contohnya arus Gulf Stream yang menyebabkan daerah Barat Laut Eropa lebih hangat dibandingkan wilayah lain yang memiliki lintang yang sama (Anonim, 2009).Terjadinyaarusdi lautan disebabkan oleh dua faktor utama, yaitu faktor internal dan faktor eksternal. Faktor internal seperti perbedaan densitas airlaut, gradien tekanan mendatar dan gesekan lapisan air. Sedangkan faktor eksternal seperti gaya tarik matahari dan bulan yang dipengaruhi oleh tahanan dasarlautdan gaya coriolis, perbedaan tekanan udara, gaya gravitasi, gaya tektonik dan angin ( Gross, 1990).

Menurut Bishop (1984), gaya-gaya utama yang berperan dalam sirkulasi massa air adalah gaya gradien tekanan, gaya coriolis, gaya gravitasi, gaya gesekan, dan gaya sentrifugal.

Faktor penyebab terjadinyaarusyaitu dapat dibedakan menjadi tiga komponen yaitu gaya eksternal, gaya internal angin, gaya-gaya kedua yang hanya datang karena fluida dalam gerakan yang relatif terhadap permukaan bumi. Dari gaya-gaya yang bekerja dalam pembentukanarusantara lain tegangan angin, gaya Viskositas, gaya Coriolis, gaya gradien tekanan horizontal, gaya yang menghasilkan pasut.

Ketika angin berhembus dilaut, energi yang ditransfer dari angin ke batas permukaan, sebagian energi ini digunakan dalam pembentukan gelombang gravitasi permukaan, yang memberikan pergerakan air dari yang kecil kearah perambatan gelombang sehingga terbentuklaharusdilaut. Semakin cepat kecepatan angin, semakin besar gaya gesekan yang bekerja pada permukaanlaut, dan semakin besararuspermukaan. Dalam proses gesekan antara angin dengan permukaanlautdapat menghasilkan gerakan air yaitu pergerakan air laminar dan pergerakan air turbulen (Supangat,2003).

Gaya Viskositas pada permukaanlautditimbulkan karena adanya pergerakan angin pada permukaanlautsehingga menyebabkan pertukaran massa air yang berdekatan secara periodik, hal ini disebabkan karena perbedaan tekanan pada fluida. Gaya viskositas dapat dibedakan menjadi dua gaya yaitu viskositas molecular dan viskositas eddy. Gesekan dalam pergerakan fluida hasil dari transfer momentum diantara bagian-bagian yang berbeda dari fluida. Dalam pergerakan fluida dalam aliran laminer, transfer momentum terjadi hasil transfer antara batas yang berdekatan yang disebut viskositas molekular. Di permukaanlaut, gerakan air tidak pernah laminer, tetapi turbulen sehingga kelompok-kelompok air, bukan molekul individu, ditukar antara satu bagian fluida ke yang lain. Gesekan internal yang dihasilkan lebih besar dari pada yang disebabkan oleh pertukaran molekul individu dan disebut viskositas eddy.

Gaya Coriolis mempengaruhi aliran massa air, dimana gaya ini akan membelokan arah angin dari arah yang lurus. Gaya ini timbul sebagai akibat dari perputaran bumi pada porosnya. Gaya Coriolis ini yang membelokanarusdibagian bumi utara kekanan dan dibagian bumi selatan kearah kiri. Pada saat kecepatanarusberkurang, maka tingkat perubahanarusyang disebabkan gaya Coriolis akan meningkat. Hasilnya akan dihasilkan sedikit pembelokan dari araharusyang relaif cepat dilapisan permukaan dan arah pembelokanya menjadi lebih besar pada aliranarusyang kecepatanya makin lambat dan mempunyai kedalaman makin bertambah besar. Akibatnya akan timbul suatu aliranarusdimana makin dalam suatu perairan makaarusyang terjadi pada lapisan-lapisan perairan akan dibelokan arahnya. Hubungan ini dikenal sebagai Spiral Ekman, Araharusmenyimpang 450 dari arah angin dan sudut penyimpangan. bertambah dengan bertambahnya kedalaman (Supangat, 2003).

Gambar 1.Polaarusspiral Ekman

Gaya gradien tekanan horizontal sangat dipengaruhi oleh tekanan, massa air, kedalaman dan juga densitas dari massa air tersebut, yang mana jika densitaslauthomogen, maka gaya gradien tekanan horizontal adalah sama untuk kedalaman berapapun. Jika tidak ada gaya horizontal yang bekerja, maka akan terjadi percepatan yang seragam dari tekanan tinggi ke tekanan yang lebih rendah.

Gambar 2. Gaya Gradien Tekanan Horizontal

Gelombang-gelombang yang panjang pada lautan menghasilkan peristiwapasangsurutairlaut.Pasangsurutini menimbulkan pergerakan massa air yang mana prosesnya dipengaruhi oleh gaya tarik bulan, matahari dan benda angkasa lainya selain itu juga dipengaruhi oleh gaya sentrifugal dari bumi itu sendiri.

2.1.2 Klasifikasi

Berdasarkan gaya-gaya yang menimbulkannya, arus dibagi kedalam berbagai kelompok. Gross (1990), membagi menjadi empat macam yaitu :a. Arus EkmanArus Ekman merupakan arus yang disebabkan oleh gesekan angin (wind friction). Umumnya permukaan air yang langsung bersentuhan dengan angin akan menimbulkan arus di lapisan permukaan dengan kecepatan arus + 2% dari kecepatan angin itu sendiri. Arah arus yang ditimbulkan tidak searah dengan pergerakan angin karena adanya gaya coriolis yang ditimbulkan oleh rotasi bumi. Arus akan dibelokkan ke kanan pada Belahan Bumi Utara (BBU) dan dibelokkan ke kiri pada Belahan Bumi Selatan (BBS). Gaya gesekan molekul dari massa air membuat lapisan dalam dibelokkan oleh lapisan atasnya sampai pada kedalaman tertentu dimana gaya gesekan molekul ini tidak berpengaruh lagi. Fenomena pembelokan arus ini dikenal dengan Spiral Ekman (Gross, 1990).Tekanan udara di atas permukaan bumi bervariasi tergantung dengan lamanya penyinaran matahari sebagai faktor utama penentu besarnya nilai radiasi matahari. Perbedaan tekanan inilah yang mengakibatkan pergerakan udara atau angin. Jika angin ini berhembus di atas permukaan air hingga terjadi pertukaran energi. Energi yang dipertukarkan inilah yang mengakibatkan bergeraknya massa air yang ada di permukaan laut (Brown et al., 1989)b. Arus GeostrofikArus geostrofik merupakan arus yang terjadi akibat adanya keseimbangan geostrofik. Kondisi keseimbangan geostrofik ini terjadi jika gaya gradien tekanan horizontal yang bekerja pada massa air yang bergerak dan diseimbangkan oleh gaya coriolis. (Brown et al., 1989)Arus geostrofik merupakan hasil kesetimbangan antara gaya gravitasi dan gaya coriolis. Efek gravitasi dikontrol oleh kemiringan permukaan air laut, sedangkan densitas dikontrol oleh perbedaan suhu dan salinitas horizontal (Wikipedia, 2009). Arus geostrofik ini tidak dipengaruhi oleh pergerakan angin (gesekan antara air dan udara) sehingga Pond dan Pickard (1983) memasukkannya kedalam golongan arus tanpa gesekan (current without friction).

c. Arus Pasang SurutMerupakan arus yang disebabkan adanya gaya pembangkit pasut. Arus pasut merupakan pergerakan air laut secara horizontal yang dihubungkan dengan naik turunnya permukaan laut secara periodik. Pasang surut laut merupakan hasil dari gaya tarik gravitasi dan efek sentrifugal. Efek sentrifugal adalah dorongan ke arah luar pusat rotasi. Gravitasi bervariasi secara langsung dengan massa tetapi berbanding terbalik terhadap jarak. Meskipun ukuran bulan lebih kecil dari matahari, gaya tarik gravitasi bulan dua kali lebih besar daripada gaya tarik matahari dalam membangkitkan pasang surut laut karena jarak bulan lebih dekat daripada jarak matahari ke bumi. Gaya tarik gravitasi menarik air laut ke arah bulan dan matahari dan menghasilkan dua tonjolan (bulge) pasang surut gravitasional di laut. Lintang dari tonjolan pasang surut ditentukan oleh deklinasi, sudut antara sumbu rotasi bumi dan bidang orbital bulan dan matahari. Terdapat tiga tipe dasar pasang surut yang didasarkan pada periode dan keteraturannya, yaitu pasang surut harian (diurnal), tengah harian (semi diurnal) dan campuran (mixed tides). Dalam sebulan, variasi harian dari rentang pasang surut berubah secara sistematis terhadap siklus bulan. Rentang pasang surut juga bergantung pada bentuk perairan dan konfigurasi lantai samudera (Wikipedia, 2007).

d. Arus ThermohalinMerupakan arus yang disebabkan perbedaan densitas air laut. Di bawah lapisan pycnocline, air bergerak disepanjang dasar lautan sebagai arus yang lembam (slugish current). Sirkulasi laut dalam ini benar-benar terisolasi dari arus permukaan oleh lapisan pycnocline sehinga pergerakannya hanya dipengaruhi oleh adanya perbedaan densitas air laut atau dengan kata lain dikontrol oleh variabilitas suhu dan salinitas. Sirkulasi laut dalam ini disebut sebagai arus thermohalin (Thermohalin Current). Secara umum menurut Ingmanson dan Wallace (1989) dalam Kurniawan (2004), arus thermohalin bergerak ke utara-selatan yang dari samudera Atlantik menuju samudera Antartika. (Gross,1990)Sedangkan Brown et al. (1989) membagi arus atau gerak berdasarkan gaya penyebabnya sebagai berikut :a. Arus InersiaSebagaimana yang telah diketahui bahwa angin berhembus menyebabkan timbulnya arus (wind driven current). Momentum yang ditimbulkan akibat dorongan angin ini tidak akan berhenti begitiu saja sehingga ketika angin berhenti berhembus gerakan air atau arus akan terus berlanjut sebagai konsekuensi dari gaya momentum pada massa air.

Gerakan air atau arus, gaya gesekan kecil (diasumsikan nol) dan gaya yang masih bekerja tinggal gaya coriolis , yang menyerupai kurva (curved motion) yang disebut dengan arus inersia (inersia current). Jika gaya coriolis hanya bekerja pada arah horizontal maka gerakan air yang terjadi (arus inersia) di sekitar garis lintang akan membentuk lingkaran (circular) Arah rotasi atau perputaran pada lingkaran inersia adalah searah putaran jarum jam di belahan bumi bagian selatan. (Brown et al., 1989; Pond dan Pickard, 1983).b. Arus yang digerakkan angin (wind driven current)c. Arus Pasang SurutArus pasang surut terjadi terutama karena gerakan pasang surut air laut. Arus ini terlihat jelas di perairan estuari atau muara sungai. Bila air laut bergerak menuju pasang, maka terlihat gerakan arus laut yang masuk ke dalam estuari atau alur sungai; sebaliknya ketika air laut bergerak menuju surut, maka terlihat gerakan arus laut mengalir ke luar.d. Arus Inersiae. Arus GeostrofikPond dan Pickard (1983) melakukan pembagian arus berdasarkan komponen gesekan (Friction) yaitu:

1. Arus Permukaan laut di Samudra

Penyebab utama arus permukaan laut di samudera adalah tiupan angin yang bertiup melintasi permukaan Bumi melintasi zona-zona lintang yang berbeda. Ketika angin melintasi permukaan samudera, maka massa air laut tertekan sesuai dengan arah angin.

Pola umum arus permukaan samudera dimodifikasi oleh faktor-faktor fisik dan berbagai variabel seperti friksi, gravitasi, gerak rotasi Bumi, konfigurasi benua, topografi dasar laut, dan angin lokal. Interaksi berbagai variabel itu menghasilkan arus permukaan samudera yang rumit.

Arus di samudera bergerak secara konstan. Arus tersebut bergerak melintasi samudera yang luas dan membentuk aliran yang berputar searah gerak jarum jam di Belahan Bumi Utara (Northern Hemisphere), dan berlawanan arah gerak jarum jam di Belahan Bumi Selatan (Southern Hemisphere). Karena gerakannya yang terus menerus itu, massa air laut mempengaruhi massa udara yang ditemuinya dan merubah cuaca dan iklim di seluruh dunia.

2. Arus di kedalaman Samudra

Faktor utama yang mengendalikan gerakan massa air laut di kedalaman samudera adalah densitas air laut. Perbedaan densitas diantara dua massa air laut yang berdampingan menyebabkan gerakan vertikal air laut dan menciptakan gerakan massa air laut-dalam (deep-water masses) yang bergerak melintasi samudera secara perlahan. Gerakan massa air laut-dalam tersebut kadang mempengaruhi sirkulasi permukaan.

Perbedaan densitas massa air laut terutama disebabkan oleh perbedaan temperatur dan salinitas air laut. Oleh karena itu gerakan massa air laut-dalam tersebut disebut juga sebagai sirkulasi termohalin (thermohaline circulation). Model sirkulasi termohalin secara global dapat dilihat pada gambar berikut ini.

Gambar Model sirkulasi termohalin secara globalBerdasarkan penguraian Pond dan Pickard (1983) serta Gross (1990) di mana arus pasang surut merupakan arus yang polanya dipengaruhi oleh pasang surut, maka secara umum arus juga dapat diklisifikasikan menjadi dua, yaitu arus pasang surut dan arus nir pasang surut.

2.1.1. Arus Permukaan IndonesiaArus laut permukaan di dunia memiliki pola dan sebaran yang unik. Masing masing wilayah memiliki karakteristik arus yang berbeda. Perairan Indonesia secara tetap diisi oleh massa air Samudra Pasifik. Hal ini terjadi bukan hanya karena wilayah Indonesia lebih terbuka terhadap Samudera Pasifik tetapi juga karena kondisi dinamika permukaan laut. Ketinggian permukaan laut di bagian barat samudra pasifik lebih tinggi dibandingkan dengan wilayah di selatan Jawa sepanjang tahun, sehingga terbentuk gradien tekanan dari samudra pasifik ke samudera Hindia (Wyrtki, 1961)Menurut Godfrey (1996) gradien tekanan tersebut terbentuk karena posisi Indonesia berada pada sisi Barat Samudera Pasifik Trade Wind Belt, dimana tekanan angin secara terus menerus menyebabkan penumpukkan massa air karena pergerakan arusnya menuju daratan. Gradien tekanan tersebut menyebabkan terjadinya arus yang melewati perairan Indonesia disebut Arlindo. Arlindo memiliki sistem sirkulasi massa air yang kompleks dan berfluktuasi secara musiman dengan arah serta kekuatannya yang bervariasi.Arlindo sangat terkenal karena menghubungkan antara Samudera Pasifik dengan Samudera Hindia, melalui Selat Makasar dan keluar lewat Selat Lombok (25% dari total transport arus yang lewat Selat Makassar) dan Selat Ombai bersama-sama Laut Timor (75% sisa total transport arus tersebut). Arlindo terjadi sebagai akibat perbedaan tekanan rata-rata sebesar 16 cm antara Samudera Pasifik dan Hindia. Arlindo memindahkan bahang oleh air bersalinitas rendah dari tempat berkembangnya El Nino di Samudera Pasifik menuju Samudera Hindia. Mengalir melalui bagian Selatan Indonesia dan Australia, Arlindo merupakan penghubung utama atau titik temu pertukaran massa air global.

Sirkulasi arus permukaan di Indonesia dipengaruhi oleh angin muson yang terjadi kerana adanya perbedaan tekanan udara antara daratan asia dan daratan australia, pada bulan Desember-Februari di Belahan Bumi Utara (BBU) akan terjadi musin dingin sedangkan pada Belahan Bumi Selatan (BBS) akan terjadi musim panas sehingga tekanan tinggi berada di Asia dan tekanan rendah berada di Australia. Angin muson bergerak dengan arah-arah tertentu sehingga perairan Indonesia dibagi menjadi empat musim yaitu musim barat, musim timur, musim pancaroba satu dan musim pancaroba dua.

(Wyrtki, 1961).

Syamsudin (2003) mengatakan air laut digerakan oleh dua sistem angin, di dekat khatulistiwa angin pasat (trade wind) menggerakkan permukaan air ke arah barat. Sementara itu, di daerah lintang sedang (temperate), angin baratan (westerlies wind) menggerakkan kembali permukaan air ke timur. Akibatnya di samudera-samudera akan ditemukan sebuah gerakan permukaan air yang membundar.

2.1.3 Metode Pengukuran Arus

2.1.1.1. Pengukuran Arus InsituPengukuran arus secara insitu adalah pengukuran secara langsung dengan dua metode pengukuran, yaitu pada titik tetap (Euler) dan metode dengan benda hanyut atau drifter (Langlarian). Alat pengukur paling sederhana adalah menggunakan Free-floating drogued buoy untuk mengukur kecepatan dan sebuah kompas bidik untuk mencari arah.

Gambar Metode lagrange

Free-floating drogued buoy dilepas di perairan dengan diikat sebuah tali dengan jarak tertentu, lalu diukur waktunya sampai tali tersebut menegang. Kecepatan arus bisa diukur dengan membagi jarak dengan waktu. Sedangkan arah bisa dicari dengan menggunakan kompas bidik.Peralatan modern yang sering digunakan saat ini dalam pengukuran arus adalah ADCP (Acoustic Doppler Current Profiler) dan Current Meter. ADCP menggunakan Azaz Doppler mengenai perambatan bunyi, dimana partikel renik didalam air dapat memantulkan bunyi. Current Meter merupakan pengembangan dari Free-floating drogued buoy yang berfungsi untuk mengukur kecepatan dan arah arus laut berdasarkan metode Eularian. Pengukuran arus laut dengan current meter ini menggunakan metode eularian dimana metode ini merupakan pengukuran arus dengan menggunakan metode gelombang sinusoidal. Prinsip kerja alat ini adalah baling-baling dimana sewaktu alat dimasukkan akan ada perputaran dari baling-baling tersebut sehingga menimbulkan percepatan. Current meter mempunyai 2 bagian yaitu speed (kecepatan) dan direction (arah).

2.1.1.2. Pengukuran Arus dengan Satelit AltimetriSistem altimetri berkembang sejak tahun 1975, saat diluncurkannya satelit GEO-3. Pada tahun 1990 satelit altimetri mulai diluncurkan seperti ERS-1 (1991-1996), Topex/Poseidon (sejak 1992) dan ERS-2 (sejak 1995). Altimetri adalah teknik untuk mengukur ketinggian. Satelit altimetri meghitung waktu yang digunakan oleh pulsa dari pemancar ke permukaan laut dan kembali lagi sebagai echo menuju penerima. Dikombinasikan dengan data lokasi satelit yang presisi kemudian menghasilkan SSH (CNES, 1997 dalam Rudiastuti, 2008).Tujuan peluncuran sensor altimetri adalah mengamati sirkulasi lautan global, memantau volume dari lempengan es di kutub dan mengamati perubahan muka laut rata-rata global.

(Abidin, 2001 dalam Rudiastuti, 2008)Sea Surface Height (SSH) adalah jarak antara permukaan laut dengan ellipsoida referensi (jika kedalaman laut secara akurat tidak diketahui). Nilai SSH secara matematis dituliskan sebagai berikut:

SSH = S-R

Dimana :S = ketinggian satelit dari reference ellipsoid (satellite altitude)R = jarak antara satelite dengan laut (jarak altimetri)Nilai SSH diperoleh dengan memperhitungkan pengaruh ketinggian permukaan laut yang akan terjadi tanpa gangguan (angin, ombak, gelombang, dan lainnya), dan juga sirkulasi lautan atau dinamika topografi (CNES, 1997 dalam Rudiastuti, 2008).

2.1.1.3. Pengukuran Arus dengan Membangun Model HidrodinamikaHingga sekitar akhir 1980-an, kegiatan hidrografi utamanya didominasi oleh survei dan pemetaan laut untuk pembuatan peta navigasi laut (nautical chart) dan survei untuk eksplorasi minyak dan gas bumi. (Ingham, 1975). Peta navigasi laut memuat informasi penting yang diperlukan untuk menjamin keselamatan pelayaran, seperti: kedalaman perairan, rambu-rambu navigasi, garis pantai, alur pelayaran, bahaya-bahaya pelayaran dan sebagainya. Selain itu, kegiatan hidrografi juga didominasi oleh penentuan posisi dan kedalaman di laut lepas yang mendukung eksplorasi dan eksploitasi minyak dan gas bumi.Fenomena dasar perairan yang disebut dalam definisi di atas meliputi: batimetri atautopografi dasar laut, jenis material dasar laut dan morfologi dasar laut. Sementara dinamika badan air yang disebut dalam definisi di atas meliputi: pasut (dan muka air) dan arus. Data mengenai fenomena dasar perairan dan dinamika badan air diperoleh melalui pengukuran yang kegiatannya disebut sebagai survei hidrografi. Data yang diperoleh dari survei hidrografi kemudian diolah dan disajikan sebagai informasi geospasial atau informasi yang terkait dengan posisi di muka bumi.Pengukuran arus dengan membangun model hidrodinamika adalah dengan mengkonversi fenomena oseanografi kedalam persamaan numerik yang bersifat diskrit. Dengan menggunakan persamaan-persamaan ini dapat dibuat pemodelan dari yang sederhana hingga yang rumit.Sehubungan dengan itu maka seluruh informasi yang disajikan harus memiliki data posisi dalam ruang yang mengacu pada suatu sistem referensi tertentu. Oleh karenanya, posisi suatu objek di atas, di dalam dan di dasar perairan merupakan titik perhatian utama dalam hidrografi. Informasi hidrografi utamanya ditujukan untuk:(1) Navigasi dan keselamatan pelayaran,(2) Penetapan batas wilayah atau daerah di laut; dan(3) Studi dinamika pesisir dan pengelolaan sumberdaya laut.

4.1 Hasil

4.1.1 Arus

Kecepatan (tabel)

Stasiun 1

Kedalaman :

Koordinat : S

E

tsvArah

0.1 d

0.5 d

0.8 d

Stasiun 2

Kedalaman :

Koordinat : S

E

tsvArah

0.1 d

0.5 d

0.8 d

Stasiun 3

Kedalaman :

Koordinat : S

E

tsvArah

0.1 d

0.5 d

0.8 d

4.1. Pembahasan

4.1.1. ArusPada paraktikum metode oseanografi, dalam pengukuran arus diolah data yang berasal dari data ADCP Tanjungmas, 9 agustus 2010.

Pada data tersebut diolah menjadi beberapa grafik yaitu grafik stik diagram dengan CD-oseanografi dan grafik scater dengan World Current.

Pada diagram Stik Diagram dihasilkan sebuah stik diagram dengan skala xmin 0, xmax 737, ymin -17.9, dan ymax 13.2. Pada tampilan terlihat banyak stik diagram kearah bawah yang menunjukan arah serta besar arus yang terjadi.

Pada diagram scatter, terlihat penyebaran sebaran arus yang sangat terjadi ke Vns dan Uew negatif. Besar arus daru data yang dudapatkan cukup beragam. Namun arus yang ada tidak kuat pada perairan Tanjung mas

Dari pengolahan data, arus bergerak dari timur menuju barat daya dimana pada saat bulan September terjadi musim timur, dimana angin bergerak dari timur menuju barat sehingga mempengaruhi pergerakan arus.Referensi :Bishop, J.M. 1984. Aplied Oceanography. John Willey and Sons, Inc. New York. 252 p.

Gross, M. 1990. Oceanography sixth edition. New Jersey : Prentice-Hall.Inc.

SupangatA., dan Susanna, 2003.PengantarOseanografi, Pusat Riset wilayahLautdan Sumberdaya Non-Hayati, BRPKP-DKP. ISBN.No. 979-97572-4-1

http://www.ilmukelautan.com/oseanografi/fisika-oseanografi/408-faktor-penyebab-terjadinya-arus