121
Teknik kimia Bahasa Inggris : chemical engineering Ilmu teknik atau rekayasa yang mempelajari pemrosesan bahan mentah menjadi barang jadi Aplikasi : 1. perancangan dan pemeliharaan proses kimia 2. peralatan proses

Asas Teknik Kimia I-0k Awal

Embed Size (px)

Citation preview

Page 1: Asas Teknik Kimia I-0k Awal

Teknik kimiaBahasa Inggris : chemical engineering

Ilmu teknik atau rekayasa yang mempelajari pemrosesan bahan mentah menjadi barang jadi

Aplikasi :1. perancangan dan pemeliharaan

proses kimia 2. peralatan proses

Page 2: Asas Teknik Kimia I-0k Awal

Teknik Kimia berhubungan dengan :

a. Produksi bahan kimia baik di skala besar maupun kecil.

b. Membuat produk berskala besar (pabrik), berbeda dengan skala lab.

c. merubah bahan baku menjadi produk bernilai ekonomi lebih tinggi.

d. Sektor : bahan kimia sampai energi, makanan dan minuman, obatobatan.

e. Produk, yang dibuat melalui perubahan kimia (reaksi) atau/dan fisis

(pemisahan).

f. Proses Industri kimia, seperti industri: pupuk, kimia murni, cat, zat

warna, tinta, petrokimia, plastik, resin, sabun, deterjen, parfum,

kosmetik, lemak dan minyak nabati, katalis, gas, minyak bumi,

polimer, kertas, tekstil, makanan dan minuman, bioteknologi, dll.

Page 3: Asas Teknik Kimia I-0k Awal

Understanding how chemical reactors work lies at the heart of almost every chemical processing operation.

Design of the reactor is no routine matter, and many alternatives can be proposed for a process. Reactor design uses information, knowledge and experience from a variety of areas - thermodynamics, chemical kinetics, fluid mechanics, heat and mass transfer, and economics.

CRE is the synthesis of all these factors with the aim of properly designing and understanding the chemical reactor.

What is Chemical Reaction Engineering (CRE) ?

Chemical process

Rawmaterial

SeparationProcess

SeparationProcess

Products

By products

Page 4: Asas Teknik Kimia I-0k Awal

Di dalam proses dan peralatan di industri, rangkaian peralatan menyangkut kedua jenis proses itu, yaitu :

1. unit operation ( satuan operasi) : unit dengan perubahan fisis atau seringkali disebut Operasi Teknik Kimia.

2. unit processes (satuan proses) : unit dengan reaksi kimia.

Page 5: Asas Teknik Kimia I-0k Awal

Unit operation meliputi :

a. transportasi fluida (perpindahan pada proses alir),

b. perpindahan panas dalam alat penukar panas ( heat exchanger),

c. separator,• padat-padat : screening.• Padat-cair : sedimentasi, filtrasi,• Cair – gas : absorpsi, stripper, distilasi,

evaporasi.• Cair-cair : ekstraksi cair-cair, dekantasi, dll.d. pencampuran

Page 6: Asas Teknik Kimia I-0k Awal

Unit Processes meliputi :

a. pembakaran bahan bakar dalam burner, furnace.

b. Reaksi kimia dalam reaktor.

c. Fermentasi.

Page 7: Asas Teknik Kimia I-0k Awal
Page 8: Asas Teknik Kimia I-0k Awal

Ilmu-ilmu yang menjadi dasar dalam

teknik kimia, antara lain adalah:

1. Neraca massa

2. Neraca energi

3. Peristiwa perpindahan massa , energi , momentum

4. Reaksi kimia

5. Termokimia

6. Termodinamika

7. material atau bahan , ekonomi dan manajemen .

Page 9: Asas Teknik Kimia I-0k Awal
Page 10: Asas Teknik Kimia I-0k Awal
Page 11: Asas Teknik Kimia I-0k Awal
Page 12: Asas Teknik Kimia I-0k Awal
Page 13: Asas Teknik Kimia I-0k Awal
Page 14: Asas Teknik Kimia I-0k Awal

Book

• David M Himmelblau “ Prinsip Dasar dan Kalkulasi dalam Teknik Kimia”, jilid 1 dan 2

• Olaf A Hougen dkk. “ Chemical Process Principles”, Part one Material and Energy Balance.

• Richard M Felder dkk. “ Elementary Principles of Chemical Processes “.

• Nicholas P Chopey, “ Handbook of Chemical Engineering Calculations “.

Page 15: Asas Teknik Kimia I-0k Awal

ASAS TEKNIK KIMIA Mol : jumlah tertentu dari molekul, elektron, atau partikel spesifik lainnya

Densitas : Ratio massa persatuan volum

Berat jenis ( spesific gravity )( ref : air )Ratio densitas yang ditanyakan terhadap densitas air.

Volum spesifik :Volum persatuan masssa

Fraksi mol :Mol zat tertentu dibagi dengan jmlah total mol yang ada

Page 16: Asas Teknik Kimia I-0k Awal

Tekanan gauge + tekanan barometrik = tekanan absolut

• Tekanan : gaya persatuan luas

• Tekanan gauge : tekanan yang terbaca pada manometer • Tekanan barometrik : pembacaan tekanan atmosfer

Page 17: Asas Teknik Kimia I-0k Awal
Page 18: Asas Teknik Kimia I-0k Awal

StoikiometriStoikiometri berasal dari kata Yunani,

STOICHEION yang berarti unsur dan METRIA yang berarti ilmu pengukuran . Kemudian difinisi diperluas sebagai berikut :

1. Proses membuat suatu perhitungan yang didasarkan pada rumus-rumus dan persamaan- persamaan berimbang.

2. Ilmu yang mengukur berapa banyak jumlah zat yang dapat dihasilkan dari sejumlah zat tertentu lainnya.

Page 19: Asas Teknik Kimia I-0k Awal

• Reaktan pembatas ( limiting reactan ) reaktan yang ada dalam jumlah stoikiometri

terkecil ( reaktan yang akan hilang pertama kali ).( lebih dari dua reaktan harus menggunakan satu sebagai reaktan pembatas )

Reaktan berlebih ( excess reactan ) reaktan yang terdapat lebih dari pada reaktan

pembatas.( meski jika hanya sebagian dari reaktan pembatas yang sebenarnya bereaksi, kuantitas yang dibutuhkan dan kuantitas yang berlebih didasarkan pada jumlah seluruh reaktan pembatas seolah-olah reaktan tersebut telah bereaksi secara sempurna )

Page 20: Asas Teknik Kimia I-0k Awal

% kelebihan = kelebihan mol : ( mol yang dibutuhkan untuk

bereaksi dengan reaktan pembatas ). 100

Konversi ( conversion ) :

fraksi dari masukkan atau beberapa materi kunci dalam masukkan yang diubah menjadi produk :

Yield ( reaktan tunggal dan produk ) :

Mol ( massa ) produk akhir dibagi dengan mol ( massa ) reaktan awal yang dimasukkan

% konversi A = mol (massa) A yang bereaksi : mol ( massa ) A yang dimasukkan

Page 21: Asas Teknik Kimia I-0k Awal
Page 22: Asas Teknik Kimia I-0k Awal

Daur ulang ( reaksi kimia )

• Konversi fraksi keseluruhan ( overall fraction conversion ) :

• Konversi jalan tunggal ( Single pass or once through conversion ) :

= ( massa ( mol ) reaktan dalam fresh feed – massa ( mol ) reaktan dalam keluaran dari proses keseluruhan ) : massa ( mol ) reaktan dalam fresh feed

= ( massa ( mol ) reaktan yang dimasukkan ke dalam reaktor – massa ( mol ) reaktan yang terdapat dalam reaktor ) : massa ( mol ) reaktan yang dimasukkan ke dalam reaktor

Page 23: Asas Teknik Kimia I-0k Awal

Kesetimbangan materi untuk reaktor

( masukkan melalui batasan sistem ) –

( keluaran melalui batasan sistem ) +

( generasi dalam sistem ) –

( konsumsi dalam sistem ) = akumulasi

Page 24: Asas Teknik Kimia I-0k Awal
Page 25: Asas Teknik Kimia I-0k Awal

Kom-

Ponen

A

B

C

D

Inert

Simbol

A

B

C

D

I

Mula-mula Perubah-an

Zat sisa hasil

reaksi

________ ________

Page 26: Asas Teknik Kimia I-0k Awal

STRATEGI UNTUK MENGANALISIS MASALAH KESETIMBANGAN MATERI ((NERACA MASSA)

( Ann Landers : Masalah yang dikenali adalah masalah yang setengah terpecahkan)

1. Membaca masalah dan menjelaskan apa yang akan dikerjakan 2. Menggambar sketsa proses; mendifinisikan system dengan batas.3. Memberi label dengan symbol aliran dari setiap arus dan komposisi yang

berhubungan dan informasi lain yang tidak diketahui.4. Menaruh semua nilai komposisi dan aliran arus yang diketahui,

menghitung komposisi dan aliran tambahan dari data yang diberikan jika diperlukan.

5. Memilih sebuah basis.6. Membuat sebuah daftar menurut symbol untuk untuk setiap nilai yang

tidak diketahui dari aliran arus dan komposisi.7. Menulis nama-nama dari kumpulan kesetimbangan yang tepat yang akan

dipecahkan; tulis masing-masing kesetimbangan dengan jenis kesetimbangan yang tertulis didekatnya.

8. Menghitung jumlah kesetimbangan independent yang dapat ditulis9. Menyelesaikan persamaan-persamaan tersebut. Setiap perhitungan

harus dibuat pada basi yang konsisten.10. Memeriksa jawaban, ke dalam kesetimbangan materi redundant ( berlebih ), apakah jawaban masuk akal ?.

Page 27: Asas Teknik Kimia I-0k Awal

Material Balance CalculationsThe procedure….– Draw a flowchart

– Choose basis of calculations

– Label unknown stream variables on the flowchart

– Convert known stream volumes or volumetric flow rates to mass or molar basis using densities or gas laws

– Convert all mass and molar unit quantities to one basis

Page 28: Asas Teknik Kimia I-0k Awal

Material Balance CalculationsThe procedure….

– If any given information has not been used in labeling the flowchart, translate it into equations in terms of the unknown variables

– Write material balance equations in an order such that those involve the fewest unknowns are written first

– Solve the equations

Page 29: Asas Teknik Kimia I-0k Awal

Flowcharts• A flowchart is drawn using boxes or other symbols

to represent the process units and lines with arrows to represent inputs and outputs

• It must be fully labeled with values of known and unknown process variables at the locations of the streams

Fresh feed 100 mols C3H8

P1 mols C3H8 P2 mols C3H6 P3 mols H2

product

Q1 mols C3H8 Q2 mols C3H6 Q3 mols H2

Qr1 mols C3H8 Qr2 mols C3H6

100 + Qr1 mols C3H8 Qr2 mols C3H6

Reactor separator

Page 30: Asas Teknik Kimia I-0k Awal

Typical simple flowsheet arrangement

reactorSeparation & purification

Fresh feed(reactants, solvents,reagents, catalysts etc)

product

Recycle of unreacted material

Byproducts/coproductswaste

Page 31: Asas Teknik Kimia I-0k Awal

Recycle and Bypass

• Reasons for Recycle– Recovering and reusing unconsumed reactants– Recovery of catalyst (catalyst : expensive)– Dilution of process stream– Control of process variables– Circulation of working fluid

A + B ABC

A + B C

Recycle unused reactants (A,B)

Page 32: Asas Teknik Kimia I-0k Awal

Recovery of catalyst.

• Many reactors use catalysts to increase the rate of the reaction. Catalysts are usually expensive, and the processes generally include provisions for recovering them from the product stream and recycling them to the reactor. They may be recovered with the unconsumed reactants or recovered separately in special facilities designed for this purpose

Page 33: Asas Teknik Kimia I-0k Awal

Dilution of a process stream.

• Suppose a slurry (a suspension of solids in a liquid) is fed to a filter. If the concentration of solids in the slurry is too high, the slurry is difficult to handle and the filter will not operate properly. Rather than diluting the feed with fresh liquid, a portion of the filtrate can be recycled to dilute the feed to the desired solids concentration.

Page 34: Asas Teknik Kimia I-0k Awal

Control of a process variable.

• Suppose a reaction release an extremely large amount of heat, making the reactor difficult and expensive to control. The rate of heat generation can be reduced by lowering the reactant concentration, which can in turn be accomplished by recycling a portion of the reactor effluent to the inlet. In addition to acting as a diluent for the reactants, the recycled material also serves as a capacitance for the heat released: the greater the mass of the reaction mixture, the lower the temperature to which that mass will be raised by a fixed amount of heat.

Page 35: Asas Teknik Kimia I-0k Awal

Circulation of a working fluid

• The most common example of this application is the refrigeration cycle used in household refrigerators and air conditions. In these devices, a single material is reused indefinitely, with only small makeup quantities being added to the system to replenish working fluid that may be lost through leaks.

Page 36: Asas Teknik Kimia I-0k Awal

particularly useful for reactors, where they allow better control of reactor selectivity when multiple reactions occur.

Page 37: Asas Teknik Kimia I-0k Awal

recycle ratio

• dividing the mass flow of the recycle stream by the mass flow of the "fresh feed" entering the system

• the industrial world, recycle ratios have important consequences for system performance and operating costs.

Page 38: Asas Teknik Kimia I-0k Awal

Bypass

• A fraction of the feed is diverted around the process unit and combined with the output stream.

• Controlling properties and compositions of product stream

Page 39: Asas Teknik Kimia I-0k Awal
Page 40: Asas Teknik Kimia I-0k Awal

Solving Recycle and Bypass Problems

• methods for solving recycle and bypass problems are basically the same

• steady state, there is no buildup or depletion of material within the system or recycle stream of a properly designed and operated process.

• Note the distinction between the fresh feed

to the process and the feed to the reactor, which is the sum of the fresh feed and recycle stream.

Page 41: Asas Teknik Kimia I-0k Awal

When solving, you can write balances (total

material or component) around:

• the entire process structure • the mixing point • the splitter • the processing unit (inside the recycle/bypass)

Only three of these will be independent (the fourth is a linear combination).

Kiat penyelesaian :1. Pilih yang mempunyai data terbanyak ( sistem/sub sistem )

2. Jangan pilih yang meninggalkan variabel pada sub/sistem berikutnya

Page 42: Asas Teknik Kimia I-0k Awal
Page 43: Asas Teknik Kimia I-0k Awal
Page 44: Asas Teknik Kimia I-0k Awal

GAS, UAP, CAIRAN DAN PADATAN

• A gas has no fixed shape or volume, but always spreads out to fill any container.

• There are almost no forces of attraction between the particles so they are completely free of each other.

• The particles are widely spaced and scattered at random throughout the container so there is no order in the system.

• The particles move rapidly in all directions, frequently colliding with each other and the side of the container.

• With increase in temperature, the particles move faster as they gain kinetic energy.

The particle model of a Gas

Page 45: Asas Teknik Kimia I-0k Awal

• The particle model of a Liquid

• A liquid has a fixed volume at a given temperature but its shape is that of the container which holds the liquid.

• There are much greater forces of attraction between the particles in a liquid compared to gases, but not quite as much as in solids.

• Particles quite close together but still arranged at random throughout the container, there is a little close range order as you can get clumps of particles clinging together temporarily.

• Particles moving rapidly in all directions but more frequently collisions with each other than in gases due to shorter distances between particles.

• With increase in temperature, the particles move faster as they gain kinetic energy, so increased collision rates, increased collision energy and increased rate of diffusion.

Page 46: Asas Teknik Kimia I-0k Awal

• The particle model of a Solid

• A solid has a fixed volume and shape at a particular temperature unless physically subjected to some force.

• The greatest forces of attraction are between the particles in a solid and they pack together as tightly as possible in a neat and ordered arrangement.

• The particles are too strongly held together to allow movement from place to place but the particles vibrate about their position in the structure.

• With increase in temperature, the particles vibrate faster and more strongly as they gain kinetic energy.

Page 47: Asas Teknik Kimia I-0k Awal

Changes of State for gas <=> liquid <=> solid • Evaporation and Boiling (liquid to gas)

• On heating particles gain kinetic energy and move faster. • In evaporation* and boiling the highest kinetic energy molecules can ‘escape’

from the attractive forces of the other liquid particles. • The particles lose any order and become completely free to form a gas or vapour. • Energy is needed to overcome the attractive forces in the liquid and is taken in

from the surroundings. • This means heat is taken in, so evaporation and boiling are endothermic

processes (ΔH +ve). • If the temperature is high enough boiling takes place. • Boiling is rapid evaporation anywhere in the bulk liquid and at a fixed

temperature called the boiling point and requires continuous addition of heat. • * Evaporation takes place more slowly than boiling at any temperature between

the melting point and boiling point, and only from the surface, and results in the liquid becoming cooler due to loss of higher kinetic energy particles.

Page 48: Asas Teknik Kimia I-0k Awal

Condensing (gas to liquid)• On cooling, gas particles lose kinetic energy

and eventually become attracted together to form a liquid.

• There is an increase in order as the particles are much closer together and can form clumps of molecules.

• The process requires heat to be lost to the surroundings i.e. heat given out, so condensation is exothermic (ΔH -ve). – This is why steam has such a scalding effect, its not

just hot, but you get extra heat transfer to your skin due to the exothermic condensation on your surface!

Page 49: Asas Teknik Kimia I-0k Awal

Distillation

• Simple and fractional distillation involve the processes of boiling and condensation and are described on the Elements, Compounds and Mixtures

Page 50: Asas Teknik Kimia I-0k Awal

Melting (solid to liquid)

• When a solid is heated the particles vibrate more strongly as they gain kinetic energy and the particle attractive forces are weakened.

• Eventually, at the melting point, the attractive forces are too weak to hold the particles in the structure together in an ordered way and so the solid melts.

• The particles become free to move around and lose their ordered arrangement.

• Energy is needed to overcome the attractive forces and give the particles increased kinetic energy of vibration.

• So heat is taken in from the surroundings and melting is an endothermic process (ΔH +ve).

Page 51: Asas Teknik Kimia I-0k Awal

Freezing (liquid to solid)

• On cooling, liquid particles lose kinetic energy and so can become more strongly attracted to each other.

• Eventually at the freezing point the forces of attraction are sufficient to remove any remaining freedom and the particles come together to form the ordered solid arrangement.

• Since heat must be removed to the surroundings, so strange as it may seem, freezing is an exothermic process (ΔH -ve).

Page 52: Asas Teknik Kimia I-0k Awal

Cooling and Heating Curvesand the comparative energy changes of state changes

gas <=> liquid <=> solid Cooling curve • A cooling curve summarises the changes:

gas ==> liquid ==> solid

Page 53: Asas Teknik Kimia I-0k Awal

Heating curve:

• A heating curve summarises the changes:

solid ==> liquid ==> gas

Page 54: Asas Teknik Kimia I-0k Awal

Sublimation

• This is when a solid, on heating, directly changes into a gas without melting, AND the gas on cooling re-forms a solid directly without condensing to a liquid. They usually involve just a physical change BUT its not always that simple!

Page 55: Asas Teknik Kimia I-0k Awal

Dissolving solids, solutions and

miscible/immiscible liquids

• In general: solute + solvent ==> solution • The solid loses all its regular structure and the individual solid particles (molecules or

ions) are now completely free from each other and randomly mix with the original liquid particles, and all particles can move around at random.

• This describes salt dissolving in water, sugar dissolving in tea or wax dissolving in a hydrocarbon solvent like white spirit.

• It does not usually involve a chemical reaction, so it is generally an example of a physical change.

• Whatever the changes in volume of the solid + liquid, compared to the final solution, the Law of Conservation of Mass applies.

• You cannot make mass or lose mass, but just change it into another form.

+

Page 56: Asas Teknik Kimia I-0k Awal

If two liquids completely mix

• called miscible liquids because they fully dissolve in each other

+

Page 57: Asas Teknik Kimia I-0k Awal

the two liquids do NOT mix

• form two separate layers and are known as immiscible liquids

Page 58: Asas Teknik Kimia I-0k Awal

Gas Laws• A large number of experiments have determined that 4

variables are sufficient to define the physical condition (or state) of a gas: the gas laws.

Boyle’s Law, Charles’ Law, Avogadro’s hypothesis

Robert Boyle: (1627-1691) the first modern chemist, known as the father of chemistry.

His 1661 book The Sceptical Chymist marks the introduction of the scientific method, a definition of elements and compounds and a refutation of alchemy and magic potions.

Boyle biography

Page 59: Asas Teknik Kimia I-0k Awal

Boyle’s Law

• Boyle investigated the variation of the volume occupied by a gas as the pressure exerted upon it was altered and noted that the volume of a fixed quantity of gas, at constant temperature is inversely proportional to the pressure

constantor 1

constant PVp

V

Page 60: Asas Teknik Kimia I-0k Awal

Boyle’s Law(valid at low pressures)

The pressure-volume dependence of a fixed amount of perfect gas at different temperatures. Each curve is a hyperbola (pV = constant) and is called an isotherm.

Page 61: Asas Teknik Kimia I-0k Awal

Charles’ Law

• A century later, a French scientist, Jacques Charles discovered that the volume of a fixed amount of gas, as constant pressure, is proportional to the absolute temperature. Cool a balloon, or a sealed plastic bottle, to verify this!

constantor constant T

VTV

It was recognised (by William Thomson, Lord Kelvin, a Belfast born physicist) that if the graph was extrapolated to zero volume, an absolute zero of -273.15 oC is obtained.

Page 62: Asas Teknik Kimia I-0k Awal

Charles Law

The variation of the volume of a fixed amount of gas with the temperature constant. Note that in each case they extrapolate to zero volume at -273.15 C. The lines are isotherms.

Page 63: Asas Teknik Kimia I-0k Awal

Avogadro’s Law• Relationship between quantity of gas and volume established by

Gay-Lussac (balloon science!) and Avogadro in the 19th Century.Result was Avogadro’s hypothesis: equal volumes of gases at

the same temperature and pressure contain equal numbers of molecules

Experiments show that 22.4L of gas at 0oC and 1atm (STP), or 24.8L of gas at 298.15 K and 1 bar (SATP), contains 6.022 x 1023 molecules (Avogadro’s number, NA)Avogadro’s law: volume of gas at constant temperature and pressure is proportional to the number of moles of gas (n)

constant nV Remember:

1 mole = Avogadro’s number of objects

Page 64: Asas Teknik Kimia I-0k Awal

Putting it all together

nRTPV

P

nTRV

P

nTV

nVTVP

V

, ,1

Boyle, Charles, Avogadro

Combine

Call proportionality constant R

(gas constant)

Ideal Gas Equation

Page 65: Asas Teknik Kimia I-0k Awal

An “ideal” gas exhibits certain theoretical properties. Specifically, an ideal gas …

• Obeys all of the gas laws under all conditions.• Does not condense into a liquid when cooled.• Shows perfectly straight lines when its V and T &

P and T relationships are plotted on a graph.In reality, there are no gases that fit this definition

perfectly. We assume that gases are ideal to simplify our calculations.

Page 66: Asas Teknik Kimia I-0k Awal

A note on units and dimensional analysisSI unit for R is J/mol.K or m3.Pa/mol.K (R=8.315 of these units)Need to use the units of Pa for pressure and m3(=1000L) for volume in

any calculation.

Alternatively you can use units of kPa and L.

If you wish to use atm and L (as in USA and Textbook) R=0.0826 L.atm/mol/K.

Always use absolute temperature scale (K)

Page 67: Asas Teknik Kimia I-0k Awal

Solution

What is the value of R when the STP value for P is 760 mmHg?

R = PV = (760 mm Hg) (22.4 L)

nT (1mol) (273K)

= 62.4 L-mm Hg mol-K

Page 68: Asas Teknik Kimia I-0k Awal

Learning Check

Dinitrogen monoxide (N2O), laughing gas, is used by dentists as an anesthetic. If 2.86 mol of gas occupies a 20.0 L tank at 23°C, what is the pressure (mmHg) in the tank in the dentist office?

Page 69: Asas Teknik Kimia I-0k Awal

Solution

Set up data for 3 of the 4 gas variables

Adjust to match the units of R

V = 20.0 L - 20.0 L

T = 23°C + 273 - 296 K

n = 2.86 mol- 2.86 mol

P = ? ?

Page 70: Asas Teknik Kimia I-0k Awal

Rearrange ideal gas law for unknown P

P = nRT

V

Substitute values of n, R, T and V and solve for P

P = (2.86 mol)(62.4L-mmHg)(296 K)

(20.0 L) (K-mol)

= 2.64 x 103 mm Hg

Page 71: Asas Teknik Kimia I-0k Awal

Density of a Gas

Calculate the density in g/L of O2 gas at STP. From STP, we know the P and T.

P = 1.00 atm T = 273 K

Rearrange the ideal gas equation for moles/L

PV = nRT PV = nRT P = n

RTV RTV RT V

Page 72: Asas Teknik Kimia I-0k Awal

Substitute

(1.00 atm ) mol-K = 0.0446 mol O2/L

(0.0821 L-atm) (273 K)

Change moles/L to g/L

0.0446 mol O2 x 32.0 g O2 = 1.43 g/L

1 L 1 mol O2

Therefore the density of O2 gas at STP is

1.43 grams per liter

Page 73: Asas Teknik Kimia I-0k Awal

Sample problemsSample problemsHow many moles of H2 is in a 3.1 L sample of

H2 measured at 300 kPa and 20°C?PV = nRT

(300 kPa)(3.1 L) = n (8.31 kPa•L/K•mol)(293 K)

(8.31 kPa•L/K•mol)(293 K)(300 kPa)(3.1 L)

= n = 0.38 mol

How many grams of O2 are in a 315 mL container that has a pressure of 12 atm at 25°C?

P = 300 kPa, V = 3.1 L, T = 293 K

PV = nRT

(8.31 kPa•L/K•mol)(298 K)(1215.9 kPa)(0.315 L) = n = 0.1547 mol

P= 1215.9 kPa, V= 0.315 L, T= 298 K

0.1547 mol x 32 g/mol = 4.95 g

Page 74: Asas Teknik Kimia I-0k Awal

Exercises

1. What is the volume of 1 mole of an ideal gas

under standard temperature and pressure (STP)?

2. How many moles (g) of CO2 is liberated into a 250mL flask when a pressure of 1.3atm is found upon heating calcium carbonate to 31oC?

3. If a metal cylinder holds 50L of oxygen at 18.5atm and 21oC, what volume will the gas occupy at 1atm and same T?

Page 75: Asas Teknik Kimia I-0k Awal

4. a) Calculate the volume of 4.50 mol of SO2(g) measured at STP.

b) What volume would this occupy at 25°C and 150 kPa? (solve this 2 ways)

5. How many moles of CO2(g) is in a 5.6 L sample of CO2 measured at STP?

6. How many grams of Cl2(g) can be stored in a 10.0 L container at 1000 kPa and 30°C?

7. At 150°C and 100 kPa, 1.00 L of a compound has a mass of 2.506 g. Calculate its molar mass.

8. 98 mL of an unknown gas weighs 0.087 g at SATP. Calculate the molar mass of the gas. Can you determine the identity of this unknown gas?

Page 76: Asas Teknik Kimia I-0k Awal

Gas Mixtures--Partial Pressure

• So far: pure gases

• Many gases are actually mixtures of two or more gases:– air: O2, N2 , H2O, etc

• How do mixtures of gases behave?

Page 77: Asas Teknik Kimia I-0k Awal

Gas Mixtures--Partial Pressure

P= 8 psi

N2 (g)

P= 6 psi

O2 (g)

P= 9 psi

CO2 (g)

Page 78: Asas Teknik Kimia I-0k Awal

Gas Mixtures--Partial PressureWhat happens when you put all three samples of gas together into one container (the same size container as each was in alone)?

•The gases form a homogeneous mixture.

•The pressure in the container increases, V and T stay the same

– How do you know what the new pressure will be?

P

Page 79: Asas Teknik Kimia I-0k Awal

Dalton’s Law of Partial Pressure

Pressure exerted by mixed gas is sum of the partial pressures

p = pA+pB+ …

Recall mole fraction

xJ=nJ/n n = nA+nB+

Partial pressure

pJ= xJp

Page 80: Asas Teknik Kimia I-0k Awal

Gas Mixtures--Partial Pressure

• Ptotal = PO + PN + PCO

• So for this example:

Ptotal = 6 psi + 8 psi + 9 psi

= 23 psi

2 2 2

Page 81: Asas Teknik Kimia I-0k Awal

Partial Pressure

• In other words, at constant T and V,

– Ptotal depends only on the total number of moles of gas present

– Ptotal is independent of the type (or types) of gases present.

Page 82: Asas Teknik Kimia I-0k Awal

Partial Pressure

• The partial pressure of a gas in a mixture can be found:

PA = XA Ptotal

where PA = partial pressure of gas A

XA = mole fraction of gas A

Ptotal = total pressure of mixture

Page 83: Asas Teknik Kimia I-0k Awal

Partial Pressure Calculation

A mixture of gases contains 0.51 mol N2, 0.28 mol H2, and 0.52 mol NH3. If the total pressure of the mixture is 2.35 atm, what is the partial pressure of H2?

PH2 = XH2

Ptotal

XH2=

0.28 mol0.28 mol + 0.51 mol + 0.52 mol

= 0.21

PH2 = 0.21 x 2.35 = 0.50 atm

Page 84: Asas Teknik Kimia I-0k Awal

Partial Pressure-Mole Fraction

• When describing a mixture of gases, it is useful to know the relative amount of each type of gas.

• Mole fraction (X): a dimensionless number that expresses the ratio of the number of moles of one component compared to the total number of moles in a mixture.

Page 85: Asas Teknik Kimia I-0k Awal

Daltons’ Law of Partial Pressures

The % of gases in air Partial pressure (STP)

78.08% N2 593.4 mmHg

20.95% O2 159.2 mmHg

0.94% Ar 7.1 mmHg

0.03% CO2 0.2 mmHg

PAIR = PN + PO + PAr + PCO = 760 mmHg 2 2 2

Total Pressure 760 mm Hg

Page 86: Asas Teknik Kimia I-0k Awal

Learning Check

A.If the atmospheric pressure today is 745 mm Hg, what is the partial pressure (mm Hg) of O2 in the air?

1) 35.6 2) 156 3) 760

B. At an atmospheric pressure of 714, what is the partial pressure (mm Hg) N2 in the air?

1) 557 2) 9.14 3) 0.109

Page 87: Asas Teknik Kimia I-0k Awal

Solution

A.If the atmospheric pressure today is 745 mm Hg, what is the partial pressure (mm Hg) of O2 in the air?

2) 156

B. At an atmospheric pressure of 714, what is the partial pressure (mm Hg) N2 in the air?

1) 557

Page 88: Asas Teknik Kimia I-0k Awal

Gas Mixtures

Page 89: Asas Teknik Kimia I-0k Awal

Composition of a Gas Mixture: Mass and Mole Fractions

• Mass Fraction (mf): The ratio of mass of a component to the mass of the mixture is called the mass fraction.

• Mole Fraction (y): The ratio of the mole number of a component to the mole number of the mixture is called the mole fraction.

m

ii m

mmf

m

i

N

Ny

k

iim mm

1

k

iim NN

1

Page 90: Asas Teknik Kimia I-0k Awal

• The mass of a substance can be expressed in terms of the mole number N and molar mass M of the substance as

• The molar mass and the Gas constant of a mixture can be expressed as

NMm

k

iii

m

mm My

N

mM

1 m

um M

RR

Page 91: Asas Teknik Kimia I-0k Awal

Dalton’s Law of additive Pressures

• The pressure of a gas mixture is equal to the sum of the pressures each gas would exert if it existed alone at the mixture temperature and volume

k

immim VTPP

1

,

Page 92: Asas Teknik Kimia I-0k Awal

Amagat’s Law of additive Volume

• The volume of a gas mixture is equal to the sum of the volume each gas would occupy if it existed alone at the mixture temperature and pressure

k

immim PTVV

1

,

Page 93: Asas Teknik Kimia I-0k Awal

P-v-T Behavior of Ideal Gas Mixtures

• For ideal gases ,the above two laws are identical and give identical results.

• Pi is called the component pressure and Vi the component volume.

• The ratio Pi/Pm is called the pressure fraction and the ratio Vi/Vm is called the volume fraction of component i.

Page 94: Asas Teknik Kimia I-0k Awal

Ideal Gas Mixtures

• Partial Pressure: The quantity yiPm is called the partial pressure

• Partial Volume: The quantity yiVm is called the partial volume

• For ideal gas mixture, the mole fraction, the pressure fraction and the volume fraction of a component are identical

mii PyP

mii VyV

Page 95: Asas Teknik Kimia I-0k Awal

mixture of n gases,

• partial pressure of a gas in a mixture is the pressure it would exert if alone in the container.

Page 96: Asas Teknik Kimia I-0k Awal
Page 97: Asas Teknik Kimia I-0k Awal

Exercise:

A gaseous mixture is made from 6.00g oxygen and 9.00g methane placed in a 15L vessel at 0oC. What is the partial pressure of each gas and the total pressure in the vessel?

Page 98: Asas Teknik Kimia I-0k Awal

Contoh 1.

• Dua puluh kaki kubik ( ft3 ) nitrogen pada 300 psig dan 100oF dan 30 ft3 oksigen pada 200 psig dan 340oF dimasukkan ke dalam tangki bervolum 15 ft3. Tangki selanjutnya didinginkan menjadi 70oF. Hitung tekanan parsial masing-masing komponen dalam tangki tersebut. Asumsi gas adalah ideal.

• Jawab.

Page 99: Asas Teknik Kimia I-0k Awal

Persoalan dapat diselesaikan dengan menentukan jumlah mol oksigen dan nitrogen dan penyelesaian untuk tekanan total pada kondisi akhir. Selanjutnya tekanan parsial dapat dihitung dengan menggunakan mol fraksi.

Page 100: Asas Teknik Kimia I-0k Awal
Page 101: Asas Teknik Kimia I-0k Awal

Real Gases

• Due to intermolecular forces, the Ideal gas law breaks down

• Understanding deviations from ideal gas behavior teach us about molecular interactions

• Van der Waals Eqn and Virial Expansion– Coefficients relate to energy of interaction

between molecules

Page 102: Asas Teknik Kimia I-0k Awal

Real Gases

• Real gases do not completely follow the ideal gas law.

• In kinetic molecular theory, the following assumptions are made:– gas molecules occupy no space– gas molecules have no attraction for each

other

Page 103: Asas Teknik Kimia I-0k Awal

Real Gases

• Neither assumption is correct.

– Real gas molecules have a finite volume.

– Real gas molecules do attract each other.

Page 104: Asas Teknik Kimia I-0k Awal

Real Gases

• The greatest deviation from ideal gas behavior occurs at:high pressure

higher density of gas molecules– Molecules are closer together so:

» finite volume of gas molecules more important» attraction between molecules more important

Page 105: Asas Teknik Kimia I-0k Awal

Real Gases

In the real world, the behavior of gases only conforms to the ideal-gas equation at relatively high temperature and low pressure.

Curves for 1 mol of gas

Page 106: Asas Teknik Kimia I-0k Awal

Real Gases

– Low temperatureAttractive forces between molecules becomes more

important.

– Average kinetic energy decreases.

– Gas molecules have less energy to overcome attractive forces.

Page 107: Asas Teknik Kimia I-0k Awal

Real Gases

Even the same gas (e.g. nitrogen) will show wildly different behavior under high pressure at different temperatures.

Page 108: Asas Teknik Kimia I-0k Awal

Compression Factor

RT

VpZ

gasperfectvolumemolar

volumemolarZ

Variation of Z with Pressure

At 0 C

Low pressures, Z=1, all gases ideal

At high pressures, Vreal >Videal ; Z>1 repulsive forces dominate

Low pressure, Vreal <Videal, Z< 1

attractive forces dominate

Low temperatures -> molecules moving less rapidly more influenced by attractive forces

Page 109: Asas Teknik Kimia I-0k Awal

REAL GASES

Deviations from ideal gas law

WHY?1. Molecules have volume

2. Molecules have attractive forces (intermolecular)

1. V-nb

2. -a(n/V)2

Van der Waals Equation of State2

V

na

nbV

nRTP

Page 110: Asas Teknik Kimia I-0k Awal

Van der Waals Equation (1873)2

V

na

nbV

nRTp2

mm V

a

bV

RTp

a reflects how strongly molecules attract each other

b corrects for the molecule’s size

Page 111: Asas Teknik Kimia I-0k Awal

Van der Waal’s constants

van der Waals Coefficients

Gas a (Pa m3) b(m3/mol)

Helium 3.46 x 10-3 23.71 x 10-6

Neon 2.12 x 10-2 17.10 x 10-6

Hydrogen 2.45 x 10-2 26.61 x 10-6

Carbon dioxide 3.96 x 10-1 42.69 x 10-6

Water vapor 5.47 x 10-1 30.52 x 10-6

a correlates with boiling point

b can be used to estimate molecular radii

Page 112: Asas Teknik Kimia I-0k Awal

“Derivation” of vdw Eq. State

Repulsive interactions cause molecules to behave as impenetrable spheres

Molecules restricted to smaller volume V-nb, where nb is volume molecules take up

Pressure depends on frequency of collisions with walls and force of each collision – both reduced by attractive forces proportional to molar concentration (n/V)

Pressure is then reduced according to a(n/V)2

Page 113: Asas Teknik Kimia I-0k Awal

Critical ConstantsThe `critical isotherm', the isotherm at the critical temperature Tc, is at 31.04 C. The critical point is marked with a star.

Critical pressure Pc

Critical molar volume Vc

Tc, Pc,Vc critical constants

If you compress along Tc, liquid does not appear – these highly dense materials are called “supercritical fluids” and their properties are a subject of intense current research

Page 114: Asas Teknik Kimia I-0k Awal

Other Equations of State

• Redlich-Kwong Peng-Robinson

Both are quantitative in region where gas liquefies

• Berthelot,Dieterici and others with more than ten parameters can give good fits !!!

• with seven free parameters, you can describe an elephant …

)(2/1 BVVT

A

BV

RTp

mmm

)()(

mmmm VVVV

RTp

Page 115: Asas Teknik Kimia I-0k Awal

Principle of Corresponding States

All gases have the same properties if they are compared at corresponding conditions

Define reduced variables

For homework you will write the vdw eqn in terms of the reduced variables

cRcRcR VVVTTTPPP /;/,/

Compression factor plotted using reduced variables. Different curves are different TR

Page 116: Asas Teknik Kimia I-0k Awal

Virial Equation of State

...)()(

12

32 V

TB

V

TB

RT

VPZ VV

...)()(1 232 PPBPPB

RT

VPZ PP

)(2 TB V = 0 at Boyle temperature

Most fundamental and theoretically sound

Polynomial expansion – Viral Expansion

Used to summarize P, V, T data

Also allow derivation of exact correspondence between virial coefficients and intermolecular interactions

Page 117: Asas Teknik Kimia I-0k Awal

P=101.325 kPa, V=5.6 L, T=273 K PV = nRT

(101.3 kPa)(5.6 L) = n (8.31 kPa•L/K•mol)(273 K)

5. Moles of CO2 is in a 5.6 L at STP?

(8.31 kPa•L/K•mol)(273 K)(101.325 kPa)(5.6 L)

= n = 0.25 mol

4. a) Volume of 4.50 mol of SO2 at STP.

P= 101.3 kPa, n= 4.50 mol, T= 273 K PV=nRT

(101.3 kPa)(V)=(4.5 mol)(8.31 kPa•L/K•mol)(273 K)

(101.3 kPa)

(4.50 mol)(8.31 kPa•L/K•mol)(273 K)V = = 100.8 L

Page 118: Asas Teknik Kimia I-0k Awal

4. b) Volume at 25°C and 150 kPa (two ways)?Given: P = 150 kPa, n = 4.50 mol, T = 298 K

(150 kPa)

(4.50 mol)(8.31 kPa•L/K•mol)(298 K)V = = 74.3 L

From a): P = 101.3 kPa, V = 100.8 L, T = 273 KNow P = 150 kPa, V = ?, T = 298 K

P1V1

T1

=P2V2

T2

(101.3 kPa)(100 L)(273 K)

=(150 kPa)(V2)

(298 K)(101.3 kPa)(100.8 L)(298 K)

(273 K)(150 kPa)=(V2) = 74.3 L

Page 119: Asas Teknik Kimia I-0k Awal

6. How many grams of Cl2(g) can be stored in a 10.0 L container at 1000 kPa and 30°C?

PV = nRT

(8.31 kPa•L/K•mol)(303 K)(1000 kPa)(10.0 L) = n = 3.97 mol

P= 1000 kPa, V= 10.0 L, T= 303 K

3.97 mol x 70.9 g/mol = 282 g

7. At 150°C and 100 kPa, 1.00 L of a compound has a mass of 2.506 g. Calculate molar mass.

PV = nRT

(8.31 kPa•L/K•mol)(423 K)(100 kPa)(1.00 L) = n = 0.02845 mol

P= 100 kPa, V= 1.00 L, T= 423 K

g/mol = 2.506 g / 0.02845 mol = 88.1 g/mol

Page 120: Asas Teknik Kimia I-0k Awal

8. 98 mL of an unknown gas weighs 0.081 g at SATP. Calculate the molar mass.

PV = nRT

(8.31 kPa•L/K•mol)(298 K)(100 kPa)(0.098 L) = n = 0.00396 mol

P= 100 kPa, V= 0.098 L, T= 298 K

g/mol = 0.081 g / 0.00396 mol = 20.47 g/mol

It’s probably neon (neon has a molar mass of 20.18 g/mol)

Page 121: Asas Teknik Kimia I-0k Awal

• ( P + a / Vm2 )( Vm - b ) = R T

• P = tekanan

• Vm =volum molar

• R = konstanta gas ideal

• T = suhu