98
(Eget arkiv , 2015) Aron Balschmidt og Henrik Lillegård | Aarhus Maskinmesterskole | 1. juni 2015 Bachelorprojekt ANALYSE AF OVERSKUDSVARME OG FORBRUGERE I EN BYGD PÅ GRØNLAND

Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

  • Upload
    others

  • View
    19

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

(Eget arkiv , 2015)

Aron Balschmidt og Henrik Lillegård | Aarhus Maskinmesterskole |

1. juni 2015

Bachelorprojekt ANALYSE AF OVERSKUDSVARME OG FORBRUGERE I EN BYGD PÅ

GRØNLAND

Page 2: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 1

Bachelorprojekt

Bachelorprojekt – 9. semester

_____________________________ ____________________________

Aron Balschmidt, A12047 Henrik Lillegård, A12022

Projekt:

Bachelor

Årgang:

9. semester

Fagområde:

Termisk maskinfag

Uddannelse:

Maskinmester

Uddannelsesinstitution:

Virksomhed:

Aarhus Maskinmesterskole

Nukissiorfiit

Vejleder:

Esben Sørensen

Aflevering:

Mandag den 1/6 2015

Projektets omfang:

ECTS i alt: 15

Antal sider: 98

Anslag: 74.690 (31 normal sider)

Bilag: 15 + USB pen

Page 3: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 2

Forord

Rapporten er skrevet som det afsluttende projekt på uddannelsen som maskinmester. Rapporten

forsvares til en mundtlig eksamen sidst på semestret. Vi har været i praktik hos Nukissiorfiit i

Kangaamiut, Grønland, da vi synes det kunne være interessant at have noget om

energiforsyningen på Grønland. Vi synes det giver nogle spændende problematikker at være

langt fra omverden, både fagligt og personligt. Vi mener, at det styrker os, hvis vi skal ud at sejle

senere som maskinmester. Derfor har vi søgt hos Nukissiorfiit, der har givet os et projekt at

arbejde med.

Stor tak til følgende personer og virksomheder, der har hjulpet os gennem projektet:

Marianne Begtrup, teamleder for vand, varme og el i bygder, Nukissiorfiit

Casper Clausen, teamleder Maniitsoq, Nukissiorfiit

Mads Burmeister, teknisk direktør, PM energi A/S

Karl Peter Tønnesen, formand for vandværket Kangaamiut, Nukissiorfiit

Jakob Tomasen, formand for elværket Kangaamiut, Nukissiorfiit

Esben Sørensen, lektor, vejleder AAMS

Page 4: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 3

Abstract

The report is the outcome of the final bachelor project; as Bachelor of Technical Management

and Marine Engineering education at Aarhus School of Marine and Technical Engineering. The

project is a result of the cooperation with the company Nukissiorfiit Greenland, where an

internship took place during the ninth semester.

Nukissiorfiit is the main provider of electricity, district heating and water in Greenland, and is

furthermore owned by the government of Greenland. Therefor they are responsible for providing

energy to the consumers in Greenland.

The internship took place in the small village Kangaamiut which house just about 380 people. Its

electricity need is covered by a small power station with three diesel generators. Such a

production of electricity generates excess heat, which is not being taken full advantage of. This

excess heat has the potential to be exploited for district heating.

The report will focus on the magnitude of excess heat to be found in the cooling system. There

will be two methods described in the report on how to measure/decide the amount of excess

heat in the cooling system. Furthermore it will give information about a selected group of locals´

consumption of heat during the set time period of a year. The consumption of heat is measured

at every consumer due to the different type and size of the houses. The predicated heat

consumption is based on the outside temperature and the isolation of the houses. Using this

information there will be given a first draft proposal for the design of district heating in

Kangaamiut. There will be an analyses of the cost/benefit for the company Nukissiorfiit,

considering district heating in Kangaamiut. The cost/benefit plan will include an analysis of each

supply line to the consumers.

Consequences regarding the environment and the local community, considering that the project

becomes a reality, will be discussed.

Page 5: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 4

Indholdsfortegnelse

1. Indledning 8

1.1 Formål .............................................................................................................. 8

2. Problemformulering 9

3. Samfundsmæssig relevans 11

4. Firma og bygden 12

4.1 Nukissiorfiit ....................................................................................................12

4.2 Kangaamiut ....................................................................................................14

4.3 Forsyningen i Kangaamiut ..............................................................................15

4.3.1 Ved blackout ..........................................................................................17

5. Forurening i Grønland 19

6. Olie distribution 19

7. Elværket 20

7.1 Systembeskrivelse ..........................................................................................20

7.2 Generatorsæt data .........................................................................................21

7.2.1 SISU ........................................................................................................21

7.2.2 Volvo Penta Marine Genset ...................................................................22

7.3 DG3 systembeskrivelse ..................................................................................23

8. Teori om dieselmotorer 24

9. Overskud af varme 26

9.1 Produceret varme DG3 ...................................................................................26

9.1.1 Metode 1 ...............................................................................................26

Page 6: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 5

9.1.2 Metode 2 ...............................................................................................28

9.1.2.1 Motorkølevandets specifikke varmekapacitet .............................30

9.1.3 Konklusion på udregningsmetoder .......................................................32

10. Overvejelser 34

10.1 Muligheder for afsætning af varme .............................................................34

10.1.1 Mulighed 1 ..........................................................................................35

10.1.2 Mulighed 2 ..........................................................................................35

10.2 Delkonklusion ...............................................................................................36

11. Forbrugere 37

11.1 Teori .............................................................................................................37

11.1.1 Ledning .................................................................................................37

11.1.2 Konvektion ............................................................................................38

11.1.3 Stråling ..................................................................................................38

11.2 Praktisk måling ............................................................................................38

11.3 Elværkets interne forbrug ............................................................................40

11.3.1 Opvarmning af bygning ........................................................................42

11.3.2 Standby opvarmning ............................................................................43

11.4 Kirkens varmeforbrug ...................................................................................46

11.5 Oversigt af måling ved forbrugere ...............................................................47

12. Kontrolmåling 49

12.1 Temperatur måling .......................................................................................49

Page 7: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 6

12.2 Flowmåling ..................................................................................................50

13. Det fremtidige varmeforbrug 51

13.1 Metode til udregning af fremtidigt forbrug .................................................52

13.1.1 Graddage .............................................................................................52

13.1.2 Varmetransmission ..............................................................................53

13.2 Samlet års oversigt .......................................................................................56

13.3 Delkonklusion ...............................................................................................57

13.4 Metode kritik ................................................................................................58

13.4.1 Målinger ...............................................................................................58

13.4.2 Vejrstation ...........................................................................................58

14. Indvirkende faktorer 59

14.1 Varmekilder i bygninger ...............................................................................59

14.2 Eksterne påvirkninger ..................................................................................60

14.2.1 Sol ........................................................................................................60

14.2.2 Vind ......................................................................................................62

14.3 Delkonklusion ...............................................................................................62

15. Miljø 63

15.1 CO2 besparelse .............................................................................................63

15.2 Olie besparelse .............................................................................................65

16. Projektering af fjernvarmerør 66

16.1 Løsningsforslag 1 ..........................................................................................66

Page 8: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 7

16.1.1 Økonomi ..............................................................................................66

16.1.2 Tilbagebetalingstid HL 1 .......................................................................69

16.1.3 CO2 besparelse .....................................................................................70

16.1.4 Olie besparelse ....................................................................................71

16.2 Løsningsforslag 2 ..........................................................................................72

16.2.1 Økonomi ..............................................................................................72

16.2.2 Tilbagebetalingstid HL 1+HL 2 ..............................................................75

16.2.3 CO2 besparelse ....................................................................................75

16.2.4 Olie besparelse ....................................................................................76

17. Konklusion 77

18. Perspektivering 78

19. Litteraturliste 79

20. Bilagsoversigt 81

Page 9: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 8

1. Indledning

1.1 Formål

Dette projekt har til formål at belyse muligheden for udnyttelse af overskudsvarme i en bygd på

Grønland. Derudover vil der blive belyst det samfundsmæssige perspektiv i forhold til projektet.

Projektet henvender sig til industrier med restvarme produktion, som vil udnytte dette til

fjernvarme hos forbrugere.

Delformålet med bachelor projektet er at sammenkoble den teoretiske viden og et praktisk

projekt. Under forløbet skal der indsamles data og analyseres på en problemstilling, samt

forholde sig kritisk til dette.

Bachelorprojektet har til formål at opfylde undervisningsplan modul 31, bachelorprojekt V1.

Page 10: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 9

2. Problemformulering

1. Baggrund

Nukissiorfiit Grønlands forsyningsselvskab har ytret ønske om at få undersøgt mulighederne, for

udnyttelse af overskudvarme, fra deres dieseldrevne elproduktion i bygden Kangaamiut.

Formålet med optimeringen er at udnytte en større del af den tilførte energi, i de små bygders

elproduktion. Nukissiorfiit har en vision om at lave mere energi rigtig elproduktion, samt skåne

miljøet. Da der ikke er afgifter for varmegenvindingsprojekter (se bilag 1), kan der være stor

mulighed for at energioptimere, selv i de små bygder.

2. Spørgsmål

Hvordan kan overskudsvarmen fra generatorsættene i Kangaamiut udnyttes?

- Hvor meget overskudsvarme er der under normale drift forhold?

- Hvilken indvirkning har det på det lokale samfund?

- Hvor lønsomt er det at udnytte overskudsvarmen ved at etablere fjernvarme?

3. Metode

Undersøgelsesmetoden til at svare på problemformuleringen, vil være at bruge instrumenter til

opsamling af data, der er relevant for projektet. Dataene vil derefter blive behandlet og

analyseret kritisk, baseret på erfaringer og viden, som er opnået under uddannelsen. Der vil

fremgå kritik af de faglige metoder og deres fremgangsmåde under hvert afsnit, hvor der kan

stilles spørgsmål til metoden.

Formålet med opgaven er at undersøge, hvor meget varmeoverskud der er til rådighed ved at

bruge kvantitativ dataindsamling. Den kvantitative dataindsamling vil være at logge data for hvert

10. sekund over 24 timer, dette vil give et kvalitativt billede af den enkelte forbruger, ved at

foretage relevante målinger. Overordnet set vil der ikke være fortaget kvantitative målinger

baseret på hele bygden, men derimod kvalitative målinger ved de mulige fjernvarme aftagere.

Page 11: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 10

4. Afgrænsning

I henhold til den tidligere beskrevet problemformulering, vil der på grund af manglende tid, blive

opsat visse afgrænsninger.

I rapporten vil der ikke blive gået i dybden med dieselgenerator nr. 1 og nr. 2, da de muligvis

senere vil blive udskiftet. Der vil ikke blive taget højde for implementeringsudgifter og styring på

selve elværket. Omkostningen til driften af fjernvarmen er heller ikke medregnet.

Tekniske beregninger af pladevarmeveksler vil ikke være med i rapporten.

Under løsningsforslagene vil der blive udregnet en tilbagebetalingstid, hvor der ikke vil blive taget

højde for låneomkostninger, planlægning og afskrivning af anlæg. Dette kaldes også for ”simpel

tilbagebetalingstid”. Der bliver ikke lavet forslag til styring af automationsdelen i løsning-

forslagene.

Det har været Nukissiorfiits ønske primært at undersøge muligheder for om overskudvarmen i

kølevandet kan udnyttes. Derfor er projektet afgrænset i forhold til nærmere undersøgelse af

røggaskedel samt for ikke at gøre projektet for bredt.

Page 12: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 11

3. Samfundsmæssig relevans

Samfundsmæssigt er projektet relevant, også selvom det foregår i en lille bygd på Grønland.

Mange steder findes maskiner og processer, der producerer en anseelig mængde overskuds-

varme. I dette projekt bliver overskudsvarmen fra kølesystemet på en dieselgenerator på

nuværende tidspunkt, kun brugt til at opvarme elværket. Den del der bliver brugt er som man

kan se senere i rapporten en lille del af den energimængde, der er tilgængelig. Gennem de senere

år er der kommet meget fokus på at optimere de processer, der er mulige at optimere på. Den

energi der muligt kan udnyttes til fjernvarme bliver i øjeblikket bortledt uden nogen nytte.

Grønland har en vision om at mindske afhængigheden af olie og styrke samfundsøkonomien, se

lov nedenfor:

”§ 1. Forordningens formål er at fremme den mest samfundsøkonomiske og miljøvenlige

energi-forsyning samt at formindske energiforsyningens afhængighed af olie.

Stk. 2. Tilrettelæggelsen af energiforsyningen skal i overenstemmelse med de i stk. l nævnte

formål ske med henblik på økonomisering og besparelser i energiforbruget, størst mulig

energiforsyningssikkerhed, effektivisering af produktions- og forsyningssystemet og renere

energiproduktion.”

(Grønlands Hjemmestyre, 1997)

Projektets formål passer godt ind i Grønlands lov om at mindske afhængigheden af olie, samt at

foretage miljøvenlige tiltag i forhold til energiforsyning. Senere i denne rapport vil der blive set

nærmere på CO2 besparelsen, samt det økonomiske aspekt for én enkelt forbruger. Projektet kan

have betydning for den samfundsøkonomiske betalingsbalance mellem Grønland og omverden.

Grønland har en vision om at mindske pengestrømmen ud af landet, da de opkøber meget olie til

forsyning. (Begtrup, 2015)

Page 13: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 12

4. Firma og Bygd

4.1 Nukissiorfiit

(Nukissiorfiit, 2015)

Energiforsyningsselvskabet Nukissiorfiit er ejet af Grønlands selvstyre. De har ansvaret for

produktion og distribution af både vand, el og varme til størstedelen af forbrugerne på hele

Grønland. Deres mål er, hver dag at levere en pålidelig og miljøbevidst energiforsyning til det

grønlandske samfund. En af de foranstaltninger de har foretaget mod at sikre en miljøbevidst

produktion af energi, er at etablere vandkraftværker. Der er i øjeblikket 5 vandkraftværker

lokaliseret i, Nuuk, Tasiilq, Ilulissat, Qorlortorsuaq og Sisimiut.

Page 14: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 13

”Omkring 60 % af den energi, Nukissiorfiit producerer, kommer fra vandkraftværker.”

(Nukissiorfiit, 2015)

Den øvrige produktion foregår på dieselolie, Artic Gas Oil, da det ikke er muligt alle steder at

etablere vandkraft. Artic Gas Oil er diesel olie med lavt svovl indhold, der er beregnet til det

arktiske klima, skal importeres udefra. Heller ikke vindkraft er en mulighed med den nuværende

teknologi, der er inden for området, da vejrforholdene i Grønland forhindrer dette. Vejret er

meget hurtigt omskiftende på Grønland og det vil derfor ofte blæse for lidt, for sjældent eller for

kraftigt. (Nukissiorfiit, 2015)

En anden grund til at satse på miljøvenlig/grøn energiforsyning er, at Grønland har en målsætning

om både at være god ved miljøet, men også at mindske afhængigheden af udenlandsk

brændstof.

Selvskabet er en af Grønlands største virksomheder, der har ansvaret for 17 byer og 53 bygder.

Selvskabet beskæftigede 400 ansatte i 2012, hvor 6 % var unge under uddannelse. Selvskabets

overordnede administration er placeret i hovedsædet i Nuuk. (Nukissiorfiit, 2015)

Nukissiorfiit tester for tiden teknologien inden for solceller, da de måske har en fremtid i

Grønland, hvor sommeren giver mange produktionstimer. De regner med at have en konklusion

på dette i løbet af 2015. I 2015 indledes også forsøg med geotermisk energi (jordvarme).

En større udbredelse af bølge- og tidevandskraft er ikke sandsynligt på grund af det is fyldte

farvand omkring Grønland.

Biomasse, såsom træ med mere, er ikke anvendeligt på Grønland, da det ikke er lokalt

tilgængeligt i et tilstrækkeligt omfang. Derved skal det transporteres fra andre lande, hvilket ville

være en bekostelig affære i forhold til olie. Det er en fordel at bruge olie, da bygderne nemt kan

forsynes med energi, og det er let at distribuere.

Page 15: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 14

4.2 Kangaamiut

(Eget arkiv , 2015)

Kangaamiut er en bygd beliggende i Qeqqata distriktet nord for Maniitsoq og syd for Sisimiut,

den gule prik på kortet over Grønland repræsenterer Kangaamiut. Bygden har på nuværende

tidspunkt cirka 380 indbyggere. Bygden består hovedsageligt af private træhuse. I bygden ligger

en af Royal Greenlands fiskefabrikker, der beskæftiger cirka 10 personer på dagsbasis.

Fiskefabrikken er også en af bygdens største forbrugere, da de har køleanlæg, byggekran og en

produktionslinje. I bygden ligger en dagligvarebutik med bakeoff bager, hvor man kan købe

dagligvarer, alle kødvarer er på frost. Skolen har cirka 43 elever fordelt på fire sammensatte

klasser, i starten af 90’erne fik bygden doneret en sportshal af det grønlandske selvstyre.

Inden for de sidste 10 år har der været store ændringer i bygden. Bygdens indbyggertal er faldet

fra 800 til de cirka. 380 i dag, derudover er én af bygdens 2 fiskefabrikker lukket og dermed

forsvandt der en del arbejdspladser. Mange unge flytter til de større byer på grund af manglende

arbejde og aktiviteter. Det positive for bygden er, at mange flytter tilbage når de enten vil starte

Page 16: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 15

familie eller har familie. Der er et godt fællesskab og lokalsamfund i bygden. Folk er meget

imødekommende og hjælpsomme.

4.3 Forsyning i Kangaamiut

Elværket i Kangaamiut, hvor praktikken har fundet sted, indeholder 3 dieseldrevne generatorer.

Elværket har 2 typiske driftsformer. En hvor 2 SISU generatorer på hver 187 kW kører og én Volvo

som backup på 274 kW. Den anden driftsform er, hvor Volvo ‘en kører og de 2 SISU generatorer

bruges som backup.

Nedenstående graf viser middel elproduktionen for generatorerne fra 2012 til dags dato.

(Nukissiorfiit(Citrix), 2015)

Y-aksen viser kW og x-aksen viser måned og år. Grafen ovenfor viser middellasten for bygdens

forbrug af el. Som det ses er forbruget af el højere om vinteren og dette skyldes blandt andet el-

heattracing på vandrørene, for at holde dem frostfri samtidig med at gadebelysningen er tændt i

længere tid.

Page 17: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 16

I tilfælde af, at der opstår en fejl/breakdown på en motor modtager personalet en alarm og en

anden generator starter automatisk op, hvis dette er nødvendigt. Hver dag kontrolleres

kølevandstanden samt oliestanden på generatorerne, så man er sikker på de altid er klar til en

opstart. Styringen på elværket starter én eller flere generatorer op så bygdens elbehov bliver

dækket. Opstart og synkronisering er fuldautomatisk, hvis alle generatorer er sat i automode.

Derved er der sikret en god forsyningssikkerhed.

De 2 SISU generatorer vil blive benævnt som DG1, DG2 og Volvo ‘en som DG3.

Udover elværket har Nukissiorfiit bygdens vandværk. Vandet kommer fra en opdæmmet sø, cirka

300 meter fra bygden. Vandet bliver renset gennem sandfilter, papirfilter og med ultraviolet lys.

Vandet bliver derefter distribueret ud til bygdens beboere, det er dog ikke alle huse, der har

indlagt vand, så der er opstillet tapkasser flere steder i bygden. Alle vandrør er monteret med el-

heattracing, det vil sige, at de er opvarmet med el for at undgå frost i rørene der kunne resultere i

leveringsstop og eventuelt frostsprængte rør.

Nedenstående graf viser vandproduktionen i m3 fra juni 2014 til april 2015

(Nukissiorfiit(Citrix), 2015)

Page 18: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 17

Grafen er medtaget for at give et billede af størrelsen af bygden og dens vandforbrug.

Til at håndtere den daglige drift af elværket og vandværket er der ansat 2 personer i fuldtids-

stillinger.

(Eget arkiv , 2015)

Fra venstre Karl Peter Tønnesen, Aron Balschmidt, Henrik Lillegård og Jakob Thomassen.

Karl Peter som er tidligere entreprenør/maskinmekaniker er hovedansvarlig for vandværket.

Jakob som er maskinist og har været på elværket i 35 år, er hovedansvarlig for elværket.

4.3.1 Ved blackout

Hvis elforsyningen går ned og ikke kan etableres inden for en hvis periode, kan bygden risikere at

skulle evakueres. Dette kan være nødvendigt på grund af flere faktorer. Hvis der ikke er strøm

kan vandværket ikke rense vandet, derved skal forsyningen komme fra dagtanken som kun

rummer en hvis mængde, nemlig 3,5 m3. Derved kan bygden hurtigt være uden vand, og de kan

ikke få rent vand andre steder fra.

Page 19: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 18

En anden problematik er, at størstedelen af bygden får varme fra deres privatinstallerede oliefyr.

Hvis der ikke er elektricitet kan fyrene ikke køre og der vil hurtigt blive koldt i husene. Dette er

især et problem om vinteren, hvor ude temperaturen er under frysepunktet.

Hvis alle 3 generatorer på elværket er ude af drift har elværket en nødgenerator beliggende tæt

på havnen. Den skal startes manuelt og kan kun forsyne den del af bygden der ligger syd for

elværket, ved normalt forbrug. Denne del af bygden indeholder butikken, skolen, kommunen og

en stor del af de private huse i bygden.

Page 20: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 19

5. Forurening i Grønland

Grønland er en stor ø på 2.166.086 km2 med cirka 57.000 indbygger. Det vil sige at der er 0,026

indbygger/km2 og set i forhold til Danmark som har en befolkningstætheden på 129

indbygger/km2, så er dette væsentligt mindre. Da befolkningstætheden ikke er så stor, er CO2

koncentrationen også lavere. Byerne og bygderne er ikke forbundet via veje på Grønland og

derfor er der ikke så mange kørertøjer. Kørertøjerne befinder sig for det meste i de store byer. Alt

skal derfor fragtes via fly eller skib. Der er ikke så stor fokus på at rense røggassen i bygden, da

der ikke er installeret røggasrensning på elværket eller i de privates oliefyr. Da røggassen ikke

bliver renset vil der være en højere koncentration af svovldioxid, kvælstofoxider, partikler og

tungmetaller.

(Nielsen, 1996, s. 67)

6. Olie distribution

For at sikre bygden har el og varme, bliver der sejlet olie til bygden. Bygden har en stor

bunkringstank på en lille ø 50 meter fra butikken.

Bunkringstanken er dimensioneret til at indeholde 1 års forbrug af olie, da det om vinteren ikke

er sikkert at bunkringsskibet kan komme ud til bygden, på grund af is. (Begtrup, 2015)

Elværket har en opbevaringstank udenfor, der bliver forsynet ved hjælp af bunkringsrør fra

bunkringstanken. Opbevaringstanken har en kapacitet på 20.000 liter, der bliver fyldt cirka hver

14. dag. Dagtanken er niveaustyret, men for at sikre at pumpen og forsyningen virker, bliver der

hver morgen tændt manuelt for pumpen til den automatisk stopper.

Distributionen af olie til kommunalbygninger og andre med en større olietank, der villig til at

betale en højere liter pris, kan få det leveret med en lille tankvogn. Resten af bygdens beboer

henter olien i dunke. Dunkene er typisk 10 liters dunke. På grund af, at de fleste huse kun har

installeret en lille olietank, kan det ikke betale sig at få tankvognen ud. På grund af det høje

olieforbrug om vinteren og den hyppige afhentning af olie, slæber de dunkene hen af vejen.

Page 21: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 20

7. Elværket

7. 1 Systembeskrivelse

(Eget arkiv , 2015) (se bilag 2)

(Eget arkiv , 2015)

Som tidligere nævnt består elværket af 3 dieselgeneratorsæt. Hver motors kølevandssystem er

koblet til en varmeveksler og en køler. Varmeveksleren opvarmer mellemkredsen, der bruges til

at opvarme de andre motorer når de står standby. Mellemkredsen opvarmer også varme-

Page 22: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 21

veksleren PLW 4.1 som forbinder elværkets radiatorsystem, samt varmvandsbeholder. Derved

bruges noget af overskudsvarmen fra motorerne til at opvarme elværket.

7.2 Generatorsæt data:

7.2.1 SISU:

Diesel 645

Motor: 200 kW ved 1500 RPM.

Generator: 187 kWe

(Eget arkiv , 2015)

SISU motorerne er lastvogns motorer der er fremstillet i Finland og leveret af PM-Energi.

De er de ældst og har haft flest drift timer af de 3 generatorsæt der er på elværket. De senere år

har der været store problemer med kølevandspumperne på motorerne. Undervejs i praktikken er

der brugt mange timer på at finde en løsning sammen med PM-Energi.

Page 23: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 22

7.2.2 Volvo Penta Marine Genset:

Diesel D13B-E

Motor: 300 kW ved 1500 RPM.

Generator: 274 kWe

(Eget arkiv , 2015)

Volvo Penta motoren er en 6 cylindre skibsmotor, der er fremstillet i Sverige og leveret af PM-

Energi.

Denne motor er den nyeste og har færrest drift timer. Under praktikken har der ikke været fejl

eller nedbrud.

Page 24: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 23

7.3 DG3 systembeskrivelse

(Eget arkiv , 2015)

Kølesystemet på DG3 er opbygget af én tvangstrukket pumpe og to termostater i motorblokken,

der holder en temperatur på 77-80 °C. Efter motoren bliver kølevandet cirkuleret igennem

varmeveksleren PLW 3.1, derefter er der 3-vejsreguleringventilen TC 3.1 der styrer om køle-

vandet skal igennem køleren for yderligere afkøling. Denne ventil åbner til køleren ved en

temperatur på 51 °C. Til styring af kølevandet er der placeret en temperaturtransmitter, TT 3.1

som måler temperaturen efter køleren og sender dette signal videre til frekvensomformeren, der

styrer blæseren efter et sætpunkt på 60 °C.

Page 25: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 24

8. Teori om dieselmotorer

I dette afsnit vil der blive set nærmere på energifordeling for en motor. Dette er for at danne

baggrund for de kommende målinger, samt at illustrere energien som kan udnyttes.

I den ideele verden ville aksel effekten, der i dette tilfælde er koblet til generatoren, være det

samme som den effekt der bliver påført i form af brændstof. Det er dog ikke tilfældet, da der er

flere tab i en diesel motor, som er illustreret på sankey diagrammet nedenunder.

(Knak, 2004)

ENERGI FORDELING

A Tilført brændstof.

B Bortledning af varme gennem kølevand som opstår ved friktion i motoren samt den varme

der afgives ved forbrændingsprocessens termiske dele.

C Bortledning af varme gennem smøreolien.

D Varmetab i røggassen, varmetabet i røggassen er en stor del af tabet. Der bliver dog

udnyttet mere af denne i en turboladet motor end en ikke turboladet motor. Turboladeren

komprimerer indsugningsluften og der bliver derved leveret ladeluft ved et højere tryk

som resulterer i en højere effekt på motoren.

E Akseleffekt dette er den effekt der kan udnyttes og via generatordelen som producerer el

der sælges som produkt til kunderne.

F Strålingsvarme fra motoren til omgivelserne.

(Eget arkiv , 2015)

Page 26: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 25

En anden måde at udtrykke akseleffekten:

𝑃𝑏 = 𝑃𝑡𝑖𝑙𝑓ø𝑟𝑡 ∗ 𝜂𝑚 ∗ 𝜂𝑡 = 𝑚𝑏 ∗ ℎ𝑖 ∗ 𝜂𝑚 ∗ 𝜂𝑡

𝑃𝑏 er akseleffekten der kan udnyttes via generatoren. Man kan se, at forskellen mellem den

tilførte energi og akseleffekten er den termiske og mekaniske virkningsgrad. Termiske tab er

varmen fra forbrændingen der ikke bliver udnyttet og udledes i røggassen, stråling og kølevand.

Det mekaniske tab, er friktion der opstår i lejer og mellem stempelringe og foringen.

Faktuelle data:

Ved en belastning på 75 % hvor akseleffekten er 225 kW ser energifordelingen således ud på

DG3:

Energikilde Effekt % af total 540 kW

Friktion 32 kW 5,925 %

Røggas 145 kW 26,85 %

Varmestråling til omgivelserne 3 kW 0,55 %

HT – kølevand (motorkøling) 89 kW 16,48 %

LT - kølevand (ladeluftkøler) 46 kW 8,52 %

Akseleffekt 225 kW 41,67 %

(Eget arkiv , 2015)

Disse data er taget ud fra databladet for DG3. Som man kan se er det en ret lille del af den energi

der tilføres motoren der udnyttes, kun 41,67 % ved 75 % belastning. Derfor er der i projektet set

på om det er muligt at udnytte nogle af disse tab. Det der er til at udnytte ved rimelige

anstrengelser er den effekt som findes i kølevandet.

Page 27: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 26

9. Overskud af varme

I dette afsnit vil der blive set nærmere på den producerede varme fra DG3, og fremgangsmåden

til dette. Senere vil der blive foretaget en analyse af egetforbruget, for til sidst at finde det

varmeoverskud, der er salgsbar. Der er blevet overvejet flere metoder til at udregne effekten, der

afsættes i kølevandet. De følgende målinger er lavet for at kunne give et præcist billede af den

effekt der er til rådighed.

9.1 Produceret varme DG3

(Eget arkiv , 2015)

9.1.1 Metode 1

Denne metode tager udgangspunkt i databladet for DG3. Ideen med dette er at lave en ligning,

som kan bruges til at beregne den producerede varme, afsat i kølevandet i forhold til

belastningen på generatoren. Ligningen skal dække belastningsområdet, der spænder fra 25 % til

100 %. Se nedenstående billede hvor dataene stammer fra ”Heat rejection to coolant”.

Page 28: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 27

(Volvo Penta, 2012) (se bilag 15)

(Eget arkiv , 2015)

Der er blevet brugt Excel som værktøj til at finde polynormligningen ud fra grafen, ud fra data

taget fra databladet. Ved at bruge denne metode, kan man ud fra den producerede el finde

effekten afsat til kølevandet. I teorien kunne denne metode bruges uden at lave en fysisk måling.

y = 0,000523x3 - 0,0752x2 + 3,7133x + 13R² = 1

0

20

40

60

80

100

120

140

160

180

25 50 75 100

Varme kølevand

varme kølevand Poly. (varme kølevand)

Page 29: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 28

9.1.2 Metode 2

En anden fremgangsmåde kunne være at måle sig frem til den producerede energimængde.

(Eget arkiv , 2015)

For at finde den varme motoren afgiver til kølevandet, skal man måle flowet og temperatur

differencen mellem TI 3.1 og TI 3.3, som indsættes i nedenstående formel:

𝑄 = �� ∗ 𝑐𝑝 ∗ ∆𝑡

Det har ikke været muligt at få en valid flowmåling med det udstyr der var til rådighed.

Rørstrækningerne var for korte og gav derfor ulineært flow profil, som er umuligt for ultralyds-

flowmåleren at måle på.

Page 30: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 29

Flowmålerens transducerplacering:

(Micronics, 2009)

Flowmålerens transducer skal placeres 20 x diameteren af røret væk fra bøjninger og T-stykker

ved upstream. Transducerne skal også placeres 10 x diameteren af røret fra bøjninger og T-

stykker ved downstream.

På grund af denne forhindring skal der ses andre steder for at få en valid flowmåling. Det har

været muligt at måle flowet på sekundærsiden af varmeveksleren altså fjernvarmedelen. Da der

vil blive set bort fra tab til omgivelserne kan denne antagelse bruges til at finde flowet på

primærsiden, motorsiden. Den valgte metode er derfor denne:

𝑄𝑘ø𝑙𝑒𝑣𝑎𝑛𝑑𝑃𝐿𝑊3.1 ≈ 𝑄𝑓𝑗𝑒𝑟𝑛𝑣𝑎𝑟𝑚𝑒

𝑚1 ∗ 𝑐𝑝1 ∗ ∆𝑡1 = 𝑚2 ∗ 𝑐𝑝2 ∗ ∆𝑡2

De forskellige data er gennemsnitsværdier for det målte døgn. Derved er m1 flowet i motorens

kølesystem. Der skal gøres opmærksom på, at cp1 beregnes i et underafsnit (se ”udregning af

motorkølevandets specifikke varmekapacitet”)

𝑚1 =𝑚2 ∗ 𝑐𝑝2 ∗ (𝑡𝑓𝑗𝑒𝑟𝑛 𝑓𝑟𝑒𝑚 − 𝑡𝑓𝑗𝑒𝑟𝑛 𝑟𝑒𝑡𝑢𝑟)

𝑐𝑝1 ∗ (𝑡𝑇𝐼3.3 − 𝑡𝑇𝐼3.2)

𝑚1 =0,603 ∗ 4,19 ∗ (72,22 − 45,25)

3,875 ∗ (75,12 − 69,9)= 3,37

𝑚3

Page 31: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 30

Da flowet i motorens kølesystem nu er kendt kan effekten, der afgives til kølevandet findes ud fra

følgende formel som tidligere anvendt:

𝑄 = �� ∗ 𝑐𝑝 ∗ ∆𝑡

𝑄𝑘ø𝑙𝑒𝑣𝑎𝑛𝑑 = 𝑉𝑘ø𝑙 ∗ 𝜌 ∗ 𝑐𝑝𝑘ø𝑙 ∗ (𝑡𝑇𝐼3.3 − 𝑡𝑇𝐼3.1)

𝑄𝑘ø𝑙𝑒𝑣𝑎𝑛𝑑 =3,37 ∗ 1003,95

3600∗ 3,875 ∗ (75,12 − 56,02) = 69,56 𝑘𝑊

De brugte data er gennemsnitsværdier over det målte døgn

9.1.2.1 Motorkølevandets specifikke varmekapacitet

Til at beregne den producerede varme, skal man kende hvor meget energi, der skal til for at

opvarme mediet 1 °C pr. kg. Motorkølevandet er en blanding af propylen glycol og vand.

Blandingsforholdet er oplyst til at være 40 % propylen glycol og 60 % vand. (Tønnesen, 2015)

(Dow Chemical Company, 2001)

Da der ikke er oplyst værdier for den temperatur DG3 kører med, skal der interpoleres.

Da temperaturen i gennemsnit over døgnet ligger på:

𝑇𝐼3.324ℎ − 𝑇𝐼3.124ℎ

2=

75,1215 + 69,9

2= 72,51 ℃

Page 32: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 31

Det er nu muligt, ved hjælp af lineærinterpolation mellem 65 og 90 grader, at finde den speci-

fikke varmekapacitet for kølevandet ved gennemsnitstemperaturen.

𝑦 = 𝑦1 +𝑦2 + 𝑦1

𝑥2 − 𝑥1∗ (𝑥 − 𝑥1)

𝑐𝑝72,51 = 𝑐𝑝65 +𝑐𝑝90 + 𝑐𝑝65

𝑡90 − 𝑡65∗ (𝑡72,51 − 𝑡65)

𝑐𝑝72,51 = 3,850 +3,933 − 3,850

90 − 65∗ (72,51 − 65) = 3,875

𝑘𝐽

𝑘𝑔 ∗ 𝐾

Det samme kan bruges til at finde densiteten

𝜌72,51 = 1009,90 +990,10 − 1009,90

90 − 65∗ (72,51 − 65) = 1003,95

𝑘𝑔

𝑚3

Page 33: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 32

9.1.3 Konklusion på udregningsmetoder

Grafen illustrerer varmeproduktionen i forhold til elproduktionen.

(Eget arkiv , 2015)

Til at starte med var meningen at udregne varmeproduktionen, i forhold til elproduktionen ud fra

databladet for DG3, det er den grønne streg. Efter færdiggørelse af denne udregning blev

forbruget målt for de to huse samt kirken, der ligger nærmest elværket. Forsyning til disse tre

forbrugere var udgangspunktet for projektet, da dette var grundideen før påbegyndelse på

projektet. Disse tre forbrugere brugte kun 13,3 % af den overskydende varme (se bilag 3). Dette

virkede lettere usandsynligt og der blev derfor overvejet om målingerne og metoden var korrekt.

Senere blev der fundet frem til metode 2, der er beskrevet ovenfor. Ved hjælp af denne metode

kunne flowet af kølevand gennem motoren udregnes. Målingerne blev foretaget hvert 10. sek. og

derved blev det en mere præcis måling af flowet. Ved hjælp af dette flow kunne effekten

beregnes i forhold til de virkelige omstændigheder, den lilla streg. Vi har i den ovenstående graf

illustreret forskellen mellem de 2 metoder. Man kan se, at den værdi der kommer ud fra det

målte flow giver et mere realistisk billede af varmeproduktionen i forhold til elproduktionen. Som

man kan se på grafen følger metode 2 elproduktionen, hvorimod metode 1 har få variationer og

Page 34: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 33

ikke ser ud til at være afhængig af elproduktionen. Grundet disse overvejelser er udregningerne

baseret på metode 2, da den giver et mere korrekt billede af varmeproduktionen.

Page 35: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 34

10. Overvejelser

10.1 Muligheder for afsætning af varme

Dette afsnit omhandler processen efter analyse af størrelsen for overskudsvarmen fra DG3.

Inden projektering af fjernvarme og måling hos forbrugere var der mange overvejelser i forhold

til, hvilken del af bygden, der skulle fokuseres på. Hvilken del af bygden ville være bedst og mest

økonomisk at lave fjernvarme, og hvor stor en del af bygden kan så kobles på. Netop på grund af

den begrænsede tid, skulle der tages stilling til, hvilket område der skulle være baggrund for

nærmere undersøgelser. På grund af den høje implementeringsudgift for installation af røggas-

kedel og på grund af den ekstra varme der skal afsættes til de afsides forbrugere. Vil den ekstra

fjernvarmestreng blive meget dyrere og derfor er dette ikke undersøgt nærmere.

Der opstilles 2 muligheder for hvor restvarmen kan udnyttes til fjernvarme.

(Eget arkiv , 2015)

Kort over noget af bygden med elværket i centrum, markeret med en sort ring. Den røde firkant

repræsenterer område 1 som er den sydlige del. Den orange firkant repræsenterer område 2 som

er den nordlige del.

Page 36: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 35

10.1.1 Mulighed 1:

I den sydlige del findes store forbrugere og derved er der god mulighed for at afsætte fjernvarme.

Området syd for elværket har store forbrugere, såsom kirke, kommune, tømmerhandel og

idrætshal. De fleste huse ligger relativt tæt og er alle beboede, husene er velholdte så der er god

chance for mulig beboelse fremadrettet. Kirken er relativ ny og er flittigt besøgt af bygdens

indbyggere. Kommunen er ligeledes i god stand og har indkvartering til udefrakommende

besøgene. På grund af disse forhold forventes der, at det er muligt at projektere fjernvarme til

disse også i fremtiden.

10.1.2 Mulighed 2:

I den nordlige del er der mange huse og dermed god mulighed for at afsætte fjernevarme.

Området nord for elværket har kun private huse, hvilke er mindre forbrugere.

(Eget arkiv , 2015)

Der er stor højdeforskel i den nordlige del, som det kan ses på billedet ovenfor, derfor kan det

godt blive lange strækninger, selvom det på kortet ikke ser ud af meget. Der er også langt fra

elværket til det første hus. Mange af de private huse er dårligt vedligeholdt, så chancen for

vedvarende beboelse er mindre god. Derudover er mange af husene, der er placeret nordligst i

bygden ubeboet og i så dårlig stand, at der ikke regnes med fremtidig beboelse.

Page 37: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 36

10.2 Delkonklusion

Ud fra de to muligheder er der valgt at fokusere på mulighed 1. Dette skyldes blandt andet, at det

virker som en mere fremtidssikret løsning. Der regnes også med, at der skal lægges færre meter

fjernvarmerør ud og derfor vil give en kortere tilbagebetalingstid.

Page 38: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 37

11. Forbrugere

Der vil i dette afsnit blive belyst elværkets eget varmeforbrug, samt nærliggende kirke og huse.

Der vil være forklaringer af varmetransmission, teorier og praktiske målinger.

11.1 Teori:

”Varme er energi”

”Hvis der er to stofområder med forskellige temperaturer, vil der overføres varme fra det

stofområde, som har den højeste temperatur, til det stofområde, som har den laveste

temperatur”

”I en radiatoropvarmet stue er stofområdet med den høje temperatur radiatorens

vandrum, mens stofområdet med den lave temperatur, er luften i stuen. Pga.

temperaturforskellen overføres der varme fra vandet til luften gennem hedefladen, som er

radiatorens pladevæg”

(Larsen, 2001)

Som det beskrives i teorien er varme lig med energi. Denne energi kan transmitteres ved hjælp af

3 måder:

Ledning

Konvektion

Stråling

11.1.1 Ledning

Ledning forstås som, at det er molekylernes kontakt med hinanden, der overfører energien. Der

vil i faste stoffer, stillestående væsker og gasser, transmitteres energi fra det molekyle, der har

mest energi til det med det laveste. Varme energien i et stof kan beskrives som molekylernes

svingninger eller sitren. Ved absolut frysepunkt -273,15 °C, vil molekylerne stå helt stille. Det

molekyle der svinger mest sætter nabomolekylet i svingninger og så videre. Det vil sige, at den

med høj temperatur afleverer noget af energien til det molekyle, der svinger mindre, altså det

med lavere temperatur. På grund af denne form for energitransport, vil der opstå varme-

modstand.

Page 39: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 38

11.1.2 Konvektion

Konvektion forstås som, at der sker en varmeovergang ved kontakt mellem en kold og varm

flade. Det kan for eksempel være den kolde luft, der rammer radiatorenes varme overflade. På

radiatorens varme overflade, vil der på grund af molekylære kræfter lægge sig et grænselag af

stillestående luftmolekyler. Dette grænselag virker som en modstand for konvektionen.

Grænselaget kan gøres mindre ved at øge hastigheden, på cirkulationen af luft der passerer

radiatoren. På den måde slides grænselaget væk og der vil være bedre kontakt mellem den

varme overflade og den kolde luft.

11.1.3 Stråling

Stråling forstås som elektromagnetiske bølger, der ved hjælp af deres bølgelængde og energi kan

få molekylerne sat i svingninger. Solen udsender mange forskellige elektromagnetiske bølger.

Disse stråler kan reflekteres, absorberes og diffunderes, alt afhængig af om det er et spejl, en sort

overflade eller et vindue.

Det varme vand i en hustands radiatorkreds, vil afgive energien til radiatorens overflade ved

konvektion og ledning. Radiatorens overflade vil overføre energien til omgivelserne ved stråling,

konvektion og ledning.

11.2 Praktisk måling

I stedet for at måle for hver enkel radiator, er der blevet målt på tilgangen og afgangen af

radiatorkredsen til oliefyret. Oliefyret forsyner alle bygningens radiatorer og derved fås også

transmissionstabet i rørene med. Til at beregne effekten i radiatorkredsen bruges følgende

formel:

𝑄 = �� ∗ 𝑐𝑝 ∗ ∆𝑡

Masseflowet beregnes ud fra volumenflowet og densiteten af mediet, ved den givne temperatur.

Volumenflowet måles ved hjælp af en ultralydsflowmåler, som monteres uden på rørene. Denne

metode er valgt, da det har været meget praktisk at montere og afmontere flowmåleren, uden at

indbygge en flowmåler direkte i rørsystemet ved forbrugerne. Mediet som bruges til at trans-

portere energien i radiatorkredsen er vand. Vand har ved forskellige temperature en specifik

Page 40: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 39

varmekapacitet og densitet. Der vil blive brugt tabeller fra ”Termodynamik” bogen til at finde

vandets specifikke varmekapacitet og densitet. Temperaturdifferencen er målt mellem radiator-

kredsens tilgang og afgang. Til måling af temperaturen, er der blevet brugt Tiny Tags. Tiny Tag er

en enhed med en lille hukommelse, der kan logge temperaturen over en periode. Enheden har en

føler for enden af en ledning, der måler temperaturen. Der er under målingerne monteret følere

uden på rørene. Derfor skal der gøres opmærksom på, at temperaturen der måles er på yder-

siden af røret og ikke vandet inde i rørene. Der vil være en temperaturdifferens mellem vandet

og røret, på grund af den tidligere beskrevne varmemodstand og eventuelle belægninger. Der ses

bort fra dette, da fremløbsrøret og returrøret er af samme materiale og tykkelse, så det antages,

at rørene har samme varmemodstand.

Page 41: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 40

11.3 Elværkets interne forbrug

(Eget arkiv , 2015) (se bilag 2)

Denne plantegning viser placeringen af elværkets radiatorer og pladevarmevekslere med mere.

Forklaring:

Fx.x : ”F” står for ”forbruger” anses som en radiator. Det første x indikerer lokale nr. og det sidste

indikerer nummeret på forbrugeren.

PLW x.x : ”PLW” står for ”pladevarmeveksler” og det første x indikerer lokale nr. og det sidste

indikerer nummeret på pladevarmeveksleren.

Page 42: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 41

(Eget arkiv , 2015)

Ovenstående diagram viser en oversigt af mellemkredsens forbindelser, samt de enkelte motor-

er.

(Eget arkiv , 2015)

Disse diagrammer er simplificerede for at give et mere overskueligt billede af systemet. Der

undlades flere temperaturindikatorer og ekspansionsbeholdere. De detaljerede diagrammer kan

ses på bilag 2

Page 43: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 42

11.3.1 Opvarmning af bygning

Elværket bruger noget af den restvarme, der er i kølevandet, til opvarmning af kontrolrum,

kontor/værksted og stilstandsopvarmning af standby motorer. Garagens varme er lavet for at

komme af med den ekstra varme, der er om sommeren, da køleren ikke kan optage nok

effekt/varme fra kølevandet. Garagen er koblet direkte på mellemkredsen og bliver ikke en del af

den fremtidige fjernvarmekreds. F6.3 er en køler med en blæser, der sidder ude i garagen, som

en ekstra backup køler. F5.7 er en brugsvandsopvarmer, som sidder i værkstedet, den er tegnet

som en radiator, da den bruger varmen fra radiatorkredsen til at opvarme vand. Brugsvands-

opvarmeren har ikke som funktion at opvarme bygning, og er derfor under målingerne, taget ud

af drift.

Eksempel taget ud fra beregninger i regneark.

𝑄 =𝑉𝑓𝑙𝑜𝑤 𝑚3/ℎ

3600/𝜌55°C∗ 𝑐𝑝55°C ∗ (𝑡𝑓𝑟𝑒𝑚 − 𝑡𝑟𝑒𝑡𝑢𝑟)

(Eget arkiv , 2015)

Tabellen ovenover er taget ud fra et vilkårligt tidspunkt, der illustrerer, hvordan effekten er be-

regnet ud fra målingerne, der er foretaget. I gennemsnit ligger bygningens varmeforbrug på 2,66

kW.

Tid

Dato:

25/03/15

Fremløb

gennemsnit

[°C]

Returløb

gennemsnit

[°C]

Flow

[m3/h]

Cp vand ved

55°C

(TD tabel

10.5)

[kJ/kg*K]

Densitet ved

55°C

(TD tabel

10.5)

[kg/m3]

Effekt

[kW]

13:00:00 55,55 49 0,18 4,182 985,7 1,35

13:00:10 55,60 48,96 0,18 4,182 985,7 1,37

Page 44: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 43

11.3.2 Standby opvarmning

(Eget arkiv , 2015)

For at sikre, at motorerne er klar til opstart, opvarmes de ved hjælp af hinanden igennem en

mellemvarmekreds, som forbinder motorens varmeveksler med varmeveksleren til fjernvarme i

bygningen. Generatorerne står i hvert sit rum. Der er monteret indsugningsspjæld i væggen i

motorrummet, der åbner og lukker alt afhængig af om motoren kører. Dette spjæld er ikke

isoleret og derfor kan det være meget koldt inde i selve rummet. På dagen der blev opsamlet

data var gennemsnits rumtemperaturen på omkring 4 °C og udenfor var der et gennemsnit på -10

°C. Det er returvandet der opvarmer de generatorer, der ikke kører. Returvandet strømmer fra

mellemvarmekredsen til varmeveksleren, som opvarmer stilstandsmotorerne. Det opvarmede

kølevand bliver cirkuleret af den elektriske cirkulationspumpe. Det nedkølede returvand bliver

derefter blandet med fremløbet.

Page 45: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 44

Stilstandsvarme for DG1:

(Eget arkiv , 2015)

(Eget arkiv , 2015)

00.10.20.30.40.50.60.70.80.91

0

10

20

30

40

50

60

17

:00

:00

18

:02

:40

19

:05

:20

20

:08

:00

21

:10

:40

22

:13

:20

23

:16

:00

0:1

8:4

0

1:2

1:2

0

2:2

4:0

0

3:2

6:4

0

4:2

9:2

0

5:3

2:0

0

6:3

4:4

0

7:3

7:2

0

8:4

0:0

0

9:4

2:4

0

10

:45

:20

11

:48

:00

12

:50

:40

13

:53

:20

14

:56

:00

15

:58

:40

Tem

per

atu

r (°

C)

Oversigt af målinger DG1 stilstand

Fremløb

Retur

Flow

Flo

w (

m^

3/h

)

Tid

Dato:

26/03/2015

Fremløb

gennemsnit

[°C]

Returløb

gennemsnit

[°C]

Flow

[m3/h]

Cp vand ved

45°C

(TD tabel

10.5)

[kJ/kg*K]

Densitet ved

45°C

(TD tabel

10.5)

[kg/m3]

Effekt

[kW]

17:00:00 48 43,72 0,39 4,180 990,2 1,92

17:00:10 48,1 43,47 0,39 4,180 990,2 1,97

Page 46: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 45

(Eget arkiv , 2015)

Det kan ses, at effekten er rimelig konstant, det skyldes at der ikke er nogen regulering, da

returvandet bare strømmer igennem varmeveksleren. Returvandet ligger på omkring 40-50 °C og

da stilstandsvarmen i motoren skal være på 40+ °C er dette acceptabelt. Som før nævnt er der

stilstandsvarme på motorerne så de altid står standby og er klar til en opstart. Grunden til, at de

er opvarmede er, at en koldstart slider meget på en motor. Der er udvidelser af metallet ved

temperaturændringer, så denne temperatursvingning skal helst være lav. Specielt når diesel-

generatorerne skal være klar til at påtage sig lasten inden for et par minutter, og derved bliver

hårdt belastet. Det ville være mere optimalt, hvis temperaturen på dieselgeneratoren var helt

oppe på driftstemperatur 85 °C eller tæt på, men da returvandet har en temperatur på 40-50 °C

er dette valgt som standby temperatur. Det samme er gældende for DG2, derfor er der kun

foretaget målinger på DG1.

0

0.5

1

1.5

2

2.5

3

3.5

41

7:0

0:0

0

17

:57

:40

18

:55

:20

19

:53

:00

20

:50

:40

21

:48

:20

22

:46

:00

23

:43

:40

0:4

1:2

0

1:3

9:0

0

2:3

6:4

0

3:3

4:2

0

4:3

2:0

0

5:2

9:4

0

6:2

7:2

0

7:2

5:0

0

8:2

2:4

0

9:2

0:2

0

10

:18

:00

11

:15

:40

12

:13

:20

13

:11

:00

14

:08

:40

15

:06

:20

16

:04

:00

Effe

kt (

kW)

Effektforbrug til stilstand DG1

Effekt

Page 47: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 46

11.4 Kirkens varmeforbrug

Kirkens varmeforbrug er målt over fire døgn. Målingerne begyndte lørdag kl.08:00 og sluttede

onsdag kl.08:00. Dette er gjort for at få dagen før kirketjenesten, hvor der ikke er personer, men

måske forberedelser. Selve dagen søndag, hvor der er gudstjeneste og stor personbelastning.

Mandag som er dagen efter gudstjeneste, da søndagens gudstjeneste stadig kan have en ind-

flydelse, samt tirsdag som burde være en almindelig hverdag uden nogen aktiviteter. Målet med

disse målinger er at få kirkens varmeforbrug, samt de faktorer, der har indflydelse på

varmeforbruget. Eksempelvis under gudstjeneste kan der være en stor forsamling af personer,

døren kan være længe åben og så videre, alt dette har en indflydelse på kirkens varmeforbrug.

Skema for gennemsnitværdier for de målte døgn:

Dato Gennemsnit

varmeforbrug

[kW]

Gennemsnit

inde temp.

[°C]

Gennemsnit

ude temp.

[°C]

14/03-15/03 (lørdag) 5,95 18,05 -13,8

15/03-16/03 (søndag) 5,03 19,5 -12,2

16/03-17/03 (mandag) 5,13 19,4 -10,2

17/03-18/03 (tirsdag) 4,15 19,9 -6,3

Total gennemsnit 5,06 19,2 -10,6

(Eget arkiv , 2015)

Som det ses i det overstående skema, er der blevet målt effektforbruget, indetemperaturen og

udetemperaturen. Effektmålingen er målt på radiatorkredsen, som tidligere beskrevet. Da kirken

er stor, er der placeret 2 stk. temperaturfølere i kirken, hvor den ene er placeret på en bjælke i

2,5-3 meters højde og cirka midt i rummet. Den anden er placeret længere nede på en hylde.

Begge føler er placeret i skyggen, således at der bliver målt luftens temperatur. Dette giver et

godt gennemsnit i forhold til luftens temperatur i kirken. Udetemperatur følerne er også placeret

i skygge og læ, for at udelukke solen og vindens påvirkning. Disse målinger er meget vigtige

senere, når der skal beregnes for det fremtidige varmeforbrug set over 1 år. På skemaet falder

varmeforbruget, ved en faldende udetemperatur. Dette skyldes blandt andet, at differens-

temperaturen er mindre og derved er varmetransmissionen fra bygning til omgivelserne mindre.

Page 48: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 47

På trods af en faldende temperatur fra søndag til mandag, er varmeforbruget større om

mandagen. Dette kunne skyldes, at der kommer personer ind i kirken og disse personer afgiver

varme. Det kan også være på grund af, at der var større solpåvirkning søndag. Der er mange

faktorer, der spiller ind på varmeforbruget og disse vil blive beskrevet senere i afsnittet

”Indvirkende faktorer”

11.5 Oversigt af måling ved forbrugere

Forbruger Gennemsnit

varmeforbrug

[kW]

Gennemsnit

inde temp.

[°C]

Gennemsnit

ude temp.

[°C]

B-1155 (Elværk) 2,66 21 -10,5

B-301 (Stort grønt hus) 1,6 22 -3,6

B-1083 (Lille grønt hus) 1,73 22,5 -4,7

B-1172 (Kirke) 5,06 19,2 -10,6

B-1095 (Tømre) 2,3 21,2 -5,9

B-354 (Lille hvidt hus) - - -

B-1229 & B-1230 (Dobbelt hus) - - -

B-762 (Ung klub) 5,9 19,7 -12,1

B-691 (Kommune) 5,06 20,3 -10,2

B-1076 (Hallen) 4,85 22,8 -7,8

B-1307 (Brandstation) 4,55 18,1 -6,9

B-88 (Museum) 5,9 19,7 -12,1

(Eget arkiv , 2015)

Denne tabel giver et overblik af de målinger, som er foretaget og er meget relevante i forhold til

at beregne det fremtidige årlige forbrug. Der var ikke tid til at måle forbruget ved B-354 og

dobbelthuset B-1229 & B-1230, deres forbrug vil blive baseret på gennemsnittet mellem de andre

private huse (B-301 og B-1083). Elværkets forbrug er kun det der blev målt i radiatorkredsen,

fordi standby-opvarmning vil ikke kunne regnes med i det fremtidige varmeforbrug for byg-

ningen. Men vil blive lagt til som en konstant forbruger, når det senere skal trækkes fra DG3’s

produktion af varme. Alle målinger er foretaget på samme måde, ved at måle på radiator-

Page 49: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 48

kredsens flow med ultralydsflowmåleren, og måle temperaturen på tilgangen og afgangen til olie-

fyret. Til måling af rumtemperaturen er der blevet brugt 2 stk. følere, sat i skyggen, der måler den

gennemsnitlige lufttemperatur. Det samme er gældende for udetemperaturmålingen. Alle mål-

inger er foretaget over ét døgn undtagen kirken, brandstationen samt ung klub. De eneste

målinger der afviger fra metoden hvor der måles direkte på tilgangen/afgangen, er brand-

stationen og ung klub. Det var ikke muligt at placere flowmåleren direkte på afgangen eller

tilgangen til fyret, da rørstrækningerne var for korte og forgrenede sig tidligt ud til radiatorerne.

Derfor er målingerne taget på forgreningerne, for til sidst at blive lagt sammen. Metoden der har

været baggrund for målingerne har været den samme, derfor kan de bruges som målinger, der

kan sammenlignes.

Page 50: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 49

12. Kontrolmåling

Inden målingernes start, blev der foretaget kontrolmåling af alt udstyr. Dette er gjort for at være

sikker på at det udstyr der var til rådighed målte korrekt. Det er vigtigt at vide i en videnskabelig

undersøgelse, om målingerne er valide, hvordan de er foretaget og om der er blevet brugt

samme fremgangsmåde.

12.1 Temperatur måling

Da der har været i tvivl om, at alle temperatur følere målte rigtig og var kalibreret korrekt, er der

udført et eksperiment for at finde ud af dette.

Det atmosfæriske tryk under forsøget d. 10/03/2015 omkring middag har cirka været 1000 kPa.

Det vil sige, at mætningstemperaturen for vanddamp er 99,6 °C dette kan bruges som reference

under eksperimentet.

Forsøget er blevet udført med temperaturmålerne i kogende vand, hvor vandet har kogt i 10-15

minutter. Følerne har derfor haft mulighed for at udligne temperaturforskellen mellem vand og

føler. Følerne har været placeret midt i vandet, væk fra bunden og siderne i gryden, for at måle

middeltemperaturen i vandet under kogning.

Da der er lavet et eksperiment for at kontrollere målingen, er det også relevant at finde

måleudstyrets usikkerhed, til det vil følgende formel og tabel bruges:

𝑝𝑟𝑜𝑐𝑒𝑛𝑡𝑣𝑖𝑠𝑒 𝑎𝑓𝑣𝑖𝑔𝑒𝑙𝑠𝑒 = 𝑡𝑚å𝑙𝑡 − 𝑡𝑡𝑒𝑜

𝑡𝑡𝑒𝑜∗ 100

Page 51: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 50

Tid Nr. Måling

[°C]

Afvigelse

%

10/03/15 kl. 11.56.00 5 99 -0,6

10/03/15 kl. 11.56.00 6 99,2 -0,4

10/03/15 kl. 11.56.00 7 99,5 -0,1

10/03/15 kl. 11.56.00 8 99,4 -0,2

10/03/15 kl. 11.56.00 10 99,4 -0,2

10/03/15 kl. 11.56.00 11 99,2 -0,4

10/03/15 kl. 11.56.00 12 99 -0,6

10/03/15 kl. 11.56.00 13 99 -0,6

(Eget arkiv , 2015)

Som det ses i tabellen ligger temperaturerne meget tæt på referencen. Der er lidt forskel på

temperaturerne, det kan skyldes, at følerne var bundet sammen i et bundt. Bundet lå i 3 lags

plastikposer for at beskytte følerne. Det skaber lidt varmemodstand og ujævn temperaturmåling.

Det kan konkluderes, at forsøget var vellykket, da målingerne viste sig at være forholdsvis tæt på

referencetemperaturen under forsøgets betingelser.

12.2 Flowmåling

Der blev foretaget en testmåling på vandværket, hvor ultralydsflowmåleren blev sammenlignet

med vanduret, der måler bygdens vandforbrug. Testmålingen havde til formål at sikre vi forstod

udstyret, og kunne skrive de rigtige parametre ind. Efter nogle forsøg viste det sig, at flow-

måleren og vanduret stemte overens. Denne testmåling er ikke dokumenteret, men udstyret har

et certifikat for kalibrering fra producenten. Det har en usikkerhed på ± 0,2 % (se bilag 4). De

parametre, der blev skrevet under testmålingen var at vandforsyningsledningen er af plastik og er

53 mm. i diameter. De parametre der typisk er brugt under målingerne af varmeforbrug, har

været ren kobberrør med en diameter på 18 og 22 mm.

Page 52: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 51

13. Det fremtidige varmeforbrug

Bygningerne i Kangaamiut er typisk træhuse, med mindre vinduer indbygget.

(Eget arkiv , 2015)

Der er mange faktorer, der spiller ind på varmeforbruget. Disse faktorer er for eksempel solens

og vindens indflydelse, men da det er meget varierende og svært at forudsige, vil dette ikke

regnes med. Hvis det blæser udenfor vil det påvirke transmissionstabet, da vinden har betydning

for transmissionskoefficient. Placeringen af husets vinduer og størrelsen har betydning for solens

indvirkning. Der kan være stor forskel på bygningens stand og hvor vel isoleret det er. For

eksempel er kirken forholdsvis ny, stor, vel isoleret og har et større vinduesparti vendt mod

syd/sydvest. Museet overfor er derimod er meget mindre, dårligere isoleret og små vinduer.

Husets isolering og størrelse har stor betydning for transmissionseffekten. Under målingerne har

det vist sig, at disse to bruger næsten den samme effekt til opvarmning. På grund af den store

forskel fra bygning til bygning, er der valgt at måle varmeforbruget for hver enkel forbruger, i

stedet for at generalisere bygningernes varmeforbrug ud fra størrelsen. Denne metode gør, at

målingerne vil være mere valide og realistiske i forhold til de vejrforhold, der er gældende og de

Page 53: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 52

forskellige typer huse der er i Kangaamiut. Der er efter bedste anstrengelser blevet målt så

mange steder så muligt for derved at opnå kvantitative resultater. Vi vil forholde os kritiske til de

resultater der er blevet målt, da noget af udstyret er følsom for forstyrrelser. For eksempel skal

ultralydsflowmåleren placeres korrekt og indstilles med de korrekte parametre. Nogle af

målingerne blev foretaget flere gange på grund af defekt udstyr, såsom Tiny Tags.

13.1 Metode til udregning af fremtidigt forbrug

Der vil i dette afsnit blive undersøgt metoder til at beregne det fremtidige varmeforbrug. Det vil

indeholde emnerne, graddage og transmission. For at opretholde varmebalancen i bygningerne,

er der installeret radiatorer og oliefyr. Oliefyret opvarmer radiatorkredsens kolde returvand til en

typisk fremløbstemperatur på omkring 60 °C. For at kunne regulere og holde en konstant rum-

temperatur er der påmonteret en termostat, der regulerer hvor meget varmt vand der skal

tilføres radiatorne. Hvis energi tilførslen er større til bygningen end det tabte til omgivelserne

udenfor, vil temperaturen i rummet stige. Termostaten vil sørge for at holde en rimelig konstant

rumtemperatur, ved at regulere flowet til radiatoren, for derved at styre energitilførslen til

bygningen.

13.1.1 Graddage

”Graddage er et mål for, hvor koldt det har været og hvor meget energi der bruges til rum-

opvarmning. Graddagetallet kan hjælpe forbrugerne med at sammenligne energiforbruget pr.

måned med en normalmåned og pr. år med et normalår.”

(Teknologisk Institut, 2013)

En graddag bruges som udtryk for en differens på 1 °C mellem den indvendige og udvendige

døgnmiddeltemperatur. Den indvendige døgnmiddeltemperatur sættes til 17 °C. Graddagetallet

for et døgn udregnes som differensen mellem den indvendige temperatur på 17 °C og den

aktuelle udedøgnmiddeltemperatur.

-20 °C udenfor giver 37 graddage.

+7 °C udenfor giver 10 graddage.

Page 54: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 53

Graddagetallene for de forskellige døgn summeres til måneds- og årsværdier.

Energiforbrug til brugsvand indgår ikke, da det ikke er afhængigt af udetemperaturen.

Definitionen på, hvornår fyringssæsonen starter er, når udedøgnmiddeltemperaturen kommer

ned på 12 °C og under i mindst tre sammenhængende døgn, dette er oftest om efteråret. Fyrings-

sæsonen slutter når udedøgnmiddeltemperaturen kommer op på minimum 10 °C og forbliver der

i mindst tre sammenhængene døgn. Hvis udedøgnmiddeltemperaturen kommer op på over 12 °C

i mindst tre døgn ophører tælling af graddage, dog kun indtil temperaturen kommer under 12 °C

igen. Hvis temperaturen om foråret, hvor graddagetællingen er ophørt kommer ned under 10 °C i

mindst tre døgn, genoptages graddagetællingen.

13.1.2 Varmetransmission

Til at beregne varmeforbruget skal man kende, hvor meget energi, der bliver transmitteret fra

huset til omgivelserne.

𝑄𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐴 ∗ 𝑈 ∗ ∆𝑡

A er husets overfladeareal, som er afhængig af husets udformning og størrelse. U er trans-

missionskoefficienten, der er et udtryk for husets isolering eller varmeoverførelsesevne til om-

givelserne. Δt er temperaturdifferencen mellem ude- og indetemperaturen for det pågældende

hus. Der kan derfor ud fra målingerne bestemmes, hvor meget energi der strømmer fra huset og

til omgivelserne.

I rapporten vil der ikke blive brugt graddage. Der vil derimod blive udregnet en A x U værdi for

hvert enkelt hus, og forbruget er derefter udregnet efter dette. Grunden til at graddage ikke er

blevet benyttet i dette projekt er, at det ville give et skævt og lettere upræcist billede af forbruget

set over et år. Da graddage udregningerne bunder i tidligere års forbrug, vil disse ikke blive

benyttet da dataene ikke var til rådighed. Til beregningerne af det årlige varmeforbrug vil trans-

missionseffekten blive brugt.

Page 55: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 54

Da A x U vil blive regnet som en konstant, kan formlen skrives som:

𝑄𝑣𝑎𝑟𝑚𝑒

𝛥𝑡= 𝐴 ∗ 𝑈 = 𝐾

Til at beregne bygningernes forbrug i løbet af året, vil der blive taget udgangspunkt i DMI’s

vejrarkiv for Sisimiut, da det er den tætteste målestation omkring Kangaamiut. Som tidligere

beskrevet kan man benytte formlen for at finde varmeforbruget, i relation til udetemperaturen.

Der vil blive brugt både for sidste års middeltemperatur (2014) og klimanormaler fra 1961-1990

for at vise forskellen og argumentere for, hvilken metode der fremadrettet vil blive brugt.

𝑄𝑣𝑎𝑟𝑚𝑒𝑡𝑟𝑎𝑛𝑠 = 𝐾 ∗ (𝑡𝑖𝑛𝑑𝑒 − 𝑡𝑢𝑑𝑒)

Temperaturoversigt 2014

(DMI, 2015)

Page 56: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 55

Temperaturoversigt for klimanormaler 1961-1990

(DMI, 2015)

Hvis der tages udgangspunkt i kirkens varmeforbrug, ved hjælp af førnævnte formel, vil der være

en forskel mellem 2014 og klimanormalerne. På grund af, at 2014 har en højere middel ude-

temperatur er forbruget af varme lavere.

Differencen for kirkens varmeforbrug set over 1 år er 35466 - 32708 = 2758 kWh (se bilag 5)

hvilket giver et fald på:

32708 − 35466

35466∗ 100 = −7,77 %

Der har været mange overvejelser angående, hvilke data der skulle bruges for at beregne

varmeforbruget. Der er mange meninger om miljø politik og om drivhuseffekten er årsagen til

den stigende temperatur, som kunne være en mulig forklaring for et varmt 2014. Der er dog set

bort fra dette, og det er besluttet at bruge den mindst gunstige situation i forhold til den

økonomiske del for Nukissiorfiit. Den mindst gunstige situation for økonomien er 2014 da middel

udetemperaturen er højere end klima normalerne 1961-1990, og der kan derfor afsættes mindre

Page 57: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 56

varme. Der vil for kirken og alle andre forbrugere blive taget udgangspunkt i middel ude-

temperaturen for Sisimiut 2014.

13.2 Samlet års oversigt

Afsnittet vil samle op på det hele, for at give et overblik over produktionen af varme og forbruget

heraf.

(Eget arkiv , 2015)

kWh el: El produceret for den pågældende måned. Januar og februar er fra 2015 resten af

månederne er taget fra 2014. Alle elproduktionsdata er aflæst i Deif instrumentet, som er

kontrolpanelet på elværket. Disse målinger skal bruges til at finde den gennemsnitlige belastning

af generatoren.

kW gennemsnit: kW produceret el i gennemsnit for måneden. Disse tal er udregnet ved hjælp af

kWh divideret med timerne på måneden. Denne bruges til at bestemme kW varme produceret i

gennemsnit for måneden.

Belastning %: Dieselgeneratorens belastning i procent. Dette er lavet for at give et indtryk af,

hvor meget den er belastet i gennemsnit for måneden.

kW varme: Dette er den gennemsnitlige varme afsat i kølevandet på DG3. Dette er baseret på

tidligere målinger af elproduktion under afsnittet ”Produceret varme DG3”, som bruges til at

finde ud af, hvor meget varme der kan sendes ud til forbrugerne.

kWh el kW gennemsnit Belastning % kW varme Alle forbrugere Salg bart Tab i rør 12% Til rådighed kWh salg Ude temperatur

Måned [kWh] [kW] % [kW] [kW] [kW] [kW] [kW] [kWh] [°C]

Januar 119616 160.77 56.6 76.0 46.6 40.2 4.8 24.6 29938.3 -8.1

Februar 105840 157.50 55.5 74.0 51.3 44.6 5.4 17.4 29984.6 -11.2

Marts 113664 152.77 53.8 71.0 53.4 46.6 5.6 12.1 34669.0 -12.6

April 94224 130.87 46.1 63.0 46.8 40.4 4.8 11.4 29074.2 -8.2

Maj 83664 112.45 39.6 60.0 33.7 28.1 3.4 22.9 20897.3 0.5

Juni 87120 121.00 42.6 61.0 25.2 20.0 2.4 33.4 14424.3 6.2

Juli 87312 117.35 41.3 61.0 19.6 14.8 1.8 39.6 11015.4 9.9

August 76560 102.90 36.2 57.0 22.6 17.6 2.1 32.3 13117.9 7.9

September 86064 119.53 42.1 61.0 28.2 22.9 2.7 30.1 16459.0 4.2

Oktober 107376 144.32 50.8 68.0 35.1 29.4 3.5 29.4 21843.5 -0.4

November 106224 147.53 51.9 69.0 41.7 35.6 4.3 23.1 25615.2 -4.8

December 123024 165.35 58.2 79.0 46.3 40.0 4.8 27.9 29728.0 -7.9

Page 58: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 57

Alle forbrugere: Samlet oversigt over det projekteret fjernvarme forbrug, inklusiv elværket og

stilstandsvarme. Dette er blevet brugt til at trække den effekt, som er i kølevandet fra det pro-

ducerede.

Salgbart: Alle forbrugere der kobles på fjernvarmenettet eksklusiv elværket og stilstandsvarme.

Det er disse værdier der giver et indblik i, hvor meget varme der kan sælges, i gennemsnit for

hver måned.

Tab i rør 12 %: Varmetab i rør, baseret på de kW, der bliver sendt ud af bygningen til forbrugerne.

De 12 % er erfaringstal fra Nukissiorfiit. (Begtrup, 2015)

Til rådighed: Dette er den overskydende varme i kølevandet efter alle forbrugerne og tab. Det

resterende varme skal fjernes via køleren.

kWh salg: Disse kWh er dét indtægten er baseret på, da det er den samlede energi, der kan

afsættes til eksterne forbrugere. Den er udregnet på basis af det gennemsnitlige varmeforbrug

gange timerne på månederne.

Ude temperatur: Alt varmeforbrug er baseret på denne temperatur og det ses tydeligt, at

varmeforbruget er lavt om sommeren.

Projektet vil ikke have betydning for driften, med mindre der bliver trukket mere varme ud end

der bliver produceret, så motoren bliver afkølet mere end det er nødvendigt. For at sikre drift

temperaturen på motoren, kan der laves et omløb ved DG3’s varmeveksler med dertilhørende

styring.

13.3 Delkonklusion

Om sommeren er forbruget af el ikke så højt. Dette skyldes blandt andet at el-heattracing ikke er

aktivt om sommeren. Om sommeren er det mere lyst der er derfor mindre brug for gade-

belysning. Derved er varmeproduktionen ikke så høj, men på grund af den højere udetemperatur

er afsætnings mulighederne meget lavere. Derfor er der mere til rådighed om sommeren end om

vinteren.

Page 59: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 58

13.4 Metode kritik

Da det foregående afsnit omhandlede det fremtidige varmeforbrug baseret på formler, målinger

og vejrstation placeret i Sisimiut vil dette blive diskuteret i afsnittet.

Der er nogle faktorer der udelukkes, ved kun at bruge transmissionsformlen. Transmissions-

formlen har til formål at beregne den energi, der bliver transmitteret alene på grund af en

temperaturforskel. Formlen er videnskabelig anerkendt og er brugt i undervisningen af maskin-

mesterstuderende.

13.4.1 Målinger

Målingerne har til formål at måle varmeforbruget hos forbrugerne og beregne en konstant, der

giver udtryk for husets areal og transmissionskoefficient. Transmissionskoefficienten varierer ved

de vejrforhold, der er gældende på tidpunktet for målingen. Målingerne skal man være kritiske

overfor, da der på Grønland er hurtigt omskiftende vejr. For at få præcise og valide målinger, ville

det være optimalt at foretage alle målingerne under præcis samme forhold, og ved hjælp af

samme fremgangsmåde. Det var dog ikke muligt, da målingerne blev foretaget over flere uger og

i ukontrollérbar vejrforhold. Udover dette er der variationer i fremgangsmåden.

13.4.2 Vejrstation

Vi har kontaktet DMI for at høre, hvordan det kan være, at der er prognoser for ugen, men ikke et

vejrarkiv for Kangaamiut. DMI har svaret, at der ikke længere er en vejrstation i Kangaamiut, den

blev nedlagt i 60’erne. Der kan dog findes prognoser for ugen i Kangaamiut på deres hjemmeside,

men disse prognoser bliver lavet ud fra en computerbaseret model, for det pågældende område

(se bilag 7). Derfor har det ikke været muligt at få faktuelle data, om klimaet for Kangaamiut. Til

udregning af forbrug set over et år, er der blevet brugt data fra en vejrstation placeret i Sisimiut.

Kangaamiut og Sisimiut er forskellige og ligger cirka 125 km. fra hinanden. De er begge placeret

ved kysten og har derfor kystklima. Sisimiut er placeret over polarcirklen og Kangaamiut er

placeret under polarcirklen. Vejrstationen i Sisimiut er dog den station, der er tættest på og er

noteret på DMI’s hjemmeside under vejrarkiv. Sisimiut giver derfor det bedste bud på, hvordan

det har set ud i Kangaamiut.

Page 60: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 59

14. Indvirkende faktorer

14.1 Varmekilder i bygninger

Som tidligere beskrevet under kirkens varmeforbrug har personer en indvirkning på varme-

forbruget i bygningen. Personer generer varme, selv når de er stillesiddende. En gennemsnitlig

person genererer en varmeeffekt på 100 W, stillesiddende. 70 W afgives ved konvektion og 30 W

ved den varme, der er bundet i udåndingsluften. Grunden til denne varmeafgivelse er kroppens

forbrænding, også kaldet metabolisme. Hvis mange mennesker er samlet samme sted, som for

eksempel i en kirke, kan denne afgivne effekt være af betydelig størrelse. Nedenunder ses

eksempler på varmeafgivelse ved forskellige aktivitetsniveauer:

(Petersen, Komfortventilation, 2005)

𝑄 = 𝑎𝑛𝑡𝑎𝑙 𝑝𝑒𝑟𝑠𝑜𝑛𝑒𝑟 ∗ 𝑞𝑠𝑡𝑖𝑙𝑙𝑒𝑠𝑖𝑑𝑑𝑒𝑛𝑑𝑒 = 30 ∗ 100 𝑊 = 3 𝑘𝑊.

Som man kan se af det ovenstående eksempel for en gennemsnitlig gudstjenesteforsamling på 30

mennesker, afsættes der en betydelig varmeeffekt. En gennemsnitlig gudstjeneste varer en time,

Page 61: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 60

og derved afgiver den ovennævnte forsamling en energi på 3 kWh. Set i forhold til kirkens varme-

forbrug udgør dette en procentdel på 2,5 % (se bilag 6). Dette er der ikke videre beregninger for,

da det vil være meget omfattende og svært at give et klart svar på, da det varierer meget. Det er

dog med i målingerne i kraft af, at termostatventilen på radiatorerne selv justerer efter rum-

temperaturen, og derved regulerer ned ved høj personbelastning. Da der er foretaget målinger

over dage både, hvor kirken er benyttet og dage, hvor den ikke er benyttet, er personbelast-

ningen medtaget i målingerne.

14.2 Eksterne påvirkninger

14.2.1 Sol

”Solens varmebelastning er en meget væsentlig varmekilde, og har fået stadig større

betydning i forbindelse med den voksende benyttelse af store glasfacader”

(Petersen, Komfortventilation, 2005, s. 19)

Som tidligere benævnt i rapporten omkring varmeforbrug, har solen en stor indvirkning på

varmeforbruget. I dette afsnit vil der blive taget udgangspunkt i komfortventilation, til at beskrive

solens indvirkning på varmeforbruget. Da projektet er udarbejdet i det sydvestlige Grønland er

solens bane er anderledes. Derfor kan man ikke kunne bruge disse værktøjer og tabeller til at

beregne solens indvirkning. Disse vil kun blive brugt som et værktøj til at forklare det tekniske.

Page 62: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 61

Solens varmebelastning gennem lodret sydvendt tolagsrude

”Som vist på figuren ovenfor er der størst belastning omkring begyndelsen og slutningen af

fyringssæsonen, hvor solstrålingen går næsten vinkelret ind gennem vinduerne og ikke

dækkes af udhæng, og beplantninger. For Øst- og vestvendte facader er døgnets

maksimale varmebelastning i hele sommerhalvåret næsten lige så stort som for sydvendte

facader, men maksimum falder mindre generende henholdsvis omkring kl. 8 og 16.”

(Petersen, Komfortventilation, 2005, s. 20)

Som det ses på figuren varier solens varmebelastning i løbet af døgnet. Grafen viser solens

specifikke effekt per kvadratmeter tolags rude, som er sydvendt. Varmepåvirkningen fra solen er

højst omkring middagstids. Solens bane og hvor højt solen står, har stor betydning for, hvor

meget det vil påvirke varmeforbruget. Som det er beskrevet er varmepåvirkningen størst, når

solens stråler næsten går vinkelret ind gennem vinduerne. Dette er tilfældet i Danmark ved

fyringssæsonens start og slut, altså marts og september. Det har også været tydeligt at se under

målingerne for kirken, at varmeforbruget er faldende om morgenen og tæt på nul ved middags-

tid. Dette skyldes også, at udetemperaturen stiger, men på grund af at kirken har et stort

vinduesparti kan det ses, at effekten større.

Page 63: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 62

14.2.2 Vind

Vinden er en anden påvirkning, den kan have stor effekt men varierer også meget. Hvis byg-

ningen ikke er tætnet ordenligt kan vinden afkøle bygningen meget, i form af gennemtræk af kold

luft. På denne måde bliver den varme luft erstattet af koldere luft, uden nogen form for

varmegenvinding. Vinden har stor betydning for transmissionskoefficienten. Blæsende vind vil

slide på grænselaget af stillestående luft omkring bygningen, som ellers ville virke isolerende.

Under målingerne har der ikke været foretaget foranstaltninger, for at modvirke vindens på-

virkning.

Isolerende lag som for eksempel sne har en betydning for varmeforbruget. Et tyk lag på tag og

vægge kan virke isolerende, men om sommeren vil sneen smelte og denne faktor vil ikke længere

være aktuel.

14.3 Delkonklusion

De indvirkende faktorer har betydning for varmeforbruget, både positivt og negativt.

Personbelastning og solens indvirkning bidrager med varmeeffekt til bygningen, hvorimod vinden

påvirker transmissionskoefficienten. Disse faktorer er en del af målingerne, men dog ikke

udspecificeret i udregningerne til det fremtidige varmeforbrug.

Page 64: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 63

15. Miljø

15.1 CO2 besparelse

Ud fra tekniske data for et oliefyr installeret hos en privat indbygger, vil der blive beregnet, hvor

meget CO2 hustanden sparer. Den samlede CO2 besparelse vil blive beregnet i løsningsforslagene,

senere i rapporten. Det er oplyst, at et oliefyr bruger 2,3 kg. brændstof i timen ved en effekt på

27,3 kW (se bilag 8). Ud fra dette kan man finde ud af, hvor meget brændstof den bruger pr.

kWh.

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑘 𝑏𝑟æ𝑛𝑑𝑠𝑡𝑜𝑓𝑓𝑜𝑟𝑏𝑟𝑢𝑔 =2,3 𝑘𝑔/ℎ

27,3 𝑘𝑊= 0,084

𝑘𝑔𝑑𝑖𝑒𝑠𝑒𝑙

𝑘𝑊ℎ

Der vil blive lavet et beregningseksempel for én forbruger, der viser hvor meget brændstof de i

teorien bruger på et år og hvor meget CO2 Grønland spares for.

Det har ikke været muligt at få de nødvendige informationer/data fra Artic Gas Oil. Derfor er det

blevet antaget, at Statoil marine 50 har samme egenskaber som Artic Gas Oil. Det er oplyst, at

Statoil marine 50 udleder 2,6 kg. CO2 pr. liter brændstof (se bilag 9). Densiteten for olien er oplyst

til at være 820-860 gram/liter. Der vil derfor blive antaget den mindst gunstige værdi i forhold til

dette projekt, da CO2 udslippet er mindre ved de 820 gram/liter. Der vil blive lavet en udregning

for, hvor meget CO2 der bliver udledt pr. kWh.

Pr. kg brændstof vil der udledes:

𝐶𝑂2 𝑢𝑑𝑙𝑒𝑑𝑡 𝑝𝑟. 𝑘𝑔 𝑏𝑟æ𝑛𝑑𝑠𝑡𝑜𝑓 =2,6 𝑘𝑔𝐶𝑂2/𝑙𝑖𝑡𝑒𝑟

𝜌=

2,6𝑘𝑔𝐶𝑂2/𝑙

0,82 𝑘𝑔/𝑙= 3,17

𝑘𝑔𝐶𝑂2

𝑘𝑔𝑑𝑖𝑒𝑠𝑒𝑙

Pr. kWh udledes:

𝐶𝑂2 𝑢𝑑𝑙𝑒𝑑𝑡 𝑝𝑟. 𝑘𝑊ℎ =𝑘𝑔𝑑𝑖𝑒𝑠𝑒𝑙

𝑘𝑊ℎ∗

𝑘𝑔𝐶𝑂2

𝑘𝑔𝑑𝑖𝑒𝑠𝑒𝑙= 0,084 ∗ 3,17 = 0,27

𝑘𝑔𝐶𝑂2

𝑘𝑊ℎ

Page 65: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 64

Beregningseksempel for en enkelt forbruger:

(Eget arkiv , 2015)

Den overstående tabel viser kun varmeforbruget for opvarmning af tømmervirksomheden og ikke

varmvandsforbruget. Denne model er blevet brugt til samtlige forbrugere, for at finde det årlige

kWh forbrug. kWh forbruget er beregnet som tidligere, på baggrund af transmissionseffekten.

kWh er beregnet ud fra det gennemsnitlige varmeforbrug gange de timer, der er for hver måned.

Tømre

Inde temperatur [°C] 21

AxU 0.0845

Måned

Ude temperatur

[°C]

Gennemsnit varmeforbrug

[kW]

Energi forbrug pr. md.

[kWh]

Januar -8.1 2.46 1829.5

Februar -11.2 2.72 1828.4

Marts -12.6 2.84 2112.4

April -8.2 2.47 1776.5

Maj 0.5 1.73 1288.8

Juni 6.2 1.25 900.4

Juli 9.9 0.94 697.8

August 7.9 1.11 823.6

September 4.2 1.42 1022.1

Oktober -0.4 1.81 1345.4

November -4.8 2.18 1569.7

December -7.9 2.44 1816.9

Sum kWh

17011.5

Page 66: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 65

Den følgende udregning er baseret på, at restvarmen kan dække hele tømmerforretningens

varmebehov til opvarmning.

𝐶𝑂2 𝑝𝑟. å𝑟 = 𝑘𝑊ℎ ∗𝑘𝑔𝐶𝑂2

𝑘𝑊ℎ= 17011,5 ∗ 0,27 = 4593,1

𝑘𝑔𝐶𝑂2

𝑝𝑟. å𝑟

Dette er den totale CO2 mængde tømmerforretningen ville udlede på et år, ved brug af oliefyr.

Når dette er beregnet, vil forbrugerne spare det CO2 der er i olien. Fjernvarmen er restvarme og

har derfor ikke nogen direkte CO2 udledning.

15.2 Olie besparelse

Hvis der igen bliver taget udgangspunkt i tømmerforretningen, vil der blive sat fokus på

økonomien. Oliefyret bruger som tidligere beskrevet 0,084 kg. olie pr. kWh og tømmer-

forretningen vil derfor i teorien, ved installation af fjernvarme spare:

0,084 ∗ 𝑘𝑊ℎ

𝜌=

0,084 ∗ 17011,5

0,82= 1742 𝑙𝑖𝑡𝑒𝑟

1 liter olie koster 6,20 kr. pr. 30. april 2015 inklusiv miljøafgifter (KNI, 2015) og uden gebyr for

levering. Derfor vil det koste tømmerforretningen, hvis han selv henter det i dunke:

1742 ∗ 6,2 = 10.800 𝑘𝑟.

Nukissiorfiit kan levere til en kWh pris, der lyder på 0,76 kr./kWh. (se bilag 10) som svarer til:

0,76 ∗ 17011,5 = 12.929 𝑘𝑟.

Som det kan ses af udregningerne bliver det en merudgift på 2129 kr. Hvis man ser ud over

merudgiften er der flere fordele, såsom større uafhængighed af olie og mindre service på oliefyr.

Generelt set bliver det lidt dyrere at opvarme husene med fjernvarme for de enkelte forbrugere.

Forbrugerne slipper dog for at hente olie manuelt, og usikkerheden af oliepris svingningerne.

Page 67: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 66

16. Projektering af fjernevarmerør

Der vil blive set på to løsningsforslag, økonomien og miljøpåvirkningen vil blive analyseret i begge

løsningsforslag.

16.1 Løsningsforslag 1

16.1.1 Økonomi

For at finde ud af, hvor meget det koster at lægge fjernvarmerør ud til den sydlige del af bygden,

skal længden af hovedledning og stikledning måles.

(Eget arkiv , 2015)

På billedet ovenfor ses en plantegning for fjernvarmerør. Til denne måling er der blevet målt

manualt med målebånd til hver forbruger. Denne målemetode vil give visse usikkerheder, dog var

det den bedste mulighed for at måle strækningen. Det kunne også være gjort ved at måle på det

ovenstående kort. Der er dog ikke højder på og da terrænet er meget kuperet. Da terrænet stiger

og falder flere meter, var dette ikke en mulighed. Den blå linje er en vandledning og fjern-

varmrørene skal så vidt muligt følge denne rørstrækning. Den grønne linje er el-heattracing, der

Page 68: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 67

er påmonteret vandrørene. Den sorte linje er den projekterede fjernvarmestrækning, der bliver

forsynet af elværket, som kan ses i øverste venstre hjørne, benævnt B-1155. Til de forbrugere og

huse, der ligger tæt på den projekterede fjernvarmerørstrækning, men ikke får tilført en

stikledning, er fordi disse huse er ubeboet.

(Eget arkiv , 2015)

Udgifterne for at lægge hovedledning nr. 1 ud samt stikledninger kommer til at koste 2.040.000

kr. ved den forudsatte meter pris på 6000 kr. Ud over denne pris har Nukissiorfiit oplyst, at de

gerne vil betale for komponenterne. Prisen for komponenter er på 15000 kr. som er et beløb

estimeret ud fra de priser, der er blevet oplyst af Marianne Begtrup (se bilag 10). I mailen er

oplyst en samlet pris på alle dele til et hus, der ikke har noget varmeanlæg installeret. Flere af de

huse der er undersøgt har allerede installeret flere af disse komponenter. De har på nuværende

tidspunkt installeret et oliefyr og derfor er der estimeret en gennemsnitpris på 15000 kr. Den

totale pris på de 25000 kr. er til et af de huse, der har installeret en såkaldt skibsovn. Skibsovnen

står centralt i huset og afgiver varme til rummet og ikke via vandfyldte radiatorer. De huse der er

målt forbruget for og har projekteret fjernvarme ud til, har alle oliefyr. Nukissiorfiit påtager sig

100 % for udgifterne (se bilag 11). Der er 9 forbruger så den samlede pris bliver 2.175.000 kr. (se

bilag 12)

Fra Til Længde

Mp. 1 Mp. 3 287 meter (Hovedledning nr. 1)

B-301 (Stort grønt hus) Hovedledning nr. 1 3 meter

B-1083 (Lille grønt hus) Hovedledning nr. 1 12 meter

B-1172 (Kirke) Hovedledning nr. 1 9 meter

B-1095 (Tømre) Hovedledning nr. 1 2 meter

B-354 (Lille hvidt hus) Hovedledning nr. 1 3 meter

B-1229 & B-1230 (Dobbelt hus) Hovedledning nr. 1 3 meter

B-762 (Ung klub) Hovedledning nr. 1 15 meter

B-691 (Kommune) Hovedledning nr. 1 3 meter

B-1076 (Hallen) Hovedledning nr. 1 3 meter

Total 340 meter

Page 69: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 68

Denne udgift skal Nukissiorfiit betale, og hvis projektet skal godkendes, skal det være på

baggrund af en fornuftig indtægt og en mærkbar miljøbesparelse. Disse krav er ikke fastlagt på

forhånd. Dette projekt vil blive diskuteret ved årsmødet for fremtidige projekter. Derfor skal det

undersøges, hvor meget indtægt der forventes ved dette løsningforslag, og hvor mange kg CO2

der spares.

(Eget arkiv , 2015)

Som det fremgår af tabellen vil der være en årlig indtægt på cirka 159.000 kr. ved en kWh pris på

0,76 kr. Indtægten er beregnet udfra forbrugernes A x U værdi og i forhold til udetempera-

turerne. kWh prisen er fastsat udfra, at kunderne stadigvæk skal beholde deres oliefyr, da

Nukissiorfiit ikke kan påtage sig forsyningssikkerheden 100 % (se bilag 10).

måned kW kWh pr. md.

Januar 30.27 22518.1

Februar 33.51 22516.0

Marts 34.97 26017.1

April 30.37 21866.9

Maj 21.28 15831.1

Juni 15.32 11031.3

Juli 11.45 8522.1

August 13.54 10077.2

September 17.41 12536.3

Oktober 22.22 16530.9

November 26.82 19308.5

December 30.06 22362.5

Sum kWh 209118.0

indtægt/pr. år 158,929.67kr.

Indtægt HL1

Page 70: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 69

16.1.2 Tilbagebetalingstid HL1

Tilbagebetalingstiden giver et godt billede af, hvornår investeringen er tjent hjem. Grafen

nedenunder viser tilbagebetalingstiden. Det er ikke sikkert, at det kan betale sig at lægge alle

meter ud, derfor vil der blive fortaget en analyse af, hvad der bedst kan betale sig. For at finde

den mest lønsomme løsning, vil økonomien vurderes ved hvert enkelt forsyningspunkt. Der hvor

grafen er lavest bliver investeringen hurtigts lønsom.

(Eget arkiv , 2015)

Det laveste punkt på grafen er ved kommunen, som har en tilbagebetalingstid på 12,43 år.

Grafen er lavet for at finde ud af, hvornår det bedst kan betale sig at lægge fjernvarmerør ud. Det

er meget dyrt at lægge fjernvarmerør ud til hallen. Det ligger langt væk fra det nærmeste

forsyningspunkt, så strækningen til hallen er lang og bekostelig. Sportshallen har et lille varme-

forbrug i forhold til, hvad der kan afsættes. Hallen har 2 oliefyr, hvoraf den ene opvarmer selve

hallen via en ventialtionsskakt, ved hjælp af varmt luft. Den anden forsyner radiatorerne i om-

klædningsrummet og gangen, samt varmtvands forbruget. Oliefyret der leverer varm luft er en

lukket unit, som ikke var mulig at måle på. Det vil derfor ikke være muligt at koble fjernvarme-

strengen fra elværket til, medmindre der skal foretages en udskiftning af dette fyr. Derfor er det

kun blevet undersøgt, hvad forbruget er på fyret, der leverer til radiatorerne. Hallen er et af de

0

5

10

15

20

25

30

35

År

Tilbagebetalingstid

Hovedledning nr. 1

Page 71: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 70

steder, der får leveret olie med tankvogn, da de har et højt forbrug af olie. Den samlede tilbage-

betalingstid inklusiv hallen er 13,69 år.

16.1.3 CO2 besparelse

Den årlige reduktion af CO2 samlet set, hvis alle forbrugere antages at have samme type oliefyr.

𝑘𝑔. 𝐶𝑂2 𝑏𝑒𝑠𝑝𝑎𝑟𝑒𝑙𝑠𝑒 𝑝𝑟. å𝑟 = 209118 𝑘𝑊ℎ ∗ 0,27𝑘𝑔𝐶𝑂2

𝑘𝑊ℎ= 56462

𝑘𝑔𝐶𝑂2

𝑝𝑟. å𝑟

Det vil sige, at løsningsforslag 1 kan ende ud med at spare Grønland for næsten 56,5 tons CO2 pr.

år. Denne CO2 besparelse er kun for oliefyret. Der er ikke medregnet, hvor meget el/CO2, det vil

koste at sende fjernvarmen ud til forbrugerne. Det er heller ikke medregnet, hvor meget el køl-

erene på motorerne skal bruge mindre til afkøling. For at sammenligne CO2 reduktionen, vil der

blive sammenlignet med en almindelig personbil i Danmark.

I 2011 var den gennemsnitlige CO2 udledning fra nyregistrerede personbiler i Danmark 126,6

g/km. (Miljøstyrelsen, 2015)

I gennemsnit regnes der med, at en gennemsnits personbil kører 15.000 km. om året. En person-

bil vil derfor udlede:

126,6 ∗ 10−3 ∗ 15000 = 1899 𝑘𝑔𝐶𝑂2

𝑝𝑟. å𝑟

CO2 besparelsen svarer derfor næsten til 30 personbilers CO2 udledning.

I forhold til elproduktion i Kangaamiut der har et specifik forbrug i gennemsnit på 243,9 g/kWh

for 2014 vil der være udledt 912,85 tons CO2 ved elproduktionen (se bilag 13). De 56,5 tons CO2

der bliver sparet betyder noget i forhold til denne lille bygd og dens energiforbrug.

Page 72: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 71

16.1.4 Olie besparelse

Da der tidligere er nævnt Grønlands betalingsbalance samt afhængighed af olie, laves en bereg-

ning af, hvor meget olie projektet kan ende ud med at spare Grønland for om året.

0,084𝑘𝑔𝑑𝑖𝑒𝑠𝑒𝑙

𝑘𝑊ℎ∗ 𝑘𝑊ℎ

𝜌=

0,084 ∗ 209118

0,82= 214.218 𝑙𝑖𝑡𝑒𝑟

1 liter olie koster 6,20 kr. pr. 30 april 2015 inklusiv miljøafgifter (KNI, 2015)

214.218 ∗ 6,2 = 1.328.154 𝑘𝑟.

Pengene skal altså ikke ud af landet og derfor vil Grønland stå stærkere samfundsøkonomisk.

Page 73: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 72

16.2 Løsningsforslag 2

16.2.1 Økonomi

For at finde ud af, hvor meget det koster at lægge en ekstra hovedledning af fjervarmerør ud til

den sydlige del af område 1, skal længden af hovedledning og stikledning måles.

(Eget arkiv , 2015)

Fra målepunkt 4 til 5 ligger hovedledning nr. 2, denne går under vejen, da der allerede er lavet

føringsvej til kabler. Hovedledning nr. 2 forsyner den sydlige del af forbrugerne. Hovedledning nr.

2 stopper ved museum, da en længere ledning til for eksempel butik skulle graves ned.

Kangaamiut er på en klippe ø så der skal sprænges en tunnel under vejen og laves forstærkning

således, at tunge køretøjer kan passere. Derfor er der valgt at stoppe hovedledning nr. 2 ved

museet.

Page 74: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 73

Fra Til Længde

Mp. 1 Mp. 3 287 meter (Hovedledning nr. 1)

B-301 (Stort grønt hus) Hovedledning nr. 1 3 meter

B-1083 (Lille grønt hus) Hovedledning nr. 1 12 meter

B-1172 (Kirke) Hovedledning nr. 1 9 meter

B-1095 (Tømre) Hovedledning nr. 1 2 meter

B-354 (Lille hvidt hus) Hovedledning nr. 1 3 meter

B-1229 & B-1230 (Dobbelt hus) Hovedledning nr. 1 3 meter

B-762 (Ung klub) Hovedledning nr. 1 15 meter

B-691 (Kommune) Hovedledning nr. 1 3 meter

B-1076 (Hallen) Hovedledning nr. 1 3 meter

Mp. 2 Mp. 3 127 meter (Hovedledning nr. 2)

B-1307 (Brandstation) Hovedledning nr. 2 5 meter

B-88 (Museum) Hovedledning nr. 2 5 meter

Total 477 meter

(Eget arkiv , 2015)

Udgifterne for at lægge hovedledning nr. 1 og nr. 2 ud, samt stikledninger kommer til at være

2.862.000 kr. Med komponenter til de 11 forbrugere vil prisen være 3.027.000 kr. (se bilag 14)

Page 75: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 74

Indtægt

(Eget arkiv , 2015)

Som det fremgår af tabellen vil der være en årlig indtægt på cirka 210.000 kr. Hovedledning nr. 2

øger altså den årlige indtægt med 1/3 i forhold til løsning 1.

måned kW kWh pr. md.

Januar 40.24 29938.3

Februar 44.62 29984.6

Marts 46.60 34669.0

April 40.38 29074.2

Maj 28.09 20897.3

Juni 20.03 14424.3

Juli 14.81 11015.4

August 17.63 13117.9

September 22.86 16459.0

Oktober 29.36 21843.5

November 35.58 25615.2

December 39.96 29728.0

Sum kWh 276766.6

indtægt/pr. år 210,342.63kr.

Indtægt HL1+HL2

Page 76: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 75

16.2.2 Tilbagebetalingstid HL1+HL2

(Eget arkiv , 2015)

Det laveste punkt er igen ved kommunen og det ses, at grafen stiger ved hallen og brand-

stationen. Dette skyldes, at der skal lægges mange meter fjernvarmerør ud inden det når for-

brugeren. Derfor er der mange meter fra det ene forsyningspunkt til det andet. Grafen er nedad-

gående til sidst dette skyldes, at museet er en stor forbruger og der er ikke mange meter fra

brandstationen. Den samlede tilbagebetalingstid inklusiv brandstation og museum er 14,39 år.

16.2.3 CO2 besparelse

Den årlige reduktion af CO2 samlet set, hvis alle forbrugere medregnes, og de antages at have

samme type oliefyr. KWh er udregnet i det ovenstående indtægt afsnit for løsningforslag 2.

𝑘𝑔. 𝐶𝑂2 𝑏𝑒𝑠𝑝𝑎𝑟𝑒𝑙𝑠𝑒 𝑝𝑟. å𝑟 = 276766,6 𝑘𝑊ℎ ∗ 0,27𝑘𝑔𝐶𝑂2

𝑘𝑊ℎ= 74727

𝑘𝑔𝐶𝑂2

𝑝𝑟. å𝑟

Det vil sige, at projektet kan ende ud med at spare Grønland for næsten 75 tons CO2 pr. år. Denne

CO2 besparelse er kun for oliefyret. Sammenlignet med en personbil vil denne besparelse svare til

39 biler, der kører 15.000 km. om året, med en specifik CO2 udledning på 126,6 g/km.

0

5

10

15

20

25

30

35

År

Tilbagebetalingstid

Hovedledning nr. 1 & nr. 2

Page 77: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 76

I forhold til elproduktion i Kangaamiut der har en et specifik forbrug i gennemsnit på 243,9 g/kWh

for 2014 vil der være udledt 912,85 tons CO2 ved elproduktion (se bilag 13). Så de 75 tons CO2 der

bliver sparet har en større betydning i forhold til løsningsforslag 1.

16.2.4 Olie besparelse

Da der tidligere er nævnt Grønlands betalingsbalance samt afhængighed af olie laves der en be-

regning af, hvor meget olie projektet kan ende ud med at spare Grønland for om året.

0,084𝑘𝑔𝑑𝑖𝑒𝑠𝑒𝑙

𝑘𝑊ℎ∗ 𝑘𝑊ℎ

𝜌=

0,084 ∗ 276766,6

0,82= 283.517 𝑙𝑖𝑡𝑒𝑟

1 liter olie koster 6,20 kr. pr. 30 april 2015 inklusiv miljøafgifter (KNI, 2015)

283.517 ∗ 6,2 = 1.757.805 𝑘𝑟.

Pengene der er udregnet, skal altså ikke ud af landet og derfor vil Grønland stå stærkere sam-

fundsøkonomisk.

Page 78: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 77

17. Konklusion

På baggrund af målingerne kan det konkluderes, at der er overskudsvarme for den gældende

dieselgenerators kølevand. Dette overskud ligger på 57 kW i august måned og 79 kW i december.

Denne varme kan udnyttes til fjernvarme til at forsyne 11 forbrugeres normale varme forbrug,

hele året rundt. Forbruget af fjernvarme er meget afhængigt af udetemperaturen og henholdsvis

interne og eksterne påvirkninger. Efter projektering af fjernvarme til de pågældende forbrugere

og tab i rør, er der stadig overskud af varme i kølevandet, som derfor skal fjernes i køleren, cirka

11,4 kW i april måned og 39,6 kW i juli.

Projektet har en positiv indvirkning i forhold til lokalsamfundet. Det vil lette de berørte for-

brugeres hverdag, da de sparer tid og energi på ikke manuelt at skulle hente olie. Det vil dog blive

lidt dyrere for, hver enkelt forbruger at opvarme deres hus, baseret på de nuværende oliepriser,

samt kWh prisen for fjernvarme. Projektet har derudover en positiv effekt på miljøet i form af

mindre luftforurening. Løsningsforslagene opfylder en af Grønlands love, om at fremme den mest

samfundsøkonomiske og miljøvenlige energiforsyning. Samt at formindske afhængigheden af

olie.

Projektet er økonomisk lønsomt, som det kan ses af begge løsningsforslag, der har hver sin

tilbagebetalingstid. Mange private erhvervsvirksomheder har en relativ kort tilbagebetalingstid,

typisk 2-5 år. Løsningsforslagenes tilbagebetalingstid er langt over dette, men set fra den

offentlige energiforsyningssektor, er der andre rammer for tilbagebetalingstid. Der kan dog ikke

konkluderes om tilbagebetalingstiden er fornuftig set fra Nukissiorfiit, da det samfundsmæssige

og miljømæssige skal tages med i betragtning. Projektet forventes at komme i betragtning i

forhandlingerne år 2016 for energiprojekter, der kan realiseres i år 2017.

Page 79: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 78

18. Perspektivering

I dette projekt er der fokuseret på overskudsvarmen i kølevandet på DG3 og, hvordan den kan

udnyttes. Denne viden kan også bruges af andre bygder, som ikke har udnyttelse af overskud-

varme i forvejen. Der kan også drages paralleller til andre processer med restvarme, hvor denne

kunne bruges til fjernvarme og etablering heraf.

I Rapporten er der udover analysen også foretaget miljømæssige beregninger, og betydning af

projektets omfang for Grønland og det lokale samfund. Dette inkluderer CO2 besparelser og

fremme uafhængighed af fossile brændstoffer. Derfor er der løbende i rapporten perspektiveret

til det samfundsmæssige.

Page 80: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 79

19. Litteraturliste

Begtrup, M. (april 2015). (Aron Balschmidt & Henrik Lillegård, Interviewer)

DMI. (2015). DMI.dk. Hentet fra Danmarks Meteorologiske Institut:

http://www.dmi.dk/groenland/arkiver/vejrarkiv/

Dow Chemical Company. (november 2001). dow.com. Hentet fra Dow heat transfer fluids:

http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0040/0901b80380040bcb.pdf?fil

epath=heattrans/pdfs/noreg/180-01314.pdf&fromPage=GetDoc

Grønlands Hjemmestyre. (6. November 1997). Lovgivning. Hentet fra lovgivning.gl:

http://lovgivning.gl/lov?rid={22EC4BC8-5976-4A1B-A1B2-D609876D7498}#

Knak, C. (2004). Skibsmotorlære. Gads Forlag.

KNI. (Maj 2015). KNI.gl. Hentet fra KNI: http://www.kni.gl/da/nyheder/fra-polaroil/2015-04-

braendstofpriserne-falder/

Larsen, K. F. (2001). Dampkedler. Jerslev: K. F. Bogteknik Aps.

Micronics. (2009). Portaflow 220 User manual (issue 1.9 GF). Buckinghampshire.

Page 81: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 80

Miljøstyrelsen. (maj 2015). mst.dk. Hentet fra mst: http://www.kni.gl/da/nyheder/fra-

polaroil/2015-04-braendstofpriserne-falder/

Nielsen, J. (1996). Miljø teknik. København: GEC Gads Forlag.

Nukissiorfiit. (23. februar 2015). Nukissiorfiit. Hentet fra Nukissiorfiit.gl:

https://www.nukissiorfiit.gl/?lang=da

Nukissiorfiit(Citrix). (19. maj 2015). Teknisk database.

Petersen, B. H. (2005). Komfortventilation. Lyngby: Danmarks Tekniske Universitet.

Teknologisk Institut. (13. december 2013). teknologisk.dk. Hentet fra

http://www.teknologisk.dk/graddage/hvad-er-graddage/492,3

Tønnesen, K. P. (2. marts 2015). (Aron Balschmidt & Henrik Lillegård, Interviewer)

Volvo Penta. (16. februar 2012).

Page 82: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 81

20. Bilagsoversigt

Bilag 1 – Mail vedrørende afgift på overskudsvarme

Bilag 2 – Anlægstegning + systemtegning

Bilag 3 – Beregning af 3 forbrugeres overskudvarme i forhold til varmeoverskuddet

Bilag 4 – Certifikat for ultralydsflowmåler

Bilag 5 – Kirkens varmeforbrug

Bilag 6 – Personbelastningen i procent i forhold til kirkensvarme forbrug

Bilag 7 – Mail fra DMI

Bilag 8 – Datablad for privat installeret oliefyr

Bilag 9 – Statoil Marine 50 datablad

Bilag 10 – Mail med pris oversigt for fjernvarme anlægning

Bilag 11 – Mail 100 % udgift ansvarlig

Bilag 12 – Samlet udgift løsning forslag 1

Bilag 13 – CO2 ved elproduktion

Bilag 14 – Samlet udgift løsning forslag 2

Bilag 15 – Datablad DG3 Volvo D13

Ekstra data og målinger findes på vedlagt USB pen.

Page 83: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 82

Bilag 1 - Mail vedrørende afgift på overskudsvarme

Page 84: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 83

Bilag 2 – Anlægstegning + systemtegning

Se USB pen

Page 85: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 84

Bilag 3 – Beregning af 3 forbrugeres overskudvarme i forhold til

varmeoverskuddet

Produceret

69,56 kW

Eget forbrug inc. stilstand

2,66 kW + 2*2 kW = 6,66 kW

Restvarme

62,9 kW

Procentberegning af restvarmen ved de 3 første forbruger der samlet bruger 8,39 kW

100 −62,9 − 8,39

62,9∗ 100 = 13,3 %

Page 86: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 85

Bilag 4 – Certifikat for ultralydsflowmåler

Se USB pen

Page 87: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 86

Bilag 5 – Kirkens varmeforbrug

Udgangspunkt

2014

Middel

udetemperatur

Middel

indetemperatur

AxU

gennemsnit

Q

varmetransmission

kWh pr.

måned

Jan -8,1 20 0,1692 4,75 3537

Feb -11,2 20 0,1692 5,28 3674

Mar -12,6 20 0,1692 5,52 4104

Apr -8,2 20 0,1692 4,77 3435

Maj 0,5 20 0,1692 3,30 2455

Jun 6,2 20 0,1692 2,33 1681

Jul 9,9 20 0,1692 1,71 1271

Aug 7,9 20 0,1692 2,05 1523

Sep 4,2 20 0,1692 2,67 1925

Okt -0,4 20 0,1692 3,45 2568

Nov -4,8 20 0,1692 4,20 3021

Dec -7,9 20 0,1692 4,72 3512

Total

gennemsnit

-2,04 20 0,1692 3,73 2725

Total sum 32708

Page 88: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 87

Udgangspunkt

1960-1991

Middel ude

temperatur

Middel inde

temperatur

AxU

gennemsnit

Q

varmetransmission

kWh pr.

måned

Jan -12,8 20 0,1692 5,55 4129

Feb -13,9 20 0,1692 5,74 3992

Mar -14,0 20 0,1692 5,75 4280

Apr -7,1 20 0,1692 4,59 3301

Maj -0,2 20 0,1692 3,42 2543

Jun 3,6 20 0,1692 2,77 1998

Jul 6,3 20 0,1692 2,32 1725

Aug 6,1 20 0,1692 2,35 1750

Sep 3,2 20 0,1692 2,84 2047

Okt -1,9 20 0,1692 3,71 2757

Nov -5,9 20 0,1692 4,38 3155

Dec -10,1 20 0,1692 5,09 3789

Total

gennemsnit

-3,9 20 0,1692 4,04 2955

Total sum 35466

Page 89: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 88

Bilag 6 – Personbelastningen i procent i forhold til kirkensvarme

forbrug

Udregning for hvor stor en procentdel personbelastningen har i forhold til kirkens

gennemsnitlige varmeforbrug

Set over 1 døgn vil kirken brug:

24 ∗ 5,06 𝑘𝑤 = 121,4 𝑘𝑊ℎ

Personbelastningen er 3 kWh over den ene 1 time, derfor udgør den:

100 −121,4 − 3

121,4∗ 100 = 2,5 %

Page 90: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 89

Bilag 7 – Mail fra DMI

Page 91: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 90

Bilag 8 – Datablad for privat installeret oliefyr

Se USB pen

Page 92: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 91

Bilag 9 – Statoil Marine 50 datablad

Page 93: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 92

Bilag 10 – Mail med pris oversigt for fjernvarme anlægning

Page 94: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 93

Bilag 11 – Mail 100 % udgift ansvarlig

Page 95: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 94

Bilag 12 – Samlet udgift løsningsforslag 1

Udregning af udgifter for at lægge 340 meter fjernvarmerør ud:

340 𝑚𝑒𝑡𝑒𝑟 ∗ 6000 𝑘𝑟.

𝑚𝑒𝑡𝑒𝑟= 2.040.000 𝑘𝑟.

Udregning til udgifter for komponenter 9 forbruger:

9 ∗ 15000 = 135.000 𝑘𝑟.

Samlet:

2.040.000 + 135.000 = 𝟐. 𝟏𝟕𝟓. 𝟎𝟎𝟎 𝒌𝒓.

Page 96: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 95

Bilag 13 – CO2 ved elproduktion

måned og år g/kWh kWh forbrug kg brændstof kg CO2 (3.17 kgCO2/kgbrændsel)

Jan-14 242.65 114117 27690 87779

Feb-14 237.5 102258 24286 76987

Mar-14 236.37 113692 26873 85189

Apr-14 241.3 94900 22899 72591

May-14 251.01 80736 20266 64242

Jun-14 240.46 90177 21684 68738

Jul-14 242.67 87154 21150 67044

Aug-14 252.31 79531 20066 63611

Sep-14 237.68 87101 20702 65626

Oct-14 257.5 102775 26465 83893

Nov-14 253.33 111433 28229 89487

Dec-14 234.14 118109 27654 87663

gennemsnit 243.91 912850 kg CO2

912.8 tons CO2

alle data er taget ud fra citrix.nukissiorfiit.gl

Page 97: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 96

Bilag 14 – Samlet udgift løsningsforslag 2

Udregning af udgifter for at lægge 477 meter fjernvarmerør ud:

477 𝑚𝑒𝑡𝑒𝑟 ∗ 6000 𝑘𝑟.

𝑚𝑒𝑡𝑒𝑟= 2.862.000 𝑘𝑟.

Udregning til udgifter for komponenter 11 forbruger:

11 ∗ 15000 = 165.000 𝑘𝑟.

Samlet:

2.862.000 + 165.000 = 𝟑. 𝟎𝟐𝟕. 𝟎𝟎𝟎 𝑘𝑟.

Page 98: Bachelorprojekt - Aarhus Maskinmesterskole · 2015. 6. 1. · Bachelorprojekt Bachelorprojekt – 9. semester _____ _____ Aron Balschmidt, A12047 Henrik Lillegård, A12022 Projekt:

Aarhus Maskinmesterskole B12-2 Bachelor 1-06-2015

SIDE 97

Bilag 15 – Datablad DG3 Volvo D13

Se USB pen