139
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP KHOA CƠ KHÍ BỘ MÔN: CHẾ TẠO MÁY BÀI GIẢNG PHÁT CHO SINH VIÊN (LƯU HÀNH NỘI BỘ) Theo chương trình 150 TC hay 180 TC hoặc tương đương Sử dụng cho năm học 2008 - 2009 Tên bài giảng: Kỹ thuật điều khiển tự động Số tín chỉ: 3

Bài giảng kỹ thuật điều khiển tự động

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Bài giảng kỹ thuật điều khiển tự động

TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP

KHOA CƠ KHÍ

BỘ MÔN: CHẾ TẠO MÁY

BÀI GIẢNG PHÁT CHO SINH VIÊN(LƯU HÀNH NỘI BỘ)

Theo chương trình 150 TC hay 180 TC hoặc tương đương

Sử dụng cho năm học 2008 - 2009

Tên bài giảng: Kỹ thuật điều khiển tự động

Số tín chỉ: 3

Thái Nguyên, năm 2008

Page 2: Bài giảng kỹ thuật điều khiển tự động

Tên các tác giả:

Page 3: Bài giảng kỹ thuật điều khiển tự động

BÀI GIẢNG PHÁT CHO SINH VIÊN(LƯU HÀNH NỘI BỘ)

Theo chương trình 150 TC hay 180 TC hoặc tương đương

Sử dụng cho năm học: 2008 - 2009

Tên bài giảng: Kỹ thuật điều khiển tự động

Số tín chỉ: 3

Thái Nguyên, ngày….…tháng …… năm 200

Trưởng bộ môn Trưởng khoa

(ký và ghi rõ họ tên) (ký và ghi rõ họ tên)

Page 4: Bài giảng kỹ thuật điều khiển tự động

MỤC LỤCI. Phần 1: Phần lý thuyết

Chương 1. CÁC VẤN ĐỀ CƠ BẢN CỦA HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG

1.1 Các nội dung cơ bản

1.2 Mô hình diễn tả hệ thống điều khiển

1.3 Mô tả toán học các phần tử điều khiển cơ bản

1.4 Phân loại hệ thống điều khiển

1.4.1. Hệ thống điều khiển hở và hệ thống điều khiển kín.

1.4.2. Hệ thống điều khiển liên tục và gián đoạn

1.5 Tuyến tính hóa các hệ thống phi tuyến

1.6 Ứng dụng MatLab

Chương 2. HÀM TRUYỀN ĐẠT

2.1 Hàm truyền đạt

2.2 Sơ đồ khối - Đại số sơ đồ khối

2.3 Graph tín hiệu và qui tắc Mason

2.4. Các hệ thống lấy mẫu dữ liệu

2.5 Hàm truyền đạt của hệ thống rời rạc

2.6 Ứng dụng MatLab

Chương 3. KHÔNG GIAN TRẠNG THÁI.

3.1 Các mô hình không gian trạng thái.

3.2 Mô hình không gian trạng thái và các phương trình vi phân

3.3 Xác định biến trạng thái từ hàm truyền

3.4 Xác định hàm đáp ứng từ phương trình trạng thái

3.5 Ứng dụng MatLab

Chương 4. ỔN ĐỊNH CỦA HỆ THỐNG ĐIỀU KHIỂN TUYẾN TÍNH.

4.1 Khái niệm chung

4.2 Khái niệm ổn định và các định nghĩa chính

4.3 Trị riêng và tính ổn định của hệ thống

4.4 Các tiêu chuẩn ổn định

4.5 Ứng dụng MatLab

Chương 5. TÍNH ĐIỀU KHIỂN VÀ QUAN SÁT ĐƯỢC CỦA

HỆ THỐNG ĐIỀU KHIỂN.

Page 5: Bài giảng kỹ thuật điều khiển tự động

5.1 Tính điều khiển được của các hệ thống liên tục.

5.2 Tính quan sát được của các hệ thống liên tục.

5.3 Tính điều khiển được của các hệ thống gián đoạn.

5.4 Tính quan sát được của các hệ thống gián đoạn.

5.5 Ứng dụng MATLAB.

Chương 6. THIẾT KẾ HỆ THỐNG ĐIỀU KHIỂN.

6.1 Mở đầu.

6.2 Các khâu động học của hệ thống điều khiển.

Chương 7. THIẾT KẾ HỆ THỐNG ĐIỀU KHIỂN BẰNG THUỶ LỰC.

7.1. Các phần tử cơ bản

7.1.1. Bơm dầu.

7.1.2. Van tràn, van an toàn.

7.1.3. Van giảm áp

7.1.4. Bộ điều chỉnh và ổn định tốc độ.

7.1.5. Van điều khiển.

7.1.6. Cơ cấu chấp hành.

Page 6: Bài giảng kỹ thuật điều khiển tự động

I. Phần 1: Phần lý thuyết

I.1. Yêu cầu đối với sinh viên

- Mục tiêu: Nội dung cơ bản của hệ thống điều khiển tự động, Phân tích và tổng hợp

được một hệ thống điều khiển.

- Nhiệm vụ của sinh viên:

Dự học lý thuyết: đầy đủ

Thảo luận: đầy đủ.

- Đánh giá: Chấm điểm Thảo luận : 20%

Kiểm tra giữa kỳ: 20%

Thi kết thúc học phần : 60%

I.2. Các nội dung cụ thể

Chương 1

Page 7: Bài giảng kỹ thuật điều khiển tự động

CÁC VẤN ĐỀ CƠ BẢN CỦA HỆ THỐNG ĐIỀU

KHIỂN TỰ ĐỘNG1.1- Các nội dung cơ bản của hệ thống điều khiển.

* Điều khiển: Là tác động lên đối tượng để đối tượng làm việc theo một

mục đích nào đó.

* Hệ thống điều khiển: Là một tập hợp các thành phần vật lý có liên hệ tác

động qua lại với nhau để chỉ huy hoặc hiệu chỉnh bản thân đối tượng hay một hệ

thống khác.

* Xung quanh ta có rất nhiều hệ thống điều khiển nhưng có thể phân chia

thành 3 dạng hệ thống điều khiển cơ bản.

- Hệ thống điều khiển nhân tạo.

- Hệ thống điều khiển tự nhiên (bao gồm điều khiển sinh vật).

- Hệ thống điều khiển tự nhiên và nhân tạo.

Trong các hệ thống đó đối tượng điều khiển có thể là hệ thống vật lý, thiết bị

kỹ thuật, cơ chế sinh vật, hệ thống kinh tế, quá trình v.v... đối tượng nghiên cứu là

các thiết bị kỹ thuật gọi là điều khiển học kỹ thuật.

Mỗi hệ thống (hoặc phần tử của hệ thống) kỹ thuật, đều chịu tác động của

bên ngoài và cho ta các đáp ứng. Gọi tác động vào là đầu vào, tác động ra là đầu ra

( hoặc tín hiệu vào, tín hiệu ra).

Hình 1-1

* Nhiệm vụ của lý thuyết điều khiển tự động

Lý thuyết điều khiển tự động giải quyết 2 nhiệm vụ chính:

- Phân tích hệ thống

- Tổng hợp hệ thống

Phân tích hệ thống:

Nhiệm vụ này nhằm xác định đặc tính đầu ra của hệ sau đó đem so sánh với những

chỉ tiêu yêu cầu để đánh giá chất lượng điều khiển của hệ thống đó.

Muốn phân tích hệ thống điều khiển tự động người ta dùng phương pháp trực tiếp

hoặc gián tiếp để giải quyết 2 vấn đề cơ bản.

- Tính ổn định của hệ thống

- Chất lượng của quá trình điều khiển- quá trình xác lập trạng thái tĩnh và trạng

thái động (trạng thái quá độ).

Hệ thống (hoặc phần tử của

hệ thống)

Các tác động vào Các đáp ứng

Page 8: Bài giảng kỹ thuật điều khiển tự động

Để giải quyết vấn đề trên dùng mô hình toán học, tức là các phần tử của hệ thống

điều khiển đều được đặc trưng bằng mô hình toán của các phần tử sẽ cho mô hình

toán của toàn bộ hệ thống.

Có thể xác định đặc tính ổn định của hệ thống qua mô hình toán của hệ thống với

việc sử dụng lý thuyết ổn định trong toán học.

Tổng hợp hệ thống:

Tổng hợp hệ thống là xác định thông số và cấu trúc của thiết bị điều khiển. Giải bài

toán này, thực ra là thiết kế hệ thống điều khiển. Trong quá trình tổng hợp này

thường kèm theo bài toán phân tích.

Đối với các hệ thống điều khiển tối ưu và thích nghi, nhiệm vụ tổng hợp thiết bị

điều khiển giữ vai trò rất quan trọng. Trong các hệ thống đó, muốn tổng hợp được

hệ thống phải xác định Algorit điều khiển tức là xác định luật điều khiển Đ(t). Hệ

thống điều khiển yêu cầu chất lượng cao thì việc tổng hợp càng trở nên phức tạp.

Trong một số trường hợp cần đơn giản hoá một số yêu cầu và tìm phương pháp tổng

hợp thích hợp để thực hiện.

1.2- Các mô hình diễn tả hệ thống điều khiển.

Để tiện việc nghiên cứu về các vấn đề điều khiển cần sử dụng các sơ đồ (mô

hình) diễn tả các thành phần của hệ thống sao cho rõ ràng mọi mối quan hệ bên

trong và ngoài hệ thống để dễ dàng phân tích, thiết kế và đánh giá hệ thống.

Thực tế sử dụng các mô hình sau là phổ biến và thuận tiện:

1) Hệ thống các phương trình vi phân

2) Sơ đồ khối.

3) Graph tín hiệu.

4) Hàm truyền đạt

5) Không gian trạng thái

(Sơ đồ khối và Graph tín hiệu là cách biểu diễn bằng đồ hoạ để diễn tả một

hệ thống vật lý hoặc một hệ phương trình toán đặc trưng cho các phần tử của hệ

thống - Diễn tả một cách trực quan hơn).

* Về mặt lý thuyết mỗi hệ thống điều khiển đều có thể diễn tả bằng các

phương trình toán. Giải các phương trình này và nghiệm của chúng sẽ diễn tả trạng

thái của hệ thống. Tuy nhiên việc giải phương trình thường khó tìm nghiệm (có

trường hợp không tìm được) lúc đó cần đặt các giả thiết để đơn giản hoá nhằm dẫn

tới các phương trình vi phân tuyến tính thường – Hệ điều khiển tuyến tính liên tục.

Page 9: Bài giảng kỹ thuật điều khiển tự động

* Phần lớn kỹ thuật điều khiển hiện đại, là sự phát triển của các mô hình

toán học cho các hiện tượng vật lý. Sau đó dựa vào các mô hình toán học để nghiên

cứu các tính chất của hệ thống điều khiển.

1.2.1. Phương trình vi phân

Các hệ thống vật lý (hoặc các quá trình) cần được diễn tả chính xác mọi quan hệ

giữa những đại lượng biến động bên trong của chúng. Từ đó ta dễ dàng nghiên cứu

được các hiện tượng diễn biến của hệ thống; các định luật cơ bản của vật lý có thể

giúp ta giải quyết vấn đề đó. Các quan hệ của các đại lượng cơ bản nói chung có thể

biểu diễn bằng các phương trình vi phân ( gọi là mô hình toán của hệ thống).

Ví dụ: Phương trình của định luật II Newton F = m.a

Trong phương trình đại số giá trị các đại lượng không thay đổi theo thời gian, vì

thế nó chỉ diễn tả trạng thái ổn định của hệ. Nhưng trong thực tế hệ không tĩnh.

Đầu ra thường biến động đối với các thay đổi của đầu vào, thêm vào đó tác động

của nhiễu cũng thay đổi theo thời gian, nên hệ không ổn định tức là đầu ra dao

động. Vì thế cần phải phân tích hệ trong các điều kiện động lực hoặc gọi là trong

trạng thái quá độ, lúc này các biến số không cố định mà thay đổi theo thời gian.

Phương trình vi phân mô tả hệ ở trạng thái động lực không chỉ chứa bản thân các

biến số mà còn chứa tốc độ thay đổi hoặc gọi là đạo hàm của các biến số đó.

* Các nội dung cơ bản của phương trình vi phân:

Phương trình dạng:

an.

n

n

dtyd

+ an-1.1n

1n

dtyd

+ ... + a1. dtdy

+ a0. y = x(t) (1.1)

x(t) và y(t) là các biến phụ thuộc, t là biến độc lập.

* Các tính chất của phương trình vi phân:

Mọi hệ là tuyến tính nếu quan hệ vào- ra của nó có thể biểu thị bằng phương trình vi

phân tuyến tính:

i

i

i

n

ii

i

i dt

xdb

dt

yda ..

0

Hoặc một hệ là tuyến tính nếu quan hệ vào ra của nó có thể biểu thị bằng tích phân:

y(t) =

dxtW )(),(¦

Trong đó W(t, ) là hàm thể hiện các tính chất bên trong của hệ, y(t) là đầu ra và

x(t) là đầu vào. Hàm 2 biến W(t, ) là hàm trọng lượng của hệ.

Page 10: Bài giảng kỹ thuật điều khiển tự động

- Đáp ứng y(t) của một hệ tuyến tính do nhiều đầu vào x1(t), x2(t), ...., xn(t) tác động

đồng thời lên hệ bằng tổng các đáp ứng của mỗi đầu vào tác động riêng biệt

(nguyên lý chồng chất)

y(t) =

n

ii ty

0

)(

Ví dụ:

Phương trình vi phân thuần nhất:

A.dt

tdyB

dt

tyd )(.

)(2

2

+ C.y(t) = 0

Có hai nghiệm y1(t), y2(t). theo nguyên lý chồng chất thì y1(t) + y2(t) cũng là một

nghiệm của phương trình đó.

- Toán tử vi phân và phương trình đặc trưng:

Xét phương trình vi phân tuyến tính hệ số hằng cấp n

an n

n

dt

yd

+ an-1.1

1

n

n

dt

yd

+ ... + a1. dt

dy

+ a0. y = x(t)

Gọi toán tử vi phân D = dt

d, D n =

n

n

dt

d

Phương trình trên có thể viết thành:

D n y + an-1 D 1n y + ... + a1Dy + a0y = x

(D n + an-1 D 1n + ... + a1D + a0 )y = x (1.2)

Đa thức D n + an-1 D 1n + ... + a1D + a0 gọi là đa thức đặc trưng.

Phương trình D n + an-1 D 1n + ... + a1D + a0 = 0 là phương trình đặc trưng.

Nghiệm của phương trình đặc trưng rất có ý nghĩa khi xét tính ổn định của hệ

thống.

1.2.2- Sơ đồ khối.

* Sơ đồ khối được biểu thị bằng các khối liên kết với nhau để diễn tả mối

quan hệ đầu vào và đầu ra của một hệ thống vật lý.

* Sơ đồ khối thuận tiện để diễn tả mối quan hệ giữa các phần tử của hệ thống

điều khiển.

Ví dụ:

a) b)

c)

VàoA

Phần tử G

RaB

G1A G2B C

x ddt

y =

Page 11: Bài giảng kỹ thuật điều khiển tự động

Hình 1-2

* Các khối có thể là một thiết bị hoặc dụng cụ và có thể là một hàm (chức

năng) xảy ra trong hệ thống.

Khối: Ký hiệu thuật toán phải thực hiện đầu vào để tạo đầu ra.

Đường nối: Đường nối giữa các khối biểu thị đại lượng hoặc biến số

trong hệ thống.

Mũi tên: Chỉ tiêu của dòng thông tin hoặc tín hiệu “Các khối nối tiếp

nhau thì đầu ra của khối trước là đầu vào của khối sau”

Điểm tụ: Biểu hiện thuật toán cộng hoặc trừ ký hiệu bằng một vòng tròn đầu ra của

điểm tụ là tổng đại số của các đầu vào.

Hình 1-3

* Điểm tán: Cùng một tín hiệu hoặc một biến số phân ra nhiều nhánh tại

điểm đó gọi là điểm tán, tức là tại đó đầu ra áp lên nhiều khối khác “ký hiệu là một

nốt tròn đen”.

Hình 1-4

Cấu trúc sơ đồ khối của hệ thống điều khiển kín

Hình 1-5

Hình (1-5) diễn tả một hệ thống điều khiển kín bằng sơ đồ khối. Các khối mô

tả các phần tử trong hệ được nối với nhau theo quan hệ bên trong của hệ thống.

* Các biến số của hệ:

(1) Giá trị vào V: tín hiệu ngoài áp vào hệ.

(2) Tín hiệu vào chuẩn R: rút từ giá trị vào V là tín hiệu ngoài hệ áp lên hệ

điều khiển như một lệnh xác định cấp cho đối tượng. R biểu thị cho một đầu vào lý

tưởng dùng làm chuẩn để so sánh với tín hiệu phản hồi B.

x +

-

y

(x-y)

xx

xx

C C

C

E G1 G2M CGVV R +

HB

-

u

x +

+

y

(x+y)

x +

+

y

(x+y-u)-

u

Page 12: Bài giảng kỹ thuật điều khiển tự động

(3) Biến số điều khiển M (tín hiệu điều chỉnh): là đại lượng hoặc trạng thái

mà phần tử điều khiển G1 áp lên phần từ (đối tượng) điều khiển G2 (quá trình được

điều khiển).

(4) Biến số ra C (tín hiệu ra): là đại lượng hoặc trạng thái của đối tượng

(hoặc quá trình) đã được điều khiển.

(5) Tín hiệu phản hồi B: là một hàm của tín hiệu ra C được cộng đại số với

vào chuẩn R để được tín hiệu tác động E.

(6) Tín hiệu tác động E (cũng gọi là sai lệch hoặc tác động điều khiển) là

tổng đại số (thường là trừ) giữa đầu vào là R với phần tử B là tín hiệu áp lên phần tử

điều khiển.

(7) Nhiễu u: là tín hiệu vào không mong muốn ảnh hưởng tới tín hiệu ra C.

Có thể vào đối tượng theo M hoặc một điểm trung gian nào đó (mong muốn đáp

ứng của hệ đối với nhiễu là nhỏ nhất).

* Các phần tử của hệ:

(1) Phần tử vào chuẩn GV: chuyển đổi giá trị vào V thành tín hiệu vào chuẩn

R (thường là một thiết bị chuyển đổi).

(2) Phần tử điều khiển G1: là thành phần tác động đối với tín hiệu E tạo ra tín

hiệu điều khiển M áp lên đối tượng điều khiển G2 (hoặc quá trình).

(3) Đối tượng điều khiển G2 là vật thể, thiết bị, quá trình mà bộ phận hoặc

trạng thái của nó được điều khiển.

(4) Phần tử phản hồi H: là thành phần để xác định quan hệ (hàm) giữa tín

hiệu phản hồi B và tín hiệu ra C đã được điều khiển (đo hoặc cảm thụ trị số ra C để

chuyển thành tín hiệu ra B (phản hồi).

(5) Kích thích: là các tín hiệu vào từ bên ngoài ảnh hưởng tới tín hiệu ra C.

Ví dụ tín hiệu vào chuẩn R và nhiều u là các kích thích.

(6) Phản hồi âm: điểm tụ là một phép trừ E = R - B

(7) Phản hồi dương: ở điểm tụ là phép cộng: E = R + B

(Điều khiển kín gồm hai tuyến: Tuyến thuận truyền tín hiệu từ tác động E

đến tín hiệu ra C. Các phần tử trên tuyến thuận ký hiệu G (G1 , G2, ...) tuyến phản

hồi truyền từ tín hiệu ra C đến phản hồi B các phần tử ký hiệu là H (H1 , H2 , ...).

1.2.3. Hàm truyền đạt:

Hàm truyền đạt của hệ thống.

* Hàm truyền đạt của hệ thống đối với hệ thống điều khiển liên tục một đầu

vào và một đầu ra được định nghĩa:

Page 13: Bài giảng kỹ thuật điều khiển tự động

- Là tỷ số của biến đổi Laplace của đầu ra với biến đổi Laplace của đầu

vào với giả thiết toàn bộ các điều kiện đầu đồng nhất bằng không (điều kiện

dừng).

G(s) = o1

1n

1n

n

o1

1m

1m

m

m

aS.a...S.aS

bsb...S.bSb

(1.3)

Đối với hệ thống vật lý thực các chỉ số trong hàm truyền n m.

* Trong lĩnh vực thời gian gián đoạn (điều khiển rời rạc) việc biến đổi Z

đóng vai trò của biến đổi Laplace:

Hàm truyền có dạng sau:

G(z) = o1

1n

1n

n

o1

1m

1m

m

m

az.a...z.az

bzb...z.bzb

(1.4)

* Đối với hệ thống nhiều đầu vào nhiều đầu ra với r đầu vào, p đầu ra, các

hàm truyền là các phần tử của ma trận cấp pr phần tử , với chỉ số i của phần tử thứ

i của đầu vào, chỉ số thứ j của phần tử thứ j đầu ra.

G11(s) G12(s) ..... G1r(s)

G21(s) G22(s) ..... G2r(s)

G(s) = ..... ..... Gji(s) ..... (1.5)

..... ..... ..... .....

GP1(s) ..... ..... GPr(s)

Ở đây: Gji(s) = )s(u

)s(Y

i

j; các đầu vào khác ui(s) đều coi là bằng không.

(Nguyên lý độc lập tác dụng).

* Một cách tương tự với hệ thống điều khiển gián đoạn ta có hàm truyền của

hệ thống nhiều đầu vào nhiều đầu ra.

G11(z) G12(z) ..... G1r(z) pr

G21(z) G22(z) ..... G2r(z)

G(z) = ..... ..... Gji(z) ..... (1.6)

..... ..... ..... .....

GP1(z) ..... ..... GPr(z)

Ở đây: s - số phức - biến Laplace.

z = eS.T - biến của phép biến đổi z.

1.2.4. Không gian trạng thái

Page 14: Bài giảng kỹ thuật điều khiển tự động

Khi phân tích và thiết kế hệ thống điều khiển tuyến tính thường sử dụng một

trong hai hình thức sau:

+ Đối với lĩnh vực thời gian sử dụng hàm trạng thái .

+ Trong lĩnh vực tần số dùng hàm truyền đạt.

Như ở trên, ta xét hệ phương trình vi phân, sai phân đạo hàm đến bậc n (hệ

thống bậc n) ; n thực chất là trạng thái của các biến. Các trạng thái của biến được

mô tả như là vectơ x. Các phương trình trạng thái được mô tả dưới dạng sau (hệ

thống tuyến tính)..

x (t) = A.x(t) + B.u(t) ; x(o) = xo

y(t) = C.x(t) + D. u(t) (1.7)

và x(k+1) = A. x(k) + B.u(k) ; x(o) = xo

y(k) = C.x(k) + D. u(k) (1.8)

Ở đây: A, B, C, D là các ma trận hệ số hằng có kích thước.

Ann , Bnr , CPn , DPr

Các hệ phương trình viết dạng (1-11); (1-12) các phương trình trạng thái của

hệ thống điều khiển.

* Không gian trạng thái:

Một hệ thống có r tín hiệu vào u1(t), u2(t), u3(t) ... ur(t)

m tín hiệu ra: y1(t), y2(t), y3(t).... ym(t)

Xác định n biến trạng thái: x1(t), x2(t)..... xn(t)

Vậy hệ thống được mô tả bởi phương trình không gian trạng thái như sau:

(t)x1

. f1(x1, x2,..., xn; u1, u2,..., ur; t)

. . .

)(.

txn fn(x1, x2,..., xn; u1, u2,..., ur; t)

Đại lượng ra:

y1(t) = g1(x1, x2,..., xn; u1, u2,..., ur; t)

. . .

ym(t) = gm(x1, x2,..., xn; u1, u2,..., ur; t)

Page 15: Bài giảng kỹ thuật điều khiển tự động

++

D(t)

C(t)

A(t)

dtu(t) y(t)

B(t)x(t) x(t).

++

(t)x.

(t)x

.

.

.

(t)x

(t)x

n

.

2

.

1

.

f(x, u, t) =

t);u,...,u,u;x,...,x,(xf

...

t);u,...,u,u;x,...,x,(xf

t);u,...,u,u;x,...,x,(xf

r21n21n

r21n212

r21n211

(1.9)

Phương trình trạng thái:

)(.

tx f(x, u, t)

y(t) = g(x, u, t)

Hoặc dưới dạng ma trận:

)(.

tx A(t). x(t) + B(t). u(t)

y(t) = C(t). x(t) + D(t). u(t)

Sơ đồ khối:

Hình 1-6

1.3. Mô tả toán học của các phần tử điều khiển

a. Phần tử di động thẳng:

Tác dụng vào lò xo có chiều dài L0 để lò xo di động một lượng X thì cần một lực:

PL = k .X (k: là độ cứng lò xo hay là hằng số lò xo)

k = X

PL

O L

PL

PL

L0

L

X

K = PL

X

H×nh 1-7. §¦ êng ®Æc tÝnh

H×nh 1-8. S¬ ®å khèi

1/k R=XPV= PL

Page 16: Bài giảng kỹ thuật điều khiển tự động

Đối với lò xo thông thường tín hiệu vào là lực PV = PL,

tín hiệu ra là lượng di động R = X.

Vậy mô hình toán đặc trưng và sơ đồ khối biểu diễn chức năng như hình 1-8

b. Bộ giảm chấn bằng không khí hoặc bằng dầu ép:

Để di động piston với vận tốc V, cần tác dụng lực PV có giá trị:

PV = C.V= C.dt

dR

áp dụng toán tử Laplace: s = dt

d

PV = C.V= C.dt

dR = C.s.R

Lực PV coi là tín hiệu vào

Tín hiệu ra: Lượng di động R.

Từ các yếu tố trên thành lập sơ đồ khối thể hiện mô hình toán của bộ giảm chấn.

c. Trọng khối

Theo định luật II Newton tổng các lực P ở bên ngoài tác dụng vào một trọng khối

sẽ có biểu thức:

P = M.A = M. 2

2

dt

Rd

Dùng toán tử Laplace: s = dt

d nên P = M. S2.R

R = P .

Sơ đồ khối thể hiện mô hình toán như sau:

d. Phần tử quay

Định luật II Newton: Đối với chuyển động quay gia tốc góc của vật thể quay tỷ lệ

thuận với tổng mô men tác dụng lên nó.

Dạng toán học của định luật:

PV

R

H×nh 1-9

PV R1/C.s

H×nh 1-10

H×nh 1-11

1/M.S2 RP

Page 17: Bài giảng kỹ thuật điều khiển tự động

2

2

dt

d =

M

Md

dt .

2

2

Trong đó: là góc quay

là momen quán tính của vật thể

M là momen bên ngoài tác dụng vào vật thể.

Momen bên ngoài được tạo ra từ động cơ, do tải trọng tác dụng lò xo hoặc giảm

chấn.

Xét một đĩa quay trong chất lỏng và nối với một bánh đà như hình vẽ:

-Phân tích để xây dựng mô hình toán:

Quay đĩa được phải tác dụng một momen xoắn Mx, trục quay đi một góc là j

tạo mo men của lò xo: M1 = kx. j (1.10)

Trục có đường kính D, chiều dài l, hệ số lò xo xoắn là:

kx = l

GD

32

.. 4 (G: Mô đun đàn hồi)

Momen cần thiết để thắng lực ma sát của chất lỏng:

Mm = C.w = C. dt

d = C. p. j (1.11)

w: là vận tốc góc

C: hệ số ma sát của chất lỏng

Nếu quay đĩa với momen xoắn Mx (momen xoắn của trục lò xo) và momen ma sát

sẽ ngăn cản sự quay của đĩa do đó có thể viết thành:

M = Mx – M1 – Mm = 2

2

.dt

d = q. s2. j

Thay các trị số (1.10) và (1.11) ta có:

Mx = q. s2. j + kx. j + C. s. j = (q. s2 + kx + C.s). j

Từ phương trình trên ta có sơ đồ khối của hệ thống như hình vẽ.

e. Các phần tử điện

Các phần tử cơ bản của các mạch điện

H×nh 1-12

M1Mm

Mx

H×nh 1-13

1(.S2+ C.S + kx)Mx

Page 18: Bài giảng kỹ thuật điều khiển tự động

y = Rx =V C1

A.P

b)

uR = R. I I = R

1.uR

uL= L.dt

dI = LP. I

dt

dI = p. I =

dt

d.I

uC= C

1. dtI. =

PC

1.I

f.Các phần tử thuỷ khí

Xét phần tử dầu ép:

-Nếu van trượt được đẩy lên phía trên , dầu có áp suất P0 sẽ vào buồng trên của xi

lanh 3 và dầu của buồng dưới sẽ qua van trượt về bể dầu.

- Nếu van trượt được đưa xuống phía dưới , dầu sẽ qua buồng dưới của xilanh 1 và

dầu ở buồng trên sẽ chảy về bể dầu. Với hiệu áp không đổi được hình thành ở cửa

van, tức là tỷ lệ thuận với lượng di động x.

Gọi q là lượng dầu chảy vào xilanh, ta có: q = C1.x

q đồng thời cũng là sự thay đổi thể tích của xilanh: q = A.Py

(A là diện tích bề mặt của xilanh)

A.Py = C1.x

+

uR uL

+

uC

+ R L C

1 R

uR I IuL

Lp

1 IuC

Cp

1

H×nh 1-14

x1

2

3

y

P0

M

H×nh 1-15

Page 19: Bài giảng kỹ thuật điều khiển tự động

y = PA

C

.1 .x

Từ phương trình trên tín hiệu vào là x ( lượng di động của xilanh 1) và tín hiệu ra y

lượng di động của xilanh 2.

g.Phần tử phi tuyến

Ta xét một phần tử phi tuyến và trên cơ sở đó tiến hành tuyến tính hoá mô hình

toán học đặc trưng cho chức năng của cơ cấu.

Xét cơ cấu nâng vuông góc bằng cơ khí:

Thanh nâng vuông góc tại điểm A (a + b = 900) và có thể chuyển động cưỡng bức

trong rãnh thẳng đứng. Một nhánh của thanh nâng có thể trượt trên con trượt ở điểm

B , con trượt này di động cưỡng bức theo phương ngang. Nhánh kia của thanh nâng

có thể di động trong bạc của khớp nối cố định ở điểm C.

- Phân tích:

Tam giác AOB luôn đồng dạng tam giác AOC nên: K

X

X

Y

K

XY

2

( K = const)

Nếu tín hiệu vào là X, thì vị trí của điểm B là tín hiệu ra Y tỷ lệ với bình phương

của X. Còn tín hiệu vào là Y và tín hiệu ra là X sẽ tỷ lệ với căn bậc hai của Y:

X = YK.

Để viết phương trình toán và xây dựng mô hình toán học ta cần tuyến tính hoá các

phương trình phi tuyến trên. Phương pháp như sau.

1.4- Phân loại hệ thống điều khiển.

* Việc phân loại hệ thống điều khiển (Controller System) có rất nhiều hình

thức tuỳ theo góc độ nhìn nhận đánh giá: phân loại theo tín hiệu vào, theo các lớp

phương trình vi phân mô tả quá trình động lực học của hệ thống. Theo số vòng kín

trong hệ, v.v... Tuy nhiên đây chỉ là tương đối. Xét về tính chất làm việc và nội

dung cơ bản của điều khiển thì hệ thống điều khiển có 2 loại làm cơ sở trong phân

tích tính năng (Phân biệt tác động vào hệ và đáp ứng ra):

Hệ thống kín

Hệ thống hở.

H×nh 1-16

OY K

X

B C

Page 20: Bài giảng kỹ thuật điều khiển tự động

*Theo đặc điểm mô tả toán học thì có các hệ thống sau:

Hệ thống liên tục

Hệ thống gián đoạn

Hệ thống tuyến tính

Hệ thống phi tuyến

Hệ thống tuyến tính hoá

* Theo dạng năng lượng tiêu thụ:

Hệ thống điều khiển bằng điện

Hệ thống điều khiển bằng dầu

Hệ thống điều khiển bằng khí ép

....

1.4.1. Các hệ thống điều khiển hở và hệ thống kín

a. Hệ thống điều khiển hở (Open- Loop Control Systems)

*Khái niệm: Hệ thống điều khiển hở là hệ thống mà tác động điều khiển độc lập với

đầu ra (Hoặc đầu ra không được đo và không được phản hồi so với đầu vào)

Ví dụ:

Quá trình hoạt động của máy giặt hoàn toàn tự động mà chúng ta chỉ cần tác động

trước khi máy hoạt động là đóng điện và nhấn công tắc sau khi máy hoàn thành

công việc thì chúng ta lấy sản phẩm ra. Trong máy có diễn ra các quá trình như sau:

quá trình làm ướt quần áo (Soaking), quá trình giặt (Washing), quá trình vắt khô

(Rinsing) đều làm việc với một thời gian tổng chuẩn (time basic) Và các quá trình

này không được đo kết quả (Tức là không được kiểm tra là đã làm sạch quần áo hay

chưa)

Sơ đồ khối của hệ thống (Control System in Washing Machine)

t = ts + tW + tR = const

Từ ví dụ trên ta thấy hệ thống điều khiển hở có dáp ứng ra không so sánh đáp ứng

vào. Mỗi tác động vào có trạng thái (hoạt động) ổn định, kết quả của hệ thống có độ

chính xác phụ thuộc hệ thống chia độ (hệ thống đo). Trong quá trình có nhiễu, hệ

thống không thực hiện nhiệm vụ yêu cầu.

* Đặc tính của hệ thống điều khiển hở:

- Độ chính xác của hệ quyết định bởi điều chỉnh (căn) và có duy trì độ chính xác đó

được lâu hay không.

H×nh 1-17

Soaking Washing RinsingTurn on Finish Cleanliness

Page 21: Bài giảng kỹ thuật điều khiển tự động

- Nhạy cảm với các biến đổi xung quanh như: nhiệt độ, dao động, xung lực, điện

thế, phụ tải...

- Đáp ứng chậm khi tín hiệu vào thay đổi.

* Ưu điểm:

- Đơn giản

- Giá thành thấp (Độ chính xác vừa phải)

- Vấn đề mất ổn định không nghiêm trọng.

b. Hệ thống điều khiển kín

Khái niệm:

Hệ thống điều khiển kín là hệ thống mà tác động điều khiển phụ thuộc đáp ứng ra.

còn gọi là hệ thống điều khiển phản hồi.

E: Sai lệch điều khiển

E = R – B

R: Tín hiệu vào

B: Tín hiệu phản hồi.

Trong hệ thống điều khiển kín sai lệch điều khiển là sự chênh lệch giữa tín hiệu vào

và tín hiệu phản hồi. Quá trình điều khiển nhằm giảm sai lệch và đáp ứng ra đạt giá

trị mong muốn.

Ví dụ:

Hệ thống điều khiển nhiệt độ trong lò là một hệ thống điều khiển kín.

Nhiệt độ trong lò điện được đo bởi nhiệt kế ( là thiết bị Analog(tương tự)) Nhiệt độ

dưới dạng tín hiệu tương tự được biến đổi thành tín hiệu nhiệt độ dạng số bởi bộ

A/D. Tín hiệu nhiệt độ được chuyển về máy tính trung tâm qua Interface. và nhiệt

độ được so sánh với tín hiệu nhiệt độ mà chương trình của máy tính đã lập, nếu có

bất kỳ sai số nào (discrepancy: sự chênh lệch, sự khác nhau) thì máy tính trung tâm

có tín hiệu qua Interface và tín hiệu này được khuếch đại nhờ thiết bị Amplifier và

tác động lên Relay làm cho nhiệt độ trong lò tăng hay giảm tuỳ theo yêu cầu của

chương trình đã lập.

ER +- G1

HH×nh 1-18

G2C

B

Lß ®iÖn (E.Furnace)

A/DConverter

Interface

Relay Amplifier Interface

ComputerProgramming input

H×nh 1-19.

Page 22: Bài giảng kỹ thuật điều khiển tự động

Ví dụ 2: Để điều khiển một bình nước sao cho mực nước trong bình luôn là hằng số

không đổi thì độ cao cột nước trong bình sẽ là một trong những thông số kỹ thuật

cần quan tâm của hệ thống. Giá trị về độ cao cột nước tại thời điểm t được đo cảm

biến và được biểu diễn thành một đại lượng điện áp dưới dạng hàm số phụ thuộc

thời gian u(t) có đơn vị Volt. Đại lượng vật lý ở đây là điện áp đã được sử dụng để

truyền tải hàm thời gian u(t) mang thông tin về độ cao cột nước. ( Phần mô hình

toán học)

* Đặc tính của hệ thống điều khiển kín( hệ thống phản hồi)

Đặc trưng của hệ thống điều khiển kín là phản hồi.

- Nâng cao độ chính xác có khả năng tạo lại đầu ra

- Tốc độ đáp ứng nhanh

- Độ chính xác phụ thuộc các điều kiện làm việc

- Giảm tính chất phi tuyến và nhiễu

- Giảm độ nhạy cảm của tỷ số đầu ra và đầu vào đối với sự thay đổi tính chất của

hệ.

- Tăng bề rộng dải tần (dãy tần số của đầu vào)

- Có khuynh hướng dao động hoặc không ổn định.

- Điều khiển mềm .

1.4.2.- Các hệ thống điều khiển liên tục và gián đoạn.

Các hệ thống thực được mô tả ở trạng thái tĩnh hoặc động lực học. Các hệ

thống tĩnh thường được diễn tả bởi hệ thống các phương trình đại số. Trong điều

khiển kỹ thuật các hệ thống tĩnh không diễn tả đầy đủ trạng thái của hệ thống. Vì

vậy người ta dùng các phương trình vi phân/sai phân mô tả trạng thái động lực học

của hệ thống (được biết như là các hệ thống với các tham số cục bộ hoặc tập trung)

hoặc các phương trình vi phân đạo hàm riêng (như là các hệ thống có các tham số

phân tán).

Trong nội dung giáo trình ta nghiên cứu các hệ thống được mô tả bởi hệ các

phương trình vi phân/sai phân tuyến tính, nghĩa là các tham số của hệ thống độc lập

tuyến tính.

Ví dụ hệ thống động lực học được mô tả dưới dạng các phương trình vi

phân/sai phân vô hướng:

x (t) = fc(x(t)) , x(to) = xo (1.12)

x(k +1) = fd (x(k)) , x (ko) = xo (1.13)

Ở đây: t : biến thời gian liên tục.

k : biến thời gian gián đoạn.

Chỉ số e: (continuous- Time) - thời gian liên tục.

Page 23: Bài giảng kỹ thuật điều khiển tự động

d: (discrete - Time) - thời gian gián đoạn.

Nếu hệ thống chịu tác động của ngoại lực, hay các tác động vật lý khác. Ta

nói nó chịu tải động điều khiển và phương trình vi phân/sai phân mô tả trạng thái

động lực của hệ thống.

x (t) = fc (x(t), u(t)) ; x(to) = xo (1.14)

x(k+1) = fd (x(k), u(k)) ; x(ko) = xo (1.15)

Ở đây: u(t) ; u(k) đóng vai trò biến điều khiển. Với mục đích của điều

khiển ta thay đổi biến điều khiển nhận được các đáp ứng của hệ thống kỹ thuật theo

yêu cầu như vậy, nhìn chung vấn đề chính của điều khiển có thể mô hình hoá theo

dạng sau: tìm biến điều khiển bằng cách giải hệ thống phương trình vi phân đặc

trưng của hệ.

Nếu các hệ phương trình vi phân (1.12) (1.15) là tuyến tính ta gọi hệ

thống là tuyến tính. Nếu là phi tuyến ta gọi là hệ thống phi tuyến. Việc nghiên cứu

hệ thống phi tuyến tương đối khó. Trong thực tế, người ta tìm cách tuyến tính hoá.

Trong phạm vi giáo trình này, chúng ta chỉ nghiên cứu hệ thống điều khiển tuyến

tính.

1.5- Tuyến tính hoá hệ thống phi tuyến.

Trong thực tế không có một hệ thống vật lý nào có thể mô tả tuyệt đối chính

xác bằng phương trình vi phân hệ số hằng tuy nhiên nhiều hệ phi tuyến có thể xấp

xỉ hoặc coi như tuyến tính trong từng đoạn làm việc. Có nhiều phương pháp được

áp dụng cho việc tuyến tính hoá hệ thống phi tuyến. Phương pháp trung bình gần

điểm làm việc. Phương pháp tuyến tính hoá điều hoà và phương pháp sai lệch nhỏ.

1.5.1- Phương pháp trung bình gần điểm làm việc.

Đây là phương pháp đơn giản được dùng trong thiết kế các hệ thống khi đặc

tính trên không thể xấp xỉ hoá được bằng các hàm giải tích.

Phương pháp này áp dụng cho các hệ có những phần tử chỉ phi tuyến ở trạng

thái tĩnh, quan hệ giữa đầu ra y với đầu vào u là ở trạng thái xác lập (ổn định).

Giả thiết trong đoạn: - uM < u < um đặc tính phi tuyến có thể xấp xỉ hoá bằng

đường thẳng.

Trong đó: y = K . u ; k = m

m

u

y = tg ; là độ dốc.

1.5.2- Phương pháp tuyến tính hoá điều hoà.

Phương pháp này được dùng khi hệ có một phần tử tuyến tính nối sau một phần tử

phi tuyến làm việc ở chế độ tự dao động. Các tín hiệu trong hệ là làm tuần hoàn

theo thời gian.

Page 24: Bài giảng kỹ thuật điều khiển tự động

Phương pháp này dựa trên cơ sở khai triển hàm sóng thành chuỗi hàm dạng

sin (chuỗi Fonricr) điều hoà có tần số là , 2, 3, ... có biên độ và góc pha khác

nhau. Giả thiết các hàm điều hoà bậc cao khác (2, 3, ...) có biên độ nhỏ bỏ qua

chỉ giữ lại thành phần điều hoà bậc nhất () (giả thiết lọc) nghĩa là:

Hình 1-20

Trong đó: u(t) = Um . sin (t + )

y(t) = Ym1 . sin (t + )

Trong đó Um = Ym1 và - = được gọi là điều kiện cân bằng điều hoà.

1.5.3- Phương pháp sai lệch nhỏ.

Theo phương pháp này việc tuyến tính hoá được thực hiện bằng cách khai

triển hàm phi tuyến thành chuỗi Taylor tại vùng lân cận điểm ổn định (tương ứng

với chế độ xác lập). Chỉ khảo sát các sai lệch bậc nhất trong chuỗi đó. Sai lệch so

với trạng thái ổn định càng nhỏ thì việc đánh giá các quá trình của phần tử phi

tuyến có sai số càng bé sau khi biến đổi tuyến tính.

a) Hệ thống (bậc nhất) phi tuyến.

x (t) = f(x(t) , u(t) ) (1.16)

Giả thiết rằng hệ thống làm việc ở trạng thái xác lập với quĩ đạo xn(t) khi nó

được điều khiển bởi tín hiệu vào un(t). Chúng ta gọi xn(t) và un(t) là quĩ đạo danh

nghĩa và đầu vào danh nghĩa theo phương trình (1.16) ta có:

x n(t) = f(xn(t) , un(t) ) (1.17)

Bây giờ ta giả thiết rằng thay đổi của hệ phi tuyến (1.16) lân cận quĩ đạo

danh định một lượng nhỏ (vô cùng bé).

x(t) = xn(t) + x(t) (1.18)

Lượng biến đổi vô cùng bé này là do thay đổi đầu vào:

u(t) = un(t) + u(t) (1.19)

Từ các phương trình (1.16), (1.18), (1.19) ta có:

x n(t) + x (t) = f(xn(t) + x(t), un(t) + u(t)) (1.20)

Sử dụng khai triển Taylor với các đại lượng x(t), u(t) ta sẽ có:

x n(t) + x (t) = f(xn(t), un(t)) + x

f

(xn , un) x(t) +

+ u

f

(xn , un) u(t) + các thành phần bậc cao. (1.21)

(Các thành phần bậc cao là các đại lượng vô cùng bé x2 , u2, x.u, x3...)

được bỏ qua, từ đây ta có:

Nonlinear

Systemu(t) Element

Linearizationy(t)

Page 25: Bài giảng kỹ thuật điều khiển tự động

x (t) = x

f

(xn , un) x(t) + u

f

(xn , un) u(t) (1.22)

Như vậy bằng việc trình bày xấp xỉ với x(t) ta đã tiến hành tuyến tính hoá

theo sai lệch bậc nhất để được phương trình xấp xỉ bậc nhất (1.22).

Đặt: ao = - x

f

(xn , un); bo = u

f

(xn , un) (1.23)

Ta có phương trình mô tả hệ thống tuyến tính:

x (t) + ao(t)x(t) = bo(t). u(t) (1.24)

Điều kiện đầu của hệ thống được tuyến tính hoá được xác định.

x(to) = x(to) - xn(to) (1.25)

b) Hệ phi tuyến bậc 2:

x = f( x, x , u, u ) (1.26)

Với giả thiết rằng:

x(t) = xn(t) + x(t); x (t) = x n(t) + x (t)

u(t) = un(t) + u(t); u (t) = u n(t) + u (t) (1.27)

Tương tự ta có:

x n + x = f (xn + x, x n + x , un + u, u n + u ) (1.40)

Áp dụng khai triển Taylor lân cận các điểm danh nghĩa: xn , x n , un , u n và

ta có:

x (t) + a1x (t) + aox(t) = b1u (t) + bou(t) (1.28)

Các hệ số xác định theo:

a1 = - x

f

(xn , x n , un , u n ), ao = -

x

f

(xn , x n , un , u n )

b1 = u

f

(xn , x n , un , u n ), bo =

u

f

(xn , x n , un , u n ) (1.29)

Các điều kiện đầu được xác định.

x(to) = x(to) - xn(to) ; x (to) = x (to) - x n(to)

Ví dụ: Cho hệ thống phi tuyến.

= Sin - u.cos = f(, u)

Trong đó: = (t) ; u = u(t)

Đây là mô hình toán của thanh thẳng đứng cân bằng, u: lực ngang; là góc

lệch khỏi phương thẳng đứng.

Đây là hệ thống động lực học bậc 2. Trạng thái danh định của nó:

n(t) = n(t) = 0 ; un(t) = 0 ; sử dụng (1-42) ta có:

Page 26: Bài giảng kỹ thuật điều khiển tự động

a1 = -

f

= 0, ao = - n

f

= - (Cos + Usin)0)t(nU

0)t(n

= -1

b1 =

u

f = 0 ; bo =

nu

f

= - Cos 0)t(n = -1

Vậy phương trình tuyến tính hoá:

(1.30)

Ở dây: (t) = (t) , u(t) = u(t)

Đồng thời n(t) = 0, un(t) = 0

CHƯƠNG II

(t) - (t) = - u(t)

Page 27: Bài giảng kỹ thuật điều khiển tự động

O

j

Gx

Gy

G(s)

O

j

j S

HÀM TRUYỀN ĐẠTTrước tiên ôn tập lại kiến thức về số phức và hàm phức.

*Biến phức:

s = + jw

: Phần thực (Real part)

: Phần ảo (Imaginary part)

Nếu là các số thực thì ta gọi là số phức, còn thay đổi s là biến phức.

Biểu diễn biến phức s trên đồ thị như sau:

Hình 2.1

* Hàm phức: Là hàm của biến phức S

G(s) = Gx + j Gy

Cũng bao gồm phần thực và phần ảo.

Độ lớn của )(sG = 22yx GG

Góc q = tan-1(Gx/Gy), Chiều dương theo chiều kim đồng hồ tính từ trục thực

-Biểu diễn trên đồ thị:

Hình 2.2

Hàm liên hợp của hàm G(s) là: )(sG = Gx - j Gy

Page 28: Bài giảng kỹ thuật điều khiển tự động

O

j

S0

2

j 4

16

O-11

ReG

ImG

G(S0)¸nh x¹ G

Ph¼ng SPh¼ng G(S)

Một hàm phức, có biến là s = + j . Biến phức S phụ thuộc vào 2 đại lượng độc

lập: là phần thực và phần ảo của s. Để biểu diễn hàm G(s) cần có 2 đồ thị, mỗi đồ

thị có 2 chiều:

- Đồ thị của j ứng với s gọi là phẳng S

- Đồ thị của phần ảo G(S) (ImG) ứng với phần thực của G(S) (ReG) gọi là

phẳng G(S).

Sự tương ứng giữa các điểm trong hai phẳng đó gọi là một ánh xạ hay biến đổi .

Các điểm trong phẳng S được ánh xạ vào các điểm trong phẳng G(S) bằng hàm G.

Ví dụ:

Hàm phức G(S) = S2 + 1. Điểm S0 = 2 +j 4 được ánh xạ vào điểm G(S0) như sau

(S0) = G(2 + j 4) = -11 + j 16

Hình 2.3

* Phẳng S (mặt phẳng phức)

Nếu G(S) là hàm hữu tỉ như sau:

G(S) =

n

ii

m

iim

pS

zSb

1

1

)(

)(

- Các giá trị của biến phức S = -zi làm cho G(s) = 0 được gọi là các không của

G(s) (Zeros)

- Các giá trị s = - pi làm cho G(s) được gọi là các cực của G(s) ( Poles)

Các cực và các không được xác định bởi: một đại diện phần thực và một đại diện

phần ảo của số phức.

Biểu diễn các điểm đó trên mặt phẳng phức ( phẳng S) gọi là ánh xạ cực – không

của G(s)

Ví dụ:

G(s) = )1)(1)(3(

)2)(1(2

685

42223

2

jSjSS

SS

SSS

SS

Page 29: Bài giảng kỹ thuật điều khiển tự động

Ph¼ng S

j

j

-j

-1 2-3

PoleZero

Ph¼ng S

Ph¼ng G(S)

ReG

j

S1

ImG

G(S1)

S2

S3

S4 G(S4)G(S2)

G(S3)

¸nh x¹ G

G(s) có các không: s = -1 ; s = 2

và các cực: s = -3; s = -1 – j ; s = -1 +j

Hình 2.4

*Phẳng G(s): Được biểu diễn trong mặt phẳng với 2 thành phần. Một là phần thực

của G(s) – ReG, và một là phần ảo của G(s)- ImG. ánh xạ từ các điểm s0 sang phẳng

G(s) là các điểm G(s0).

Hình 2.5

* Nhận xét: Mối quan hệ giữa phẳng S ( ánh xạ cực – không)

*Phép biến đổi Laplace

Biến đổi Laplace là cơ sở của một phương pháp giải tích để tìm cả đáp ứng ổn

định và đáp ứng quá độ mà các phương trình vi phân tuyến tính hệ số không đổi.

Nên phép biến đổi Laplace chỉ dùng biến đổi cho phương trình vi phân tuyến tính.

Biến đổi Laplace chuyển phương trình vi phân thành các phương trình đại số nên

tìm nghiệm của phương trình đại số đơn giản hơn và từ nghiệm của phương trình

đại số tìm được nghiệm của phương trình vi phân.

Một ưu điểm là phương pháp này có thể xử lý trực tiếp các điều kiện đầu của hệ

thống như một phần của đáp ứng.

- Bản chất của phép biến đổi Laplace:

Là các phép tính đạo hàm và tích phân gốc được chuyển thành các phép toán đại số

thông thường đối với các ảnh, miền xác định rộng.

- Hàm gốc:

Page 30: Bài giảng kỹ thuật điều khiển tự động

O

t)

t

O t

t).sint

Gọi hàm f(t) của biến thực t là hàm gốc nếu nó thoả mãn các điều kiện sau:

1. Hàm f(t) liên tục trên từng đoạn thuộc miền xác định mà t 0.

Giải thích:

Lấy [a; b] trên t 0, luôn chi được trong [a; b] một số hữu hạn khoảng nhỏ [e; x]

sao cho trong mỗi khoảng đó f(t) liên tục và tại các mút của mỗi khoảng nhỏ thì f(t)

có giới hạn một phía:

)(lim tft

2. Khi t hàm f(t) không tăng nhanh hơn một hàm mũ. Tồn tại M > 0;

a >0 sao cho: tetf .)( ; mọi t >0

a gọi là chỉ số tăng của f(t).

3.f(t) = 0 khi t < 0.

Điều kiện này được đưa ra vì trong ứng dụng biến số t thường là thời gian, hàm f(t)

biểu diễn một quá trình nào đó mà ta chỉ khảo sát lúc t > 0.

Một số ví dụ:

a) Hàm h(t) = 0 khi t < 0

1 khi t > 0

Là một hàm gốc : 1)( t thoả mãn điều kiện hàm f(t) không tăng nhanh hơn

một hàm mũ.

t 0 ta lấy t thuộc trong [-1; 1] thì 1)(lim1

tt

( thoả mãn điều kiện 1)

h(t) = 0 khi t < 0 (thoả mãn điều kiện 3)

Hình 2.6

b) Hàm f(t) = h(t). sint = 0 khi t < 0

sint khi t > 0teMtt .1sin).( ( M = 1; a = 0)

tt sin).( liên tục trên t 0

tt sin).( = 0 khi t <0

Hình 2.7

c) Hàm f(t) = h(t).t2 = 0 khi t < 0

t2 khi t > 0

Page 31: Bài giảng kỹ thuật điều khiển tự động

O

t).t

t

2

tett .2).( 2 ( M = 2; a = 1)

Hình 2.8

- Toán tử Laplace:

Nếu f(t) là một hàm gốc có chỉ số tăng là a thì yêu cầu của f(t) để chuyển đổi được

là:

dttetf ..0

)( ( a < s < ) tích phân hội tụ tuyệt đối.

Biến đổi Laplace là kết quả của một thuật toán chuyển đổi với một hàm thời gian

f(t) để cho ta hàm G(s) của biến phức s.

F(s) = L {f(t)} =

0

).().(lim dtstetfT

dtstetfT

( 0 < e < T )

Biến đổi ngược để tìm gốc f(t):

f(t) =

j

jdsstesF

j

.).(

2

1

Một số hàm biến đổi Laplace sử dụng phổ biến:

Important Laplace Transform Pairs

f(t) F(s)

Hàm bậc thang h(t) S

1

Hàm xung đơn vị d(t) = 0 nếu t < 0

1 nếu 0 t t1

0 nếu t > t1

1

t2S

1

tn

1nSn!

e-at

aS 1

Page 32: Bài giảng kỹ thuật điều khiển tự động

1)!(n.et at1n

na)(S1

)e.(1a1 at

a)S(S1

sinwt22 ωS

ω

coswt22 ωS

S

e-at.f(t) F(s + a)

f(k)(t) = k

k

dtf(t)d skF(s) – sk-1f(0-) – sk-2f’(0-) - ... – f(k-1)(0-)

t

f(t)dt

0

f(t)dts1

sF(s)

* Lưu ý:

Biến s được coi như phép vi phân: s dtd

Và trong tích phân: t

0dt

s1

* ứng dụng của toán tử Laplace:

- Giải các phương trình vi phân tuyến tính hệ số không đổi

- Tìm hàm truyền đạt của hệ thống điều khiển tuyến tính.

2.1. Hàm truyền đạt

* Định nghĩa: Hàm truyền đạt (The Transfer function) của một hệ thống tuyến tính

được định nghĩa là tỷ số giữa biến đổi Laplace của biếu ra ( đại lượng đáp ứng ra

của hệ thống) so với biến đổi Laplace của biến vào ( đại lượng tác động vào hệ

thống), Với điều kiện đầu đồng nhất bằng không. Hàm truyền đạt của hệ thống

( phần tử) đặc trưng cho mô tả động lực học của hệ thống.

- Một hàm truyền đạt chỉ có thể xác định cho hệ thống tuyến tính, hệ thống bền

vững ( tham số không đổi). Một hệ thống không bền vững thường gọi là hệ thống

biến thời gian thay đổi, có một hay nhiều tham số thay đổi, và phép biến đổi

Laplace không được áp dụng đối với hệ thống này.

- Hàm truyền đạt thể hiện tác động vào và đáp ứng ra của trạng thái hệ thống.

- Tuy nhiên, hàm truyền đạt không diễn tả thông tin về cấu trúc bên trong của hệ

thống và trạng thái hoạt động của hệ thống.

Page 33: Bài giảng kỹ thuật điều khiển tự động

M1

M2

friction f2

friction f1

K

V2(t)

V1(t)Force r(t)

G(s) = {u(t)}{y(t)}

ll

= InputOutput

= U(s)Y(s)

Để hiểu về cách xây dựng hàm truyền đạt ta có các ví dụ sau:

Ví dụ 1:

Cho một hệ thống được mô tả bởi phương trình vi phân sau:

2r(t)3ydtdy

4dt

yd2

2

Điều kiện đầu là: y(0) = 1, 0(0)dtdy

, và r(t) = 1, t 0

Biến đổi Laplace:

[ s2Y(s) – s y(0) ] + 4[ s Y(s) – y(0) ] + 3 Y(s) = 2 R(s)

Thay R(s) = s

1 và y(0) = 1 ta được:

s2Y(s) – s + 4 s Y(s) – 4 + 3 Y(s) = s2

Y(s) = 3)4s(s

4s3)4ss(s

222

Trong đó: q(s) = s2 +4s + 3 = ( s + 1)(s +3) = 0 là phương trình đặc trưng và d(s) = s

Y(s) = [s

2/3]

3)(s1/3

1)(s1

[]3)(s

1/21)(s

3/2

= Y1(s) + Y2(s) + Y3(s)

Biến đổi Laplace ngược:

y(t) = 32

].e31

1.e[].e21

.e23

[ 3tt3tt

Trạng thái ổn định là: 32

y(t)limt

Ví dụ 2: Hệ thống cơ khí như hình vẽ ( được mô hình hoá)

Hình 2.9

Page 34: Bài giảng kỹ thuật điều khiển tự động

+

-

Armature

if(t)Field

Inertia = JFriction = f

Load

Ra

LaRf

Lf

Trong hình vẽ:

K: Độ cứng lò xo ( hằng số lò xo)

f1, f2: là các hệ số ma sát

V1(t), V2(t): Vận tốc di chuyển của các trọng khối M1 và M2.

M1sV1(s) + (f1 + f2)V1(s) – f2V2(s) = R(s)

M2sV2(s) + f1(V2(s) – V1(s)) + Ks(s)V

2 = 0

Tương đương với:

(M1(s) + (f1 + f2)) V1(s) + (- f1)V2(s) = R(s)

(-f1)V1(s) + (M2(s) + f1 + sK

) V2(s) = 0

Hoặc dưới dạng ma trận sau:

0

R(s)

(s)V

(s)V

sK

f(s))......(Mf.........(

)f........(ff(s)(M

2

1

121

1211

.)

Vận tốc di chuyển của M1 chính là đại lượng ra, việc tìm V1(s) bởi ma trận nghịch

đảo hoặc nguyên tắc Cramer là:

V1(s) = 2

112211

12

f(K/s))fs).(Mffs(M)(K/s)).R(sfs(M

Hàm truyền đạt của hệ thống:

G(s) = R(s)(s)V

1

2

112211

12

f(K/s))fs).(Mffs(M(K/s))fs(M

=

ss

s2

11

2

2211

1

2

2

fK)fs).(Mffs(MK).R(s)fs(M

Tại một thời điểm nào đó mà xác định x1(t), thì hàm truyền đạt là:

s

G(s)sR(s)

(s)VR(s)

(s)X1

Ví dụ 3: Hàm truyền đạt của động cơ dc

Động cơ dc là thiết bị phát động mà chuyển từ dạng năng lượng điện sang chuyển

động quay.

Page 35: Bài giảng kỹ thuật điều khiển tự động

m

y(t)

cu(t)

d

Fc Fm

Fd

Hình 2.10

Ví dụ 4: Cho hệ cơ học gồm một lò xo có hệ số c, một vật với khối lượng m và bộ

giảm chấn có hệ số d được nối với nhau như hình vẽ. Xác định hàm truyền đạt cho

hệ cơ đó nếu tín hiệu đầu vào u(t) được định nghĩa là lực bên ngoài tác động lên vật

và tín hiệu ra y(t) là quãng đường mà vật đi được.

Gọi Fc, Fm, Fd là những lực của lò xo, vật và bộ giảm chấn sinh ra khi vật di chuyển

nhằm cản sự dịch chuyển đó thì:

Fc = c. y(t)

Fm = m. 2

2

dty(t)d

Fd = d . dt

dy(t)

Theo tiên đề về cân bằng lực ta được:

u(t) = Fc + Fm + Fd = c . y(t) + m. 2

2

dty(t)d

+ d . dt

dy(t)

Biến đổi Laplace: U(s) = ( c + ds + ms2 ). Y(s)

Hình 2.11

Hàm truyền đạt của hệ thống là:

G(s) = U(s)Y(s)

= cdsms

12

Gọi g(t) là hàm gốc của hàm truyền đạt G(s), tức là:

g(t) = L-1{G(s)}

Theo tính chất của toán tử Laplace ta có:

Y(s) = G(s). U(s)

y(t) = g(t). u(t) =

)d.u(tg( ) =

)d.u(-g(t )

Hàm g(t) được gọi là hàm trọng lượng của hệ thống. Với u(t) = )(t

Do U(s) = 1 nên ta có y(t) = g(t)

* Hàm truyền đạt trong lĩnh vực Laplace

Trên đây mới chỉ giới thiệu hàm truyền đạt giới hạn trong quan hệ tỷ lệ vào – ra đơn

giản, đó là một hình thức để mô tả đặc trưng của phần tử hoặc hệ thống. Tuy nhiên

có nhiều phần tử có đáp ứng thay đổi theo thời gian. Trong lĩnh vực thời gian đặc

tính đó được mô tả bằng phương trình vi phân, phương trình này không trực tiếp

dùng làm hàm truyền đạt được.

Nếu dùng một hàm truyền đạt với biến số Laplace S, diễn tả được đặc tính động lực

của phần tử hoặc hệ thống và phương pháp phân tích trong lĩnh vực thời gian ( tức

Page 36: Bài giảng kỹ thuật điều khiển tự động

là quá trình quá độ)sẽ tương đối đơn giản giúp ta xác định đáp ứng của phần tử hoặc

hệ thống đối với một tín hiệu vào xác định.

Đặc trưng của một hệ thống điều khiển, ta có phương trình vi phân tổng quát sau

đây:

(pn + bn-1pn-1 + ... + b1p + b0). y(t) = ( ampm + am-1pm-1 + ... + a1p + a0 ). x(t) (2.11)

y(t) = .x(t)(p)L(p)L

.x(t)bpb...pbpapa...papa

n

m

01

1n

1n

n

01

1m

1m

m

m

Trong đó: a0, ..., am và b0, ..., bn là những hằng số

x(t) hàm kích thích, nó là tín hiệu tác động vào làm kích thích hệ thống

y(t) hàm phản ứng. Nó là hàm chuyển tiếp (tín hiệu ra) dưới tác động của tín hiệu

vào x(t).

Ln(p) = pn + bn-1pn-1 + ... + b1p + b0

Lm(p) = ampm + am-1pm-1 + ... + a1p + a0

Biến đổi Laplace từng số hạng của phương trình (2.11) ta có

L[pn y(t)] = sn Y(s) – I(s)n

bn-1 L[pn-1 y(t)] =bn-1. sn-1 Y(s) – I(s)n-1

...

am L[pm x(t)] = am sm X(s) – I(s)m

am-1 L[pm-1 x(t)] =am-1 sm-1 Y(s) – I(s)m-1

Với I(s)n,...là những điều kiện ban đầu tương ứng với các biến đổi.

Thay vào phương trình:

Y(s) = (s)L

I(s) (s).X(s)Lbsb...sbs

I(s)X(s)asa...sas(a

n

m

01

1n

1n

n

01

1m

1m

m

m

).

I(s) = I(s)n + I(s)n-1 + ... - I(s)m - I(s)m-1 là tổng những điều kiện đầu.

Từ phương trình trên thấy rằng:

- các đa thức Lm (s); Ln(s) ở trong miền biến đổi s vẫn giữ nguyên như trong miền

toán tử p.

- Tử số của chúng cũng có dạng giống nhau, chỉ khác là ở miền s có các điều kiện

đầu I(s).

- Nếu các điều kiện đầu bằng 0 thì ta có thể biến đổi Laplace của phương trình vi

phân bằng cách thay s vào vị trí p, thay Y(s) vào vị trí y(t) và X(s) vào vị trí x(t).

Tức là:

Y(s) = )(. sX(s)L

(s)L

n

m

Và hàm truyền đạt là G(s) = (s)L

(s)L

n

m

Page 37: Bài giảng kỹ thuật điều khiển tự động

Vậy có mối quan hệ trong hệ thống điều khiển:

“Hàm phản ứng = Hàm truyền đạt x Hàm kích thích”

Nếu cho mẫu số của hàm truyền đạt bằng 0 ta sẽ có phương trình đặc trưng:

sn + bn-1sn-1 + ... + b1s + b0 = 0 trên cơ sở phương trình đặc trưng ta suy ra

các đặc tính chuyển tiếp của hệ thống.

- Hàm phản ứng (hàm chuyển tiếp) y(t) có thể xác định với việc biến đổi ngược hàm

Y(s)

y(t) = L-1[ Y(s)] = L-1 [ (s)L I(s) (s).X(s)L

n

m

]

Tìm y(t) theo 2 cách:

1) Dùng bảng để xác định các hàm thời gian tương ứng

2) Phân tích hàm đã biến đổi thành tổng những hàm đơn giản hơn và sau đó dùng

bảng để biến đổi ngược từng số hạng.

Thường dùng phương pháp 2 vì ít khi gặp các hàm đơn giản. Vậy ta tìm hiểu

phương pháp 2 như sau:

Y(s) = (s)L I(s) (s).X(s)L

n

m

Hàm kích thích X(s) hay tín hiệu vào có thể viết dưới dạng sau đây:

X(s) = x

x

DN

Y(s) = )(

)(

sB

sA

xn

xxm

(s).DL I(s).D (s).NL

ở đây A(s) và B(s) là những đa thức của s.

Để có thể chia Y(s) thành các phân thức, ta phân tích mẫu số B(s). Giả sử các

nghiệm của B(s) là r1, r2, ..., rn. Các nghiệm này có thể là nghiệm đơn, nghiệm bội

hay là số phức.

- Nghiệm đơn:

Y(s) = n

n

2

2

1

1

rsC

...rs

Crs

CB(s)A(s)

Xác định C1, C2, ..., Cn ta dùng phương pháp sau

C1 = ).Y(s)]r[(slim 1rs 1

C2 = ).Y(s)]r[(slim 2rs 2

...

Cn = ).Y(s)]r[(slim nrs n

Biết được C1, C2, ..., Cn tìm được biến đổi Laplace ngược trong bảng:

Page 38: Bài giảng kỹ thuật điều khiển tự động

L-1 [n

n

r-sC

] = Cn. e trn ( t 0 )

Vậy,

y(t) = L-1[ Y(s)] = C1. e tr1 + C2. e tr2 +... + Cn. e trn

Hàm chuyển tiếp y(t) mong muốn là hàm tắt dần nên từng phần Cn. e trn là hàm tắt

dần, tức là tất cả các nghiệm r1, r2, ..., rn cần phải là số âm.

- Nghiệm bội:

B(s) = (s-r)q.(s-r1).(s-r2)...(s-rn)

Y(s) = n

n

1

111q

1q

q

q

rsC

...rs

Crs

Kr)(s

K

r)(s

K

B(s)A(s)

...

Xác định Kq: Kq = .Y(s)]r)[(slim q

rs

Còn các hệ số còn lại xác định xác định bằng cách:

)r(sr)(s

qC...)r(s

r)(sqC...r)(s2KKY(s)]r)[(s

dsd

n

q

ni

1q

12q1qq

Kq-1 = Y(s)]}r)[(sdsd

{lim q

rs

Kq-2 = Y(s)]}r)[(sdsd

21

{lim q2

2

rs

....

Kq-k = Y(s)]}r)[(sdsd

k!1

{lim q(k)

(k)

rs

Vậy:

y(t) =

rt

1

rt2

rt2q1q

rt1qq .eK

1!.t.eK

...2)!(q

.e.tK

1)!(q

.e.tKC1. e tr1 + C2. e tr2 +... + Cn. e trn

-Nghiệm phức liên hợp:

Y(s) = n

n

1

10

rsC

...rs

Cjbas

Cjb-as

CB(s)A(s)

Xác định các hằng số C, C0 tương ứng với các nghiệm phức liên hợp:

C =

])r)...(sr(2jb).(s

A(s)[lim]

)r)...(srjb).(sajb).(sa(sA(s)

jb).a[(slimn1

jbasn1

jbas

= jb).K(a2jb1

K(a+jb) = jbas lim

))...(1(

)(4

nrSrs

s

= [(s 2 -2as+a 2 +b 2 .sB

sA

/

/)] jbaS

Page 39: Bài giảng kỹ thuật điều khiển tự động

Co = jbas lim [(s-a+jb)

))....().().((

)(

1 nrsrsjbasjbas

sA

]

= jbas lim [

)).(.(2

)(

1 nrsrsa

sA

] = -a2

1.K.(a-jb)

K(a+jb) = jbas lim [ )).((

)(

1 nrsrs

sA

] = -a2

1.K.(a+jb)

= [( 2 - 2as + a 2 +b 2 ))(

)(

sB

sA] jbas

Các trị số k(a+jb) và k(a-jb) là các số phức liên hợp

Ta cần thể hiện các số này trên hình vẽ:

K(a+jb) = [k(a+jb)]e j

K(a+jb) = [k(a+jb)]e j

[k(a+jb)] = [k(a-jb)]

( Độ dài của véc tơ )

C và Co cũng là các số phức liên hợp .

C = jb2

1.[k(a+jb)].e j

Co = -[k(a+jb)]e j

Từ bảng laplace ta xác định hàm chuyển tiếp

y )(t = c.e tjba ).( +Co.e tjba ).( +C1.e tr1 +.....+Cn.e rnt

)(ty = jb2

1[k(a+jb)].e tjba ).( .e j + -

jb2

1[k(a-jb).e tjba ).( .e j +...

= jb2

1[k(a+jb)].e ta. .e )( btj - e )( btj

= b

1[k(a+jb)].e at .

j

ee btjbtj

2

)()(

= b

1[k(a+jb)].e at .sin( )( bt +C1.e tr1 +...+Cn.e rnt

Phương trình trên thể hiện hàm điều hoà sin tắt dần theo hàm mũ, xuất phát

từnghiệm phức liên hợp Phần ảo b là tàn số dao động tắt dần . Thời gian của mỗi

dao động là b

2 . Đường bao hình sin là

b

1[k(a+jb)].e at . Để hàm mũ giảm dần thì a

phải là trị số âm . Trường hợp a = 0, ta sẽ có hàm sin có biên độ b

1[k(a+jb)].e at

không đổi.

Page 40: Bài giảng kỹ thuật điều khiển tự động

O

j

t

(1/b).[K(a+ jb)](1/b).[K(a+ jb)].e

O

j

t

at

O

at(1/b).[K(a+ jb)].e

t

j

tO

b

j

a>0a<0a>0

a<0a=0

j

-zi

s

s+zi

-pis+pi

-p1

(s)

j

-z1

-p2

-p3

-z2

-z1 -z2

-p3

-p2

j

(s) -p1

a) b)

c)

Hình 2.12

- Nếu các nghiệm nằm ở bên trái trục ảo ( a<0 ) thì dao động hình sin sex tắt dần,

nếu a=0 thì dao động với biên độ không đổi, nghiệm nằm ở bên phẩi trục ảo(a>0)

thì dao động sẽ tăng dần.

Cách khác xác định đáp ứng thời gian:

Đáp ứng thời gian có thể xác định bằng cách tìm các cực của G(s). X(s) vì

Y(s) = G(s). X(s) và ước lượng tìm các hệ số của các phân thức của biểu thức Y(s)

tại các cực đó. Các hệ số có thể xác định bằng đồ thị nhờ một ánh xạ cực – không

của Y(s). ánh xạ này được dựng từ ánh xạ cực – không của G(s) và cộng thêm các

cực- không của X(s).

Các bước :

G(s) = )p(s

)z(s.b

i

n

1i

i

m

1im

Vì G(s) là một hàm phức nên có thể viết dưới dạng cực như sau:

G(s) = jφ.eP(s) = P(s) φ

)(Re

)(Imtan 1

sG

sG

Mỗi số phức s, zi, pi, ( s + zi) và ( s + pi) có thể diễn tả bằng một vectơ trong mặt

phẳng S. Biểu diễn trên đồ thị:

Page 41: Bài giảng kỹ thuật điều khiển tự động

Hình 2.13

Trong hình a) có một cực –pi và một không – zi và một biến phức S. Vectơ tổng s +

zi là vectơ bắt đầu từ không – zi và kết thúc tại s, vectơ s + pi bắt đầu từ cực – pi và

kết thúc tại s.

Độ lớn của C = bm.pi) s ( cña vecto lín é§

zi)(s cña vecto lín é§

= )p(s

)z(s.b

i

n

1i

i

m

1im

Trường hợp b): 1C = )p).(sp(s

z).(sz(s.b

21

21m

)

Trường hợp c): 2C = )p).(sp(s

z).(sz(s.b

21

21m

)

Diễn tả theo dạng cực thì: Ci = iji eC . = iiC

Hoặc theo toạ độ vuông góc: Ci = iiii CjC sin..cos.

i = Tổng các góc của các vectơ từ các không đến – p i trừ đi tổng các góc của các

vectơ từ các cực tới –pi ( nếu bm > 0)

i = Tổng các góc của các vectơ từ các không đến – p i trừ đi tổng các góc của các

vectơ từ các cực tới –pi + 1800 ( nếu bm < 0)

-Phương pháp đồ thị này không áp dụng cho trường hợp có các cực trùng nhau

( nghiệm lặp).

* Hàm truyền đạt trong lĩnh vực tần số

Việc phân tích hệ thống nằm trong hai lĩnh vực: Lĩnh vực thời gian và lĩnh vực tần

số.

-Trong lĩnh vực thời gian: nội dung chủ yếu là các đặc tính động lực của hệ thể hiện

trạng thái quá độ (đáp ứng quá độ). Ta đã dùng phương trình vi phân và biến đổi

Page 42: Bài giảng kỹ thuật điều khiển tự động

G1 G2 G1xG2R C R C

+

+<=>

RG1

G2

C

R

CG1+G2

R

Laplace để nghiên cứu các nghiệm của phương trình ( tức là các đáp ứng của hệ).

Áp dụng biến đổi Laplace để giải các phương trình vi phân tuyến tính là phần quan

trọng nhất trong nghiên cứu trạng thái quá độ của các hệ tuyến tính thuộc lĩnh vực

thời gian.

Tuy vậy giải phương trình vi phân để phân tích trạng thái động lực của hệ thống

(tức là trong lĩnh vực thời gian) khá phức tạp đối với các hệ không đơn giản. Nhưng

phương pháp phân tích đáp ứng tần số ( thuộc lĩnh vực tần số) có thể đánh giá được

tính năng của hệ mà không cần giải phương trình vi phân. Phương pháp đáp ứng tần

số phân tích các tính năng của hệ xem như một hàm của tần số của tín hiệu vào

dạng sin mà không phải là khảo sát đáp ứng thời gian thực tế. Cũng có thể nói

phương pháp đáp ứng tần số phân tích đáp ứng dạng sin ổn định của hàm truyền của

hệ.

Phương pháp này có nhiều ưu điểm:

- Cho phép ta ước lượng được dãy tần số ảnh hưởng đến tính năng của hệ

- Dễ chỉ cho ta biện pháp thay đổi hệ để đạt các tính năng yêu cầu trong việc

thiết kế các hệ thống điều khiển. Bằng đồ thị có thể chỉ cho ta biện pháp

phán đoán vấn đề bằng các phương trình vi phân. Nếu các phương trình đã

được giải nhưng đáp ứng không đạt yêu cầu thì không dễ quyết định được

biện pháp thay đổi hệ thống để đạt chất lượng mong muốn. Phương pháp tần

số đã vượt qua được hạn chế đó.

- Đáp ứng có thể xác định bằng thực nghiệm cũng tốt không thua kém tính

toán giải tích. Ưu điểm này rất quan trọng khi mô tả các phần tử của hệ bằng

các phương trình vi phân.

2.2. Đại số sơ đồ khối

Sơ đồ khối là một trong các dạng mô hình toán của hệ thống điều khiển, trên sơ

đồ thể hiện đại lượng vào – ra của hệ thống và các tính chất của hệ thống.

Một số chuyển đổi cơ bản để rút gọn các sơ đồ khối phức tạp.

1. Tổ hợp các khối nối tiếp

Hình 2.14

Chứng minh : C= R.G1.G2 = G1.G2.R

2. Tổ hợp các khối song song

Page 43: Bài giảng kỹ thuật điều khiển tự động

+

+ CG

A

B

<=>+

+ C

G

G

B

A

A

B

G

1/G

+

+<=>

B

GC

+

A C

GC<=>

B

GC

1/GC

B B

B

CG

<=> GGB C

C

C

<=>R G

1+GHC

B

C

H

GR +

-

E

Hình 2.15

Tại điểm tụ C = R.G2 + R.G1 = ( G1+G2).R

3. Di chuyển điểm tụ về bên phải một khối :

Hình 2.16

Tại điểm tụ R = A + B

Nên C = G. ( A + B)

Sơ đồ tương đương là: C = A. G + B. G = G. ( A + B)

4. Di chuyển điểm tụ về bên trái một khối

Hình 2.17

5. Di chuyển điểm tán về bên phải một khối

Hình 2.18

6. Di chuyển điểm tán về bên trái một khối

Hình 2.19

7. Rút gọn hệ thống

Hình 2.20

Page 44: Bài giảng kỹ thuật điều khiển tự động

E

-

+RG1

H

C

BG2

+

E+RG

H

C

B+-

BEHG

C

Chứng minh:

Sơ đồ ban đầu: G = EC

C = E. G ; E = R - B ; B = C. H ;

E = R – C. H = R – E. GH

E. ( 1 + GH ) = R

E = G.H1R

Hàm truyền của hệ thống là: RC

= G.H1R

.RG

= GH1G

Từ biểu thức ta thấy: Nếu gia lượng tuyến thuận G lớn thì tích GH 1, lúc này gia

lượng mạch kín còn là RC

= H1

- Kết luận: Trạng thái của mạch kín phụ thuộc tính chất tuyến tính của phản

hồi H và độc lập với tuyến thuận ( về tính chất ). Nếu tuyến thuận có một vài

thay đổi do một vài lí do nào đó thì tuyến phản hồi sẽ trừ khử hiệu quả sự

thay đổi của đầu ra. Vì thế không cần điều chỉnh hệ thống, nhưng phải điều

chỉnh phần tử phản hồi H.

- Nếu mạch kín bị cắt đứt như hình vẽ:

Hình 2.21

Hàm truyền toàn mạch còn G1. G2. H được xem như hàm truyền của mạch hở.

G1. G2. H = E

.H.GE.GE

C.HEB 21

* Sơ đồ khối dạng chính tắc:

ư

Hình 2.22

Các đại lượng sau cần xác định rõ:

G: Hàm truyền tuyến thuận

H: Hàm truyền tuyến phản hồi

GH: Hàm truyền mạch hở.

Page 45: Bài giảng kỹ thuật điều khiển tự động

Hình 2.23

RC

: Hàm truyền mạch kín (tỷ số điều khiển)

RE

: Tỷ số tín hiệu tác động ( tỷ số sai lệch )

RB

: Tỷ số phản hồi cơ bản

Ta có liên hệ sau: RC

= GH1G

* Hệ phản hồi đơn vị:

Một hệ phản hồi đơn vị là một hệ trong đó tín hiệu phản hồi cơ bản B bằng đầu ra

C. Đây là một trường hợp đặc biệt hay gặp trong thực tế và là sự so sánh trực tiếp

giữa đầu ra và đầu vào chuẩn. Vì lúc này khối phản hồi có giá trị đơn vị là 1 nên

hàm truyền mạch kín là:

RC

= G1

G

Trường hợp này xảy ra khi đầu ra mô phỏng lại đầu vào chuẩn. Bất kỳ hệ phản hồi

nào nếu chỉ có các phần tử tuyến tính trong tuyến phản hồi đều có thể đặt dưới dạng

một hệ phản hồi đơn vị bằng cách dùng chuyển đổi 4, ta được sơ đồ khối sau:

E+RG

H

C

B+- -+B

CG.H

R + E 1 H

E = R B E = H

R B

B = C.h B = C

Hình 2.24

R

C =

GH

G

1

E = G

C E=

HG

C

.

HG

C

. =

H

RC

C (HG.

11) =

H

R

* Hệ có nhiều tín hiệu vào ra :

Page 46: Bài giảng kỹ thuật điều khiển tự động

B

CG2

+G1R +

-+

H

U

H

++U

G2C

G1-

C(R)G2G1

R +-

H

Nhiều hệ có nhiễu U, hoặc có nhiều tín hiệu vào ( nhiều kích thích ) đồng thời với

tín hiệu vào chuẩn R, chúng áp lên hệ tại các điểm khác nhau và mang lại cho hệ

những tính năng khác nhau.

Khi trong một hệ tuyến tính có mặt nhiều tín hiệu vào ta phải xử lí từng tín hiệu

độc lập với nhau, sau đó dựa trên nguyên lí chồng chất cộng đại số các đáp ứng cá

biệt của từng tín hiệu với nhau ta sẽ được tín hiệu ra tổng cộng của hệ khi mọi tín

hiệu đồng thời tác động lên hệ.

Có nghĩa là ta giả thiết từng tín hiệu vào tác dộng riêng biệt đến hệ ( các tín hiệu

vào còn lại giả thiết bằng không ) lần lượt làm như vậy với từng tín hiệu vào, sau đó

thực hiện một phép cộng đại số các đáp ứng nói trên, để tìm đáp ứng riêng của từng

tín hiệu vào, đôi khi cần đến thủ thuật rút gọn sơ đồ khối về dạng chính tắc bằng

cách dùng một trong bảy chuyển đổi trên.

* MỘT SỐ VÍ DỤ

Ví dụ 1 : Xác định dầu ra C của hệ thống:

Hình 2.25

Cho U = 0 hệ thống đơn giản hoà thành :

Hình 2.26

Xác định đầu ra :

C )(R = 2.11

2.1

GG

GG

.R

+ Cho R = 0 , chỉ có đầu vào U ta có sơ đồ sau

Hình 2.27

Page 47: Bài giảng kỹ thuật điều khiển tự động

C(U)G2

U +-

G1.H

C1G1

R1 +-

G2G4G3

R2

+-

G2

-+R1

G1C1

G3

G4+ - C2R2

Tại điểm tụ, trước khối G1 có dấu âm nên phản hồi là phản hồi âm (đổi dấu phản

hồi ban đầu)

Hình 2.28

C )(U = HGG

G

.2.11

2

.U

Vậy đầu ra tổng cộng khi cả 2 tín hiệu vào R, U tác động là:

C = C )(U = C )(R = ( HGG

GG

..1 21

2.1

).R + HGG

G

..1 21

2

.U

* Nhận xét : Từ C )(U = HGG

G

..1 21

2

.U

Nếu G 21.G .H 1 thì C )(U HG .

1

1.U

Tác dụng của nhiễu U vào hệ thống bị giảm đáng kể khi hàm truyền của mạch hở

tăng . Vì thế với gia lượng G 1 lớn có thể cho một đầu ra chính xác ( Đầu ra rất

không nhạy cảm với nhiễu) .

Ví dụ 2 : Hệ có nhiều đầu vào, nhiều đầu ra

Tmà C 1 , C 2 = ?

Hình 2.29

+ Trước hết bỏ qua C 2 , hệ thống chỉ còn một đầu ra C 1

Đầu tiên bỏ qua R 2 = 0 :

Page 48: Bài giảng kỹ thuật điều khiển tự động

C1G1

R1 +-

G2G3.G4-

G2.G3.G4

++R1

G1C1

C12

G2

R2 +-

(-G1).G3.G4

G2

-+R2

G4C12

G1G3 -

-G1 G4C2

G2R1 +

-

G3

G1.G2-+R1

G3

C21

+

R2

- G4

Cho R2 = 0

Hình 2.30

C 11 = 4321

1

.G.G.GG1G

.R 1

Bỏ qua R 1 = 0, hệ thống còn R 2 và C 12 .

Hình 2.31

C12 = 24321

431 .R.G.G.GG1

.G.GG

Vậy đầu ra C1 do R1 và R2 tác động là: C1 = C11 + C12 = 4321

1

.G.G.GG1G

.R 1 +

+ 24321

431 .R.G.G.GG1

.G.GG

= 4321

243111

.G.G.GG1.R.G.GG.RG

* Bỏ qua C1 để tìm C2 ta có:

Page 49: Bài giảng kỹ thuật điều khiển tự động

C21

G3

R1 +-

G1.G2.(-G4)

G3

C22G4

R2 +-

G1.G2-

G1.G2.G3

++R2

G4C22

+

H1

G3G4+G1-+R

H2

C-G2

G2- C

H2

G3

R +-

G4+G1 G3

H1

+

CG4+G1

-+R

H2

G3

G2.G3

1 + G2.G3.H1

Hình 2.32

C21 = 14321

421 .R.G.G.GG1

.G.GG

Cho R1 = 0:

Hình 2.33

C22 = 4321

24

.G.G.GG1.RG

Vậy đầu ra C2 do R1, R2 tác động là:

C2 = C21 + C22 = 14321

421 .R.G.G.GG1

.G.GG

+ 4321

24

.G.G.GG1.RG

= 4321

142124

.G.G.GG1.R.G.GG.RG

Ví dụ 3: Rút gọn sơ đồ khối về dạng chính tắc

Page 50: Bài giảng kỹ thuật điều khiển tự động

Hình 2.34

Hàm truyền của hệ thống:

2241132

3241

232413132132

1323241

.H).GG(G.H.GG1.G).GG(G

].H.G).GG(G).G.H.GG).[(1.H.GG(1).H.GG.(1.G).GG(G

RC

G

* Nguyên tắc rút gọn sơ đồ khối phức tạp về dạng sơ đồ chính tắc

- Tổ hợp các khối nối tiếp theo chuyển đổi 1

- Tổ hợp các khối song song theo chuyển đổi 2

- Triệt tiêu các mạch phản hồi phụ theo chuyển đổi 7

- Di chuyển điểm tụ sang trái và điểm tán sang phải của mạch chính theo các

chuyển đổi 4 và 5.

- Làm lại từ bước 1 đến 4 cho đến khi nhận được dạng chính tắc với 1 tín hiệu vào

riêng biệt.

- Làm lại từ bước 1 đến bước 5 đối với mỗi tín hiệu vào.

2.3. Graph tín hiệu và qui tắc Mason

2.3.1. Graph tín hiệu

Các hệ thống điều khiển còn được mô tả bằng mô hình toán là Graph tín hiệu.

Graph tín hiệu thể hiện bằng đồ thị sự truyền tín hiệu trong hệ thống, nhưng dễ dàng

hơn các dạng mô hình toán khác.

Xét phương trình đơn giản:

Xi = Aij. Xj

Các biến Xi, Xj : là hàm thời gian, hàm biến phức hoặc hằng số, hoặc là hằng số.

Aij là một toán tử ánh xạ Xj vào trong Xi nên Aij gọi là hàm truyền ( hàm truyền

đạt).

Khi Xi, Xj các hàm của biến Laplace S ( biến phức).

Mỗi biến số trong Graph được

Page 51: Bài giảng kỹ thuật điều khiển tự động

NótNót Nh nh

Xj XiAij

Ain XiX2

X1

Xn

Ai2

Ai1

A21

Xn-1X2X1 Xn

An(n-1)

X1 Xn

A21.A21...An(n-1)=

Mỗi biến số trong Graph được kí hiệu bằng một nút mỗi hàm chuyển được ký hiệu

bằng một nhánh, các nhánh đều có hướng ký hiệu bằng mũi tên diễn tả dòng tín

hiệu.

Hình 2.35

* Quy tắc hội tụ ( cộng vào):

Tổng các tín hiệu đi vào một nút bằng giá trị các nút đó.

Tổng quát:

Xi =

n

1jjij .XA

Hình 2.36

*Quy tắc phân kỳ ( chuyển ra): Giá trị của một nút có thể chuyển ra từng nhánh rời

khỏi nút đó.

Nếu ta có: Xi = Aik ; i = 1,2,..., n.

Thì Graph như hình vẽ:

AjkXk X2

X1

Xn

A2k

A1k

Xn

Ank

Hình 2.37

* Quy tắc nhân: Nhiều nhánh nối tiếp nhau có thể thay bằng một nhánh có hàm

chuyển bằng tích các hàm chuyển của các nhánh đó.

Xn = A21. A32. A43... An(n-1) .X1

Page 52: Bài giảng kỹ thuật điều khiển tự động

A43

X4X1 X2 X3

A21A33

A32

A23

A23

A32A21

X3X2X1=

X1 X2 X3

A21

A32

A23 1

X4

X3=X4

Hình 2.38

* Các thành phần trong Graph tín hiệu:

Cho một Graph tín hiệu như hình vẽ sau

Hình 2.39

- Một tuyến: Là một trình tự nối tiếp, đơn hướng của các nhánh, trong đó

không có nút nào bị xuyên qua quá một lần.

X1 đến X2 đến X3 đến X4

X2 đến X3 và trở về X2

X1 đến X2 đến X4.

- Nút vào: Là một nút chỉ có các nhánh đi khỏi nó ( X1).

- Nút ra: là một nút chỉ có các nhánh đi tới nó ( X4)

Có thể thêm một nút giả với hàm chuyển bằng 1 để thoả mãn định nghĩa này.

Hình 2.40

- Tuyến thuận: là tuyến đi từ nút vào đến nút ra ( bằng bất cứ đường nào)

X1 đến X2 đến X3 đến X4; X1 đến X2 đến X4

- Tuyến phản hồi: là tuyến xuất phát và kết thúc tại cùng một nút.

X2 đến X3 đến X2

- Tuyến đơn: Là tuyến phản hồi chỉ có một nhánh.

- Hai tuyến ( hoặc hai vòng kín) gọi là không chạm nhau nếu chúng không có

nút chung.

- Hàm truyền của tuyến hoặc của vòng kín bằng tích hàm truyền của các

nhánh nằm trong tuyến hoặc vòng kín đó.

Tuyến thuận X1 đến X2 đến X3 đến X4 có gia lượng A21. A32. A43

Tuyến phản hồi: X2 đến X3 đến X2 có gia lượng A32. A23

Các ví dụ:

Ví dụ 1:

Dựng Graph tín hiệu cho hệ thống được mô tả bởi phương trình vi phân sau:

Page 53: Bài giảng kỹ thuật điều khiển tự động

x2

x1

x3x3

dt

2

2d

-1 dtd

1

x1 A32

A23A21

A31

A33

x4A43

A42

x1

x2

x3

x4

A21

A23

A31

A32

A42

A43

A33

<=>

x2

x3

G1

G2 G3

G4 G5

G7

G6

-H1

-H2

u y11

x3 = 11

22

2

xdtdx

dtxd

Từ phương trình ta thấy có 3 biến số x1, x2, x3 nên cần có 3 nút ( không kể nút giả).

Các toán tử trong phương trình là dtd

và 2

2

dtd

Viết lại phương trình trên:

x3 = 12

2

xdtd

dtd

)()( 12 xx

Sơ đồ Graph tín hiệu:

Hình 2.41

Ví dụ 2: Dựng Graph tín hiệu cho nhóm phương trình xét đồng thời sau:

x2 = A21. x1 + A23. x3

x3 = A31. x1 + A32. x2 + A33.x3

x4 = A42. x2 + A43. x3

Nhận xét: Phương trình trên có 4 biến số

x1, x2, x3, x4 ta có sơ đồ

Graph tín hiệu sau

Hình 2.42

2.3.2. Quy tắc Mason

Từ sơ đồ Graph tín hiệu có thể rút gọn sơ đồ và tìm hàm truyền đạt của cả hệ thống.

Để tìm hiểu về quy tắc Mason ta có ví dụ minh họa sau:

Hình 2.43

Page 54: Bài giảng kỹ thuật điều khiển tự động

Bước 1: Xác định tất cả những tuyến thẳng Pk có thể có của hệ thống. Đó là những

đường nối liền nhau không chứa đường phản hồi đi từ điểm nút nguồn u(t) tới điểm

nút đích y(t) và Pk có giá trị bằng tích các giá trị các đường nối có trong Pk.

Hệ trên có 3 tuyến thẳng:

P1 = G1. 1. G2. G7

P2 = G1. 1. G6. G4. G5

P3 = G1. G2. G3. G4. G5

Bước 2: Xác định tất cả những vòng lặp Lk có thể có của hệ thống. Đó là những

đường nối liền nhau tạo thành một vòng kín. Hệ trên có 4 vòng lặp:

L1 = -1. G4. H1

L2 = -1. G2. G3. G4. G5. H2

L3 = -1. G6. G4. G5. H2

L4 = - 1. G2. G7. H2

Bước 3: Tính

....L.LL.LLL1Δnm,l,

nmlji,

jik

k (2.3.2.1)

Trong đó: Li, Lj là những cặp hai vòng lặp không trùng nhau ( không có chung một

nhánh nào)

Ll, Lm, Ln là bộ 3 vòng lặp không trùng nhau,...

Hệ trên chỉ có 2 vòng lặp L1, L2 là không trùng nhau ( không có đoạn nào giống

nhau).

....L.LL.LLL1nm,l,

nmlji,

jik

k Δ = 1 – ( L1 + L2 + L3 + L4) + L1. L4 =

= 1 + G4. H1 + G2. G3. G4. G5. H2 + G6. G4. G5. H2 + G2. G7. H2

Bước 4: Xác định k từ bằng cách trong công thức (2.3.2.1) ta bỏ đi tất cả những

vòng lặp có đoạn nối chung với Pk .

Tức là:

1= 1 – L1 = 1 + G4. H1 ( tất cả các vòng lặp đều không

có đoạn nối chung với P1)

2 = 1 ( tất cả các vòng lặp đều có đoạn nối chung với P2 ( có G1)

3 = 1 ( Vòng lặp có đoạn chung với P3 )

Bước 5: Xác định hàm truyền đạt G(s) theo công thức Mason:

G(s) = ).Δ(PΔ1

kkk

Vậy G(s) =Δ

1. ( P1. 1 + P2. 2 + P3. 3) =

Page 55: Bài giảng kỹ thuật điều khiển tự động

-u

G2y

G3G1-

H2

H1

1u G3G2G1

-H2

H1

-1

y<=>

h1 h2

A1 A2q

u(t)

y(t)r1 r2

p1 p2

= H .G .G H .G .G .G H .G .G .G .G H .G 1 G .G .G .G .G G .G .G 1. .G)HG.(1G .G 1. .G

27225462543214

54321546114721

Ví dụ 1: Cho hệ thống có sơ đồ khối như sau, sơ đồ Graph tín hiệu tương đương như

hình vẽ

Hình 2.44

Hệ chỉ có một tuyến thẳng đó là:

P1 = G1. G2. G3

Hệ có 3 vòng lặp từng đôi một có đoạn nối chung:

L1 = G1. G2. H1

L2 = -G2. G3. H2

L3 = -G1. G2. G3

Vậy, ....L.LL.LLL1nm,l,

nmlji,

jik

k Δ = 1 – ( L1 + L2 + L3) =

= 1 - G1. G2. H1 +G2. G3. H2 + G1. G2. G3

Do tất cả các vòng lặp cũng đều có tuyến thẳng P1 nên 1= 1

Hàm truyền của hệ thống là:

G(s) = ).(P1

kkk Δ

Δ =

Δ

1. P1. 1 =

321232121

321

G .G .G H .G .G H .G .G - 1

G .G .G

Ví dụ 2:

Xét một hệ thống gồm 2 bình chứa chất lỏng như sau

Hình 2.45

Page 56: Bài giảng kỹ thuật điều khiển tự động

A1s1 1

r1

1A2s

r2

1u(t) y(t)h2 p2qp1h1

1A1s r1

1 1A2s r2

1

-1 -1 -1

u(t) y(t)

Chất lỏng được bơm vào bình thứ nhất với lưu lượng u(t). Nếu chất lỏng trong bình

thứ nhất có độ cao h1, áp suất p1, hệ số chuyển đổi áp suất, lưu lượng r1, hệ số áp

suất, độ cao g. lưu lượng chảy sang bình thứ hai là q và h2, p2, r2 là độ cao, áp suất,

hệ số chuyển đổi áp suất, lưu lượng của chất lỏng trong bình thứ 2. Theo các định

luật vật lý, giữa những thông số kỹ thuật đó có quan hệ:

A1. dtdh1 = u(t) – q

q = .r1

1(p1 – p2)

A2. dtdh2 = q – y(t)

y(t) = .r1

2p2 ( áp suất tại đầu ra được xem như bằng 0)

p1 = .h1

p2 = .h2

Trong đó y(t) là lưu lượng chất lỏng chảy ra khỏi bình thứ 2.

Từ những hiểu biết lý thuyết ban đầu đó của hệ thống ta có sơ đồ khối và sơ đểu

Graph mô tả tín hiệu mô tả hệ thống.

Hình 2.46

Từ sơ đồ trên ta thấy hệ chỉ có một tuyến thẳng:

P1 = 22121

2

.s.A.A.rr

Hệ có 3 vòng lặp:

L1 = - .s.Ar 11

L2 = - .s.Ar 21

L3 = - .s.Ar 22

Trong đó có 2 vòng lặp L1 và L2 không có nhánh nào chung. Nên

Page 57: Bài giảng kỹ thuật điều khiển tự động

HÖ thèngKu(t) y(t)K

....L.LL.LLL1nm,l,

nmlji,

jik

k Δ

= 1 – ( L1 + L2 + L3) + L1.L3 = 1 + ( .s.Ar 11

+ .s.Ar 21

+ .s.Ar 22

) + .s.Ar 11

. .s.Ar 22

= 22121

2212112

2112

.s.A.A.rr.Ar.Ar.Ar.s.A.r.Ar 2)..( s

Vì cả 3 vòng lặp trên đều có nhánh nối chung với P1 nên

11

Vậy hàm truyền đạt:

G(s) = Δ.ΔP 11 = 2

2121

2

.s.A.A.rr

. 2)..( s2212112

2112

22121

.Ar.Ar.Ar.s.A.r.Ar .s.A.A.rr

=

= 2)..(

s2212112

2112

2

.Ar.Ar.Ar.s.A.r.Ar

2.4. Các hệ thống lấy mẫu dữ liệu

Như đã biết, hệ thống liên tục là hệ có các biến số vào và ra được truyền đi và biến

đổi liên tục theo thời gian, có thể quan sát vào bất cứ thời điểm nào. Nhưng trong

điều khiển còn có nhiều hệ thống mà các biến số chỉ được đưa vào và xử lý gián

đoạn, nó cho đáp ứng tại các thời điểm gián đoạn đó là các hệ thống rời rạc mà các

tín hiệu truyền đi không liên tục.

Có các dạng hệ thống gián đoạn:

- Các hệ thống lấy mẫu gián đoạn từ các hệ liên tục, biến đổi tín hiệu liên tục

thành gián đoạn gọi là lượng tử hoá

- Các hệ thống làm việc theo chu kỳ

- Các hệ thống có cấu trúcc chu kỳ

Hệ rời rạc, gián đoạn có những ưu điểm:

- Làm việc ít tốn năng lượng, có tính kinh tế

- Có thể điều khiển nhiều kênh đồng thời, chống nhiễu tốt

- Truyền và giữ tin được lâu

- Về lý thuyết không cần phép tính tích phân và vi phân nên đơn giản hơn

- Có nhiều tính chất giống như hệ liên tục

- Mô hình toán là các phương trình lặp ( phục hồi lại)

* Mô hình toán của hệ thống rời rạc

Xét hệ xung lấy mẫu gián đoạn:

Hình 2.47

Page 58: Bài giảng kỹ thuật điều khiển tự động

0

y(kT)

tT 2T 3T 4T 5T 5T4T3T2TT

1 2 3 4 554321k

y(k)

0

f)Chuçi rêi r¹c

0

u(k)

k

u(1)

u(2)u(3)

u(4)u(5) y(1)

y(2)y(3)

y(4)y(5)

e)Chuçi rêi r¹c

t

u(kT)

0

TÝn hiÖu vµo

b) c)

TÝn hiÖu ra

Đóng và mở bộ ngắt K theo chu kỳ để mạch của nó không liên tục được nữa; ta sẽ

được các xung gián đoạn liên tiếp nhau tạo thành một chuỗi tín hiệu xung. Mỗi

xung kéo dài một thời gian t . Giả sử thao tác bộ ngắt K sao cho t càng nhỏ ( t 0)

với một chu kỳ lấy mẫu cố định T thì các xung càng thu hẹp lại và ta chọn tỷ lệ thời

gian sao cho chu kỳ lấy mẫu T = 1, tức là

u(kT) = u(k)

y(kT) = y(k)

k = 0, 1, 2, 3,... là các số nguyên

Phương trình lặp đại số có dạng sau:

any(k+n) + an-1y(k + n -1) +... + a1y(k + 1) + a0 y(k) = bm u( k+m) + bm-1u(k + m -1) +

... + b1 u(k + 1) + b0 u(k)

Trong phương trình trên không có vi phân, cũng không có tích phân gọi là phương

trình lặp lại để diễn tả hệ rời rạc ( lấy mẫu) tương đương với phương trình vi phân

của hệ liên tục.

k: là biến độc lập với các giá trị 0, 1, 2, 3,...

u(k): là một chuỗi rời rạc mô tả tín hiệu vào

y(k): là một chuỗi rời rạc khác mô tả tín hiệu ra.

Hình 2.48

* Toán tử gián đoạn:

Hệ thống gián đoạn cũng quy định một vài toán tử với hàm cần tìm.

- Toán tử cộng thêm 1:

E (k) = k + 1

Page 59: Bài giảng kỹ thuật điều khiển tự động

f(k+1)

f(k)

k k+1

f(k)

k

f(k)

0

E[f(k)] = f( k+ 1)

E

f(k) f(k+1)

E[f(k)] = f(k+1)

k+mk

Em n

E

k+m+n

Tính chất của toán tử E:

Tính lặp lại: En(k) = k + n

Tính nghịch đảo: E-n(k) = k – n

Tính gộp: Em. En = Em+n

E[Cf(k)] = C.f(k+1) = C. E[f(k)] ; C là hằng số

E[f1(k) + f2(k)] = f1( k+1) + f2(k + 1) = E[f1(k)] + E[f2(k)]

E[C1.f1(k) + C2.f2(k) + ... + Cn. fn(k)] =

n

1iii

n

1iii (k)].E[fC1)(k.fC

Hàm truyền đạt:

Phương trình lặp: any(k+n) + an-1y(k + n -1) +... + a1y(k + 1) + a0 y(k) =

= bm u( k+m) + bm-1u(k + m -1) + ... + b1 u(k + 1) + b0 u(k) an.En[y(k)] + an-1.En-1[ y(k)] +... + a1. E[y(k)] + a0 y(k) = bm. Em[u(k)] +

+ bm-1. Em-1[u(k)] + ... + b1. E[u(k)] + b0. u(k)

Ta có : D(E).y(k) = N(E) u(k)

Trong đó: D(E) = an.En + an-1.En-1 +... + a1. E + a0

N(E) = bm. Em + bm-1. Em-1 + ... + b1. E + b0

Hàm truyền của hệ thống:

H(E) = D(E)N(E)

= 0

1n1n

nn

01m

1mm

m

a...EaEab...Eb.Eb

*Toán tử sai phân

[f(k)] = f(k+1) – f(k)

Hình 2.49

Các tính chất:

1. [Cf(k)] = Cf(k+1) – C f(k) = C f(k)

2. [f1(k) + f2(k)] = [ f1(k+1) + f2(k+1)] – [ f1(k) + f2(k)] = f1(k) - f2(k)

Page 60: Bài giảng kỹ thuật điều khiển tự động

0

f(t)

tT 2T 3T 4T 5T

t

y(kT)

0

f(T) f(2T)f(3T) f(5T)

0

y(kT)

t5T4T3T2TT

f(0)

f(kT)f(t)

y(kT)

3. [C1f1(k) + C2f2(k) + ... + Cnfn(k)] =

n

1iii

n

1iii

n

1iii (k)f.C (k).fC1)(k.fC

4. [f(k)] = f(k+1) – f(k) = E f(k) – f(k) = ( E – 1)f(k) ; = E – 1

5. [f(k)] = f(k+1) – f(k)

6. 2[f(k)] = [ f(k)] = f(k+1) - f(k)

7. n[f(k)] = [ n-1f(k)] = n-1f(k+1) - n-1f(k)

n[f(k)] = (E-1)n [f(k)] = [ En -

n

0r

rn

rrn

rrn

r

1nnrnrn

r2n1n

r)nf(kC1)(...r)nf(kC1)(....1)nnf(kn)f(k ...[f(k)]C1)(

...[f(k)]E1!n

[f(k)]E...].f(k)E.C1)(....E2!

1)n(n.E

1!n

Trong đó: r)!r!.(nn!

Crn

8. mn[f(k)] = m. n[f(k)] = n. m[f(k)]

Còn dùng toán tử sai phân ngược: f(k) = f(k) – f( k- 1); = 1 – E-1

* Biến đổi Z:

Trong các hệ tuyến tính liên tục ta đã dùng biến đổi Laplace; các hệ này có tính

nhân quả ( tích phân một phía từ 0 đến ); Với định nghĩa biến đổi Laplace của

hàm f(t) là:

L {f(t)} =

0

).( dtstetf

Giữa biến đổi Laplace của hệ tuyến tính liên tục và biến đổi Z của hệ tuyến tính rời

rạc có mối liên quan chặt chẽ.

Phép nhân 2 tín hiệu có thể thực hiện được bằng một sự biến điệu (modulation).

Các xung lấy mẫu gián đoạn từ một tín hiệu liên tục f(t) có thể xem như kết quả của

một sự biến điệu của một chuỗi rời rạc Y(kT) theo biên độ của tín hiệu liên tục và

có cùng chu kỳ với chu kỳ lấy mẫu gián đoạn.

Page 61: Bài giảng kỹ thuật điều khiển tự động

y(k)

1 2 3 4 5k

0

1d(k) d(k-1) d(k-2)d(k-3)d(k-4) d(k-5)

Hình 2.50

Ta có : f(kT) = f(t). Y(kT)

Chuỗi rời rạc Y(kT) có thể là chuỗi Kronecker hoặc chuỗi Dirac.

Chuỗi Kronecker nhân quả ( 1 phía) là một chuỗi xung có biên độ bằng 1, tác động

tại các giá trị bằng 0 hoặc nguyên dương của k ( k 0):

Y(kT) =

0j

j)Td(k , với T = 1 ta có chuỗi như hình vẽ sau:

Hình 2.51

Y(k) =

0j

j)d(k Trong đó: d( k-j) =

j knÕu; 0

j k nÕu; 1 với j là số nguyên, j 0

Ta có các xung lấy mẫu gián đoạn của f(t):

f(kT) = f(t). Y(kT) – f(t)

0

st

0

skT- dtf(t).ef(kT).e

Đặt esT = Z với T = 1 nên Z = es

Vậy biến đổi Z của chuỗi f(k). Y(k):

Z[f(k).Y(k)] = F(Z) =

0k

k-f(k).Z Với k = 0,1, 2, 3,...

Biến đổi Z là một thuật toán qua đó một chuỗi đưa vào f(k) sẽ cho ra một chuỗi vô

tận f(k).Z-k.

Tức là, nếu f(k) = [ f(0), f(1), f(2), ..., f(k),...]

Z[f(k)] = f(0), f(1).Z-1, f(2). Z-2,....

Biến đổi Z của một chuỗi f(k) chỉ tồn tại nếu chuỗi biến đổi Z đó tuyệt đối hội tụ:

[Z] > Rc : Chuỗi hội tụ

[Z] < Rc : Chuỗi phân kỳ. Rc là bán kính của vòng tròn hội tụ

( Tâm của vòng tròn là gốc của mặt phẳng phức. Các điểm ở ngoài vòng tròn diễn tả

tính hội tụ của chuỗi F(k), các điểm trong vòng tròn diễn tả tính không hội tụ, còn

các điểm nằm trên đường tròn là điểm đặc biệt phải xét riêng.

2.5. Hàm truyền đạt của hệ thống rời rạc

a) Đáp ứng xung của hệ rời rạc

Page 62: Bài giảng kỹ thuật điều khiển tự động

0

d(k-k0)

k

k0

§ iÒu kiÖn ®Çu b»ng 0 k0

k

h(k,k0)

0 k

HÖ thèng

Cũng như ở hệ liên tục, đáp ứng xung của hệ rời rạc, vô hướng ( 1 biến) là đáp ứng

của hệ đó với xung Dirac ( Kronecker). Hệ lúc đầu ở trạng thái dừng, điều kiện đầu

bằng 0 x(0) = 0; tín hiệu xung Dirac áp lên hệ vào thời điểm k0T và đáp ứng được

xét ở thời điểm kT ( k > k0). Đáp ứng xung là một chuỗi [ h(kT, k0T)]

Giả sử T = 1:

Hình 2.52

Vì vậy với một hệ rời rạc, vô hướng , nhân quả, tuyến tính, hệ số cố định ta có:

Tín hiệu vào là xung d( k- j ) thì tín hiệu đầu ra là đáp ứng xung h ( k- j).

Tín hiệu vào là chuỗi u(k) =

0j

j)d(k (j). u thì tín hiệu ra là chuỗi

y(k) =

0j

j) h(ku(j).

Do đó:

y(k) =

0j

j) h(ku(j). với i, j = 0, 1, 2, 3 ,...

y(k) = u(k). h(k)

Nếu u(k) = d(k) là tín hiệu xung đơn vị ( Dirac hoặc Kronecker) thì đầu ra đáp ứng

xung là h(k).

“Như vậy đáp ứng của một hệ rời rạc, vô hướng , nhân quả, tuyến tính, bất biến là

tích chập của tín hiệu vào u(k) với đáp ứng xung h(k) của hệ đó”.

b) Hàm truyền của hệ rời rạc

y(k) = u(k). h(k)

Ta có biến đổi Z là: Z[y(k)] = Z[h(k)]. Z[u(k)]

Y(Z) = H(Z). U(Z)

H(Z) là hàm truyền của hệ rời rạc, đó là biến đổi Z của đáp ứng xung h(k) của hệ.

H(Z) = U(Z)Y(Z)

2.6. Ứng dụng MatLab

Nhập mô hình của hệ thống điều khiển trong MatLab:

G(S) = o1

1n

1n

n

o1

1m

1m

m

m

aS.a...S.aS

bsb...S.bSb

=

Page 63: Bài giảng kỹ thuật điều khiển tự động

>> num = [ bm bm-1 . . . b1 b0 ]

>> den = [ 1 an-1 . . . a1 a0 ]

>> sys = tf (num, den)

Kết quả: Tranfer function

Hoặc:

>> S = tf(’s’)

>> G(s) =

Mô hình điểm không - điểm cực:

>> [z, p, k] = residue (num, den)

>> z = zero (sys)

>> [p,z] = pzmap (sys) ( Hiển thị đồ thị cực - không)

>> p = pole (sys)

Tìm nghiệm mẫu số của hàm truyền đạt:

>> c = [ 1 an-1 . . . a1 a0 ]

>> p = roots (c)

Đồ thị đáp ứng của hệ thống điều khiển:

>> impulse (num, den,t)

>> Step (num, den, t)

>> Lsim (num,den,u, t)

Chuyển từ hàm truyền đạt sang phương trình trạng thái:

>> [A, B, C, D] = tf2ss (num, den)

Và ngược lại:

>> [num, den] = ss2tf ( A,B, C, D)

Chuyển sang mô hình hệ thống gián đoạn:

>> sysd = c2d (sys , Ts)

>> sysc = d2c (sysd)

Đáp ứng của hệ thống gián đoạn:

>> dimpulse (num, den)

>> Dstep(num, den)

>> dlsim(num, den)

Chương 3

Page 64: Bài giảng kỹ thuật điều khiển tự động

PHƯƠNG TRÌNH TRẠNG THÁI* Đặt vấn đề:

- Các hệ thống tuyến tính liên tục được mô tả bởi hệ n phương trình vi phân

cấp một mô tả n trạng thái của hệ thống mô hình toán hệ thống viết dưới dạng ma

trận.

x (t) = A. x(t) + B. u(t) ; xo = x(o) (3-1)

và y(t) = C. x(t) + D. u(t) (3-2)

Ở đây: x n, u r, y P tương ứng là các vectơ trạng thái, các đầu

vào, các đầu ra.

Ma trận hệ số Ann mô tả các mối liên hệ bên trong hệ thống. Các ma trận

Bnr , CPn , DPr , đặc trưng cho mối liên hệ với bên ngoài của hệ thống. Nếu không

có đường dẫn trực tiếp giữa các đầu vào với đầu ra thì DPr là ma trận zero.

* Mô hình không gian trạng thái của hệ thống điều khiển gián đoạn (tuyến

tính) là các phương trình sai phân.

x(k+1) = Ad . x(k) + Bd.u(k) , x(o) = xo (3-3)

y(k) = Cd x(k) + Ddu(k) (3-4)

3.1- Các mô hình không gian trạng thái.

Mô hình không gian trạng thái của hệ thống động lực học liên tục đều có thể

diễn tả hệ thống trong lĩnh vực thời gian bằng các phương trình vi phân hoặc hàm

truyền dưới bốn dạng (form) sau:

- Dạng điều khiển (không gian pha). (Controller canonical form).

- Dạng quan sát (không gian quan sát). (observer canonical form).

- Dạng modal (không gian modal). (Modal canonical form).

- Dạng Jordan (không gian Jordan).

3.2- Mô hình không gian trạng thái và các phương trình vi phân.

Hệ thống động lực học cấp n được mô tả bằng phương trình vi phân cấp n.

n

n

dt

)t(yd + an-1 1n

1n

dt

)t(yd

+... + a1 dt

)t(dy + aoy(t) =

= bn n

n

dt

)t(ud + bn-1 1n

1n

dt

)t(ud

+... + b1 dt

)t(du+ bou(t) (3-5)

Ta giả thiết các điều kiện đầu của hệ thống

y(o-) , dt

ody )(

, ... , 1n

1n

dt

)o(yd

đồng thời bằng không, ta tiến hành biến đổi phương

trình vi phân cấp n thành hệ n phương trình vi phân cấp 1.

Page 65: Bài giảng kỹ thuật điều khiển tự động

+ Xét phương trình vi phân cấp n sau:

n

n

dt

)t(yd + an-1 1n

1n

dt

)t(yd

+ ...+ a1dt

)t(dy + aoy(t) = u(t) (3-6)

Đổi biến theo: x1(t) = y(t)

x2(t) = dt

)t(dy

x3(t) = 2

2

dt

)t(yd (3-7)

. . . . . . . .

xn(t) = 1n

1n

dt

)t(yd

Tiến hành lấy đạo hàm hai vế các phương trình (3-7).

dt

)t(dx1 = x 1 = dt

)t(dy = x2(t)

dt

)t(dx 2 = x 2 = 2

2

dt

)t(yd = x3(t) (3-8)

. . . . . . . .

)t(d

)t(dx n = x n = n

n

dt

)t(yd = - ao(y(t) - a1

dt

)t(dy - ... - an-1 1n

1n

dt

)t(yd

+ u(t)

= - aox1(t) - a1x2(t) - ... - an-1 xn(t) + u(t)

Vậy không gian trạng thái (3-8) viết dưới dạng ma trận

x 1 0 1 0 0 x1(t) 0

x 2 0 0 1 0 x2(t) 0

x 3

= 0 + u(t)

x n-1 0 0 0 1 xn-1(t) 0

x n -ao -a1 -an-1 xn(t) 1

(3-9)

Đầu ra được viết theo (3-7).

y(t) = [1 0 0 ... ... 0] [x1(t) x2(t) ... xn(t)]T (3-10)

(3-9) và (3-10) được gọi là dạng chính tắc của không gian pha.

+ Đối với hệ thống được mô tả bởi phương trình (3-5) ta có:

y(t) = [(bo - aobn) (b1-a1bn) ... ... (bn-1 - an-1)]

[x1(t) x2(t) ... xn(t)]T + bn u(t) (3-11)

Page 66: Bài giảng kỹ thuật điều khiển tự động

Với: bn = 0 ta có:

y(t) = [bo b1 ... ... bn-1] [x1(t) x2(t) ... ... xn(t)]T (3-12)

3.3- Xác định các biến trạng thái từ hàm truyền.

Phần này giới thiệu các kỹ thuật hình thành mô hình không gian trạng thái từ

hàm truyền của hệ thống thường được áp dụng trong thực tế. Đó là kỹ thuật chương

trình trực tiếp và kỹ thuật chương trình song song. Để đơn giản ta xét với hệ thống

một đầu vào một đầu ra.

3.3.1- Mô phỏng HT theo dạng điều khiển chính tắc.

Kỹ thuật này được sử dụng thuận lợi khi hàm truyền của thiết bị dạng đa

thức không phân tích ra thừa số được.

)s(U

)s(Y =

o1

1n

1n

n

o1

1n

1n

n

n

aSa...SaS

bSb...SbSb

(3-13)

Ở đây ta sử dụng biến phụ V(s).

(Tính điều khiển được của hệ thống là với một tác động vào liệu có chuyển

được trạng thái của hệ từ thời điểm đầu to đến thời điểm cuối trong khoảng thời

gian hữu hạn không?).

)s(V

)s(Y = bnSn + bn-1Sn-1+ ... + b1S + bo (3-14a)

)(

)(

sU

sV =

o1

1n

1n

n aSa...SaS

1

(3-14b)

Sơ đồ khối mô tả hệ thống có sử dụng biến phụ V(s).

Hình 3.1

Phương trình (3-14a) được viết lại như sau:

Y(s) = bnSnV(s) + bn-1Sn-1V(s) + ... + b1S.V(s) + boV(s) (3-15)

Điều này chỉ ra rằng y(t) là sự chồng chất của V(t) và các đạo hàm của nó vì

ta có thể trình bày (3-14a, b) dưới dạng phương trình vi phân khi điều kiện đầu đồng

nhất bằng không bằng cách thay:

S dt

d ; Si i

i

dt

d ; V(s) v(t),

Xây dựng mô hình không gian trạng thái của hệ thống từ các hàm truyền bằng cách

sử dụng sơ đồ mô phỏng rất thuận tiện. Trong các trường hợp hệ thống

V(s)/U(s) Y(s)/V(s)U(s) V(s) Y(s)

Page 67: Bài giảng kỹ thuật điều khiển tự động

liên tục sơ đồ mô phỏng các máy tính tương tự giải các phương trình vi phân

mô tả các hệ thống động lực học sử dụng các bộ tích phân, bộ cộng bộ trừ và nhân

được thực hiện như là bộ khuếch đại thuật toán. Số khối tích phân phụ thuộc vào

cấp của phương trình vi phân.

+ Sơ đồ mô phỏng (3-14a, b) như sau:

Sử dụng kỹ thuật chương trình trực tiếp: đặt n khối tích phân nối tiếp với

đầu vào tương ứng là V(n)(t) , v(n-1)(t) , ..., V(1)(t) , v(t).

Áp dụng (3-15) xác định y(t) bằng cách nhân đầu vào v i(t) với các hệ số bi

và cộng bằng bộ cộng .

+ Từ (3-14b) ta có:

v(n)(t) = u(t) - an-1 v(n-1)(t) - ... - a1v(1)(t) - aov(t) (3-16)

Các phép trừ mô phỏng bằng mối liên hệ ngược trên sơ đồ ta có:

Hình 3-2: Sơ đồ mô phỏng kỹ thuật chương trình trực tiếp

(dạng điều khiển chính tắc).

Theo hình 3-2 ta có mô hình không gian trạng thái của hệ thống dạng điều

khiển chính tắc.

0 1 0 0 0

0 0 1 0 0

x (t) = x(t) + 0 u(t)

1

-ao -a1 -a2 -an-1 1

(3-17)

Và y(t) = [(bo-aobn) (b1 - a1bn) ... (bn-1 - an-1 bn)] x(t) + u(t) . bn (3-18)

1/S 1/S 1/S bo U(t) n

V(n-1)

xn 2 x2 1 x1 y(t)

b1

b2

bn

-an-1

V(n)

-a1

-ao

v(1) v(0)

Page 68: Bài giảng kỹ thuật điều khiển tự động

** (Để chuyển từ hàm truyền sang dạng không gian trạng thái trong Matlab

sử dụng hàm tf2ss).

Ví dụ: Cho hàm truyền.

G(s) = S811S1213185.97S463S996.0S

1908065.90S576S331.0S65.123456

234

a) Vẽ sơ đồ mô phỏng hệ thống (dạng điều khiển).

b) Dựng mô hình không gian trạng thái của hệ thống.

3.3.2- Mô phỏng HT theo dạng quan sát chính tắc.

Cùng với dạng điều khiển, dạng quan sát chính tắc là quan hệ quan trọng đối

với lý thuyết điều khiển hiện đại.

* Quan sát được của một hệ thống là với các toạ độ đo được ở biến ra y(t)

của hệ thống liệu ta có thể khôi phục được các vectơ trạng thái x (t) trong thời gian

hữu hạn không?

Không gian trạng thái của hệ thống và dạng quan sát chính tắc của nó được

xác định có cấu trúc rất đơn giản.

Xuất phát từ hàm truyền (3-13) ta có:

Y(s)(Sn + an-1Sn-1 + ...+ a1S + ao) = U(s) (bnSn + bn-1Sn-1 + ...+ b1S + bo)

(3-18)

Y(s) = - nS

1 (an-1.Sn-1 +...+ a1S + ao) Y(s) + nS

1 . U(s) (bnSn +

+ bn-1Sn-1 + ...+ b1S + bo) (3-19)

Khai triển ra ta có:

Y(s) = - an-1 . S

1 Y(s) - an-2 2S

1 Y(s) - ... - a1 1nS

1 Y(s) - ao nS

1 Y(s) +

+ bnU(s) + bn-1S

1 U(s) + ...+ b1 1nS

1 U(s) + bo nS

1U(s)

Mối quan hệ (3-20) được thể hiện trên sơ đồ mô phỏng qua n tầng tích phân.

Nhãn của các tín hiệu đặt quá tầng tích phân ví dụ một khối S

1 chỉ một tầng tích

phân. Tín hiệu an-2 y(t) và bn-2U(t) chỉ vượt qua hai tầng tích phân, aoy(t) và bo u(t)

vượt qua n tầng tích phân.

+

bo

- ao

+

b1

- a1

+

bn-1

- an-1

1/S +

b1

- a1

1/S 1/S 1/S +

bn

U(s)

y(s)1 n-1x2 xn-1 n xn

Page 69: Bài giảng kỹ thuật điều khiển tự động

Hình 3-3: Sơ đồ khối mô phỏng dạng quan sát chính tắc.

+ Các biến trạng thái như là đầu ra của các khối tích phân quan hệ đầu ra với

các biến trạng thái theo sơ đồ trên ta có:

Y(t) = xn(t) + bnu(t) (3-21)

x 1(t) = - aoy(t) + bou(t) = - aoxn(t) + (bo - aobn) u(t)

x 2(t) = - a1y(t) + b1u(t) + x1 = x1(t) - a1xn(t) + (b1 - a1bn) u(t)

x 3(t) = - a2y(t) + b2u(t) + x2 = x2(t) - a2xn(t) + (b2 - a2bn) u(t)

x n(t) = - a1-1y(t) + bn-1u(t) + xn-1 =

= xn-1(t) - an-1xn(t) + (bn-1 - an-1bn) u(t) (3-22)

Từ (3-21) và (3-22) ta dễ dàng viết dưới dạng ma trận của dạng quan sát

chính tắc:

0 0 -ao bo - aobn

1 0 -a1 b1 - a1bn

x (t) = 0 1 -a2 x(t) + b2 - a2bn u(t)

0 1 ….

0 0 0 -an-2 ….

0 0 0 1 -an-1 bn-1 - an-1bn

(3-23)

và y(t) = [ 0 0 ... ... 0 1] x(t) + bn u(t) (3-24)

Ví dụ: G(s) = S11,8S12131S8,94S463S996,0S

19080S6,90S576S331,0S65,123456

234

Hãy viét dạng quan sát chính tắc dưới dạng ma trận.

3.3.3- Kỹ thuật mô phỏng chương trình song song.

Đối với kỹ thuật này ta phân ra làm hai trường hợp: đa thức mẫu có nghiệm

thực riêng biệt và có nghiệm lặp.

a) Đa thức mẫu có hàm truyền, có nghiệm riêng biệt.

Page 70: Bài giảng kỹ thuật điều khiển tự động

Dạng không gian trạng thái này thuận tiện cho các ứng dụng kiểu này bắt

nguồn từ việc khai triển hàm truyền thành tổng các phân thức. Một cách tổng quát

m < n thì:

)s(U

)s(Y =

)pS)...(pS)(pS(

)s(P

n21

m

= 1

1

pS

r

+ 2

2

pS

r

+ ... + n

n

pS

r

+ k (3-25)

Ở đây p1 , p2 , ..., pn các nghiệm riêng biệt (các cực) của đa thức mẫu của hàm

truyền.

- Sơ đồ khối mô phỏng dạng này như sau:

(Dạng modal chính tắc)

Hình 3-4: Sơ đồ khối mô phỏng kỹ thuật lập trình song song.

Mô hình không gian trạng thái theo sơ đồ khối này như sau:

-p1 0 0 1

0 -p2 0 1

x (t) = 0 1 x(t) + u(t) (3-26)

0

0 0 0 0 -pn 1

y(t) = [ k1 k2 ... ... kn ] x(t) (3-27)

b) Đa thức mẫu có nghiệm lặp.

Khi hàm truyền có cực thực lặp. Giả thiết cực p1 lặp r lần.

y(t)

+ 1/S r22 2 x2

- p2

+ 1/S r11 x1

- p1

+ 1/S rnn xn

- pn

u(t)

Page 71: Bài giảng kỹ thuật điều khiển tự động

)s(U

)s(Y =

)pS)...(pS()pS(

)s(N

n1r

r

1

Dạng khai triển của nó là:

)s(U

)s(Y =

1

11

pS

k

+ 2

1

12

)pS(

k

+...+ r

1

r1

)pS(

k

+ 1r

1r

pS

k

+...+ n

n

pS

k

Hình 3-5: Sơ đồ mô phỏng dạng Jordan chính tắc.

3.3.4- Các mô hình của hệ thống gián đoạn.

(tương tự trong sơ đồ chỉ thay khối S

1 Z-1 ).

3.4. Xác định hàm đáp ứng từ phương trình trạng thái

3.4.1. Hệ thống điều khiển liên tục

Phương trình trạng thái của hệ theo (3.1) và (3.2)

Nghiệm của (3.1):

x(t) = eAt. x(0) + (3-

28)

y(t) = C. eAt. x(0) + C. + D. u(t) (3-

29)

+ 1/S kr+1r+1 xr+1

- p1

u(t)

+ 1/S kn

- pn

+ 1/S

k1r+1

r xr

- p1

+ 1/S

- p1

2 x2 + 1/S

- p1

1 k1r y(t)x1

k1r+1

Page 72: Bài giảng kỹ thuật điều khiển tự động

y(t) = yqđ(t) + yôđ(t)

Đáp ứng quá độ: Là đáp ứng của hệ thống không phụ thuộc vào kích thích u(t) mà

do các điều kiện đầu của hệ ( trạng thái ban đầu). Gọi là dao động tự do của hệ

thống.

Đáp ứng ổn định: Đáp ứng phụ thuộc vào u(t). Đặc trưng cho quá trình cưỡng bức

của u(t) làm cho hệ thống ổn định.

3.4.2. Hệ thống điều khiển gián đoạn

Phương trình trạng thái được biểu diễn ở (3-3) và (3-4)

Nghiệm của phương trình (3-3):

x(k) = Ak-k0. x(k0) + (3-

30)

y(k) = C. Ak-k0. x(k0) + C. + D.u(k) (3-

31)

3.4.3. Các phương pháp tìm đáp ứng

Tìm ma trận trạng thái: eAt

- Toán tử Laplace:

Áp dụng công thức: eAt = l-1 [ (SI - A)-1]

- Phương pháp Sylvester:

Dựa vào trị riêng của ma trận A: Tìm trị riêng bằng cách tìm nghiệm của phương

trình sau det (I - A) = 0, giải phương trình được các nghiệm: n.

Ta có: eAt = tttn(t).An

Trong đó: Các hệ số tttn(t) xác định từ hệ phương trình sau

ttt n(t). e t

ttt n(t). e t

. . .

ttnt n(t). e t

Page 73: Bài giảng kỹ thuật điều khiển tự động

Chương 4

ỔN ĐỊNH CỦA HỆ THỐNG TUYẾN TÍNH

4.1- Khái niệm chung.

Các chương II và III đã trình bày mô tả toán học của hệ thống của hệ thống

điều khiển truyền động. Chương này sẽ sử dụng các tư liệu của các chương đã trình

bày trước đây để giải quyết nhiệm vụ đầu tiên khi phân tích hệ thống điều khiển tự

động là xác định tính ổn định của nó.

Thực ra việc nói một hệ thống ổn định là nói đến một số đại lượng nào đó

được điều khiển ổn định.

Một hệ thống thường biểu diễn bằng phương trình vi phân tổng quát:

n

n

dt

)t(yd + an-1 1n

1n

dt

)t(yd

+ ... + a1dt

)t(dy + aoy(t) =

= bm m

m

dt

)t(ud + bm-1 1m

1m

dt

)t(yd

+ ... + b1dt

)t(du + bou(t) (4-1)

Hoặc phương trình sai phân:

y(k+n) + an-1y(k+n-1) + ... + a1y(k+1) + aoy(k) =

= bmu(k+n) + bm-1u(k+m-1) + ...+ b1u(k+1) + bou(k) (4-2)

Sẽ bao gồm hai quá trình: Quá trình xác lập và quá trình quá độ.

Đặc trưng bằng nghiệm:

y(t) = yo(t) + yqđ(t) (4-3)

Hoặc y(k) = yo(k) + yqđ(k) (4-4)

Trong đó: - yo là nghiệm riêng của (4-1) hoặc (4-2) đặc trưng cho quá trình

xác lập.

- yqđ là nghiệm tổng quát của (4-1) hoặc (4-2) khi không có vế phải

đặc trưng cho quá trình quá độ.

Quá trình xác lập là một quá trình ổn định vấn đề chỉ còn xét quá trình quá

độ yqđ.

4.2- Khái niệm ổn định và các định nghĩa chính.

Đối với hệ thống tuyến tính, ổn định của hệ thống có mối liên hệ tới ma trận

A của hệ thống. Có thể nói đại khái rằng ổn định của các hệ thống này là tính chất

của ma trận hệ thống A. Đối với hệ thống liên tục hay gián đoạn khi không có đầu

vào (đầu vào bằng không).

Page 74: Bài giảng kỹ thuật điều khiển tự động

x (t) = A. x(t) ; x(to) = xo (4-5)

x(k+1) = A.x(k) ; x(ko) = xo (4-6)

Theo điều kiện biên nghiệm của (4-5) và (4-6):

x(t) = eA (t-to) xo ; x(k) = Ak-ko xo (4-7)

Để hệ thống ổn định đòi hỏi:

)t(x Const < (t)

)k(x Const < (k) (4-

8)

Ở đây: x = 21n

1i

2

ix

(4-7) đặc trưng cho đáp ứng quá độ của hệ thống ở thời kỳ quá độ khi có đầu

vào.

Các định nghĩa sau về ổn định của hệ thống đóng vai trò quan trọng nghiên

cứu ổn định của hệ thống tuyến tính.

Định nghĩa 1: Một hệ thống là ổn định nếu chuyển động của nó được giới

hạn, nói một cách khác nếu vectơ trạng thái bị giới hạn bởi hằng số.

Định nghĩa 2: Một hệ thống là xu hướng ổn định nếu x(t)0 khi t .

* Đối với hệ thống tuyến tính bất biến. Ổn định của nó quan hệ chặt chẽ với

các trị riêng của hệ thống.

4.3- Trị riêng và tính ổn định của hệ thống.

4.3.1- Trị riêng và vectơ riêng.

Xét phương trình vectơ:

y = A x (4-9)

Với x, y là các vectơ cột, còn A là ma trận vuông. Theo quan hệ này ta có

vectơ y cùng hướng với vectơ x. Nghĩa là quan hệ giữa x và y là quan hệ tuyến tính

với hệ số .

y = A . x = . x (4-10)

là một đại lượng vô hướng (hệ số tỷ lệ).

Đây chính là bài toán trị riêng (eigen values).

Các giá trị i để phương trình y = A.x có nghiệm xi 0.

i trị riêng.

xi vectơ riêng.

A.x = . x

hay (A - . I) . x = 0

Phương trình này có nghiệm không tầm thường khi:

Page 75: Bài giảng kỹ thuật điều khiển tự động

det (A - . I) = 0 (4-11)

(4-11) được gọi là phương trình đặc trưng.

Ví dụ: Cho: A = 31

43

Tìm trị riêng của A và các vectơ riêng ta có:

3 4 x1 x1

1 3 x2 = x2

det 3 4 - 1 0 = det 3- 4

1 3 0 1 1 3-

= (3 - )2 - 4 = 2 - 6 + 5 = 0

1 = 1 ; 2 = 5

Véc tơ riêng ứng với trị riêng 1 = 1.

x1 = - 2x2 Vậy x1 = 1 k1

x2 1 -1/2

4.3.2- Ổn định của hệ thống có các trị riêng phân biệt.

- Phương trình (4-5) của hệ thống cấp n có thể được viết dưới dạng các trị

riêng và vectơ riêng của hệ thống:

x(t) = C1 t1e v1 + C2

t2e v2 + ... + Cn tne vn (4-12)

Ở đây: Ci , i = 1, 2, ..., n ; các hằng số;

i , i = 1, 2, ..., n ; các trị riêng của A;

vi , i = 1, 2, ..., vn; các vectơ riêng của ma trận A.

- Theo (4-12) thấy rằng toàn bộ các trị riêng là số thực phân biệt i < 0

i khi đó x(t) 0 khi t và hệ thống có xu hướng ổn định. Nếu i 0 i hệ

thống ổn định. Chỉ cần có một giá trị i dương hệ thống không ổn định.

- Đối với trường hợp các trị riêng có giá trị phức.

Ci tj iie

. vi = Ci

tie .

tj ie . vi (4-13)

Nên nhớ rằng: ttj ie

= 1 nếu:

Page 76: Bài giảng kỹ thuật điều khiển tự động

Re {i} = i < 0 thì x(t) 0 khi t hệ thống có xu

hướng ổn định, nếu Re(i) = i > 0 với một vài i thì (x(t) hệ thống không ổn

định.

Re{i} 0 hệ thống ổn định.

Định lý 4.1: Hệ thống tuyến tính liên tục, tiền định có các trị riêng phân biệt là ở

trong vùng ổn định nếu Re {i} = i < 0 i . là ổn định nếu Re(i) = i 0 , i và

không ổn định nếu có một trị riêng i nào đó để Re(i) = i > 0.

+ Phân tích tương tự đối với hệ thống gián đoạn:

x(k+1) = Ax(k) ; x(ko) = xo (4-14)

Có nghiệm: x(k) = Ak.ko xn , với k - ko 0 (4-15)

Giới hạn: a 1; nếu a < 1 khi đó x(k) 0 khi k .

Vì hệ thống ở trong vùng ổn định, ngược lại nếu có một vài |i| > 1 hệ thống

không ổn định.

Định lý 4.2: Đối với hệ thống gián đoạn tiền định có các trị riêng phân biệt

là ở trong vùng ổn định nếu |i| < 1 , i .là ổn định nếu |i| 1, i và không ổn định

nếu có một vài i mà |j| > 1.

4.3.3- Ổn định của hệ thống có các trị riêng lặp.

* Các cực lặp nằm bên trái mặt phẳng phức (nửa mặt phẳng phức trái) là

vùng ổn định. Đa thức đặc trưng của hệ thống mới n1 cực lặp.

() = ( + a)n1 . 1() , a > 0 , n > n1 > 1

Hàm truyền của hệ thống trong lĩnh vực Laplace.

H(s) = 1n)aS(

1

. H1(s)

Sử dụng biến đổi ngược Laplace với S = -a.

L-1

1n

0i 1

1

n

in

)aS(

k

=

1n

0i

)!i1n(

k

1

in1

tn1-1-i . e-at

Đồng thời: )etim ati1n

t

1

0 , i = 0, 1, 2, ..., n1 - 1.

+ Một cách tương tự nếu các cực lặp là số liên hợp phức ở mặt phẳng trái của

mặt phẳng phức.

Nửa mặt phẳng vùng ổn định

Im(s)

Re(s) Vùng ổn định

Re(z)

Im(z)

1

1-1

-1

Page 77: Bài giảng kỹ thuật điều khiển tự động

Hình 4.1

Định lý 3:

Hệ thống tiền định tuyến tính có các trị riêng phân biệt hoặc lặp là thuộc

vùng ổn định, nếu toàn bộ các trị riêng của ma trận A ở nửa trái của mặt phẳng

phức. Không ổn định nếu có chỉ một trị riêng nằm trên nửa phải của mặt phức.

Các trị riêng trên trục ảo là ổn định. Ổn định của các trị riêng lặp trên trục ảo ở

giới hạn của ổn định.

Trong thực tế để đơn giản, người ta sử dụng các phương pháp gián tiếp để

đánh giá ổn định của hệ thống dựa trên các tiêu chuẩn ổn định.

Các tiêu chuẩn ổn định gồm hai loại:

1- Các tiêu chuẩn đại số tìm điều kiện ràng buộc giữa các hệ số của phương

trình đặc trưng để xét ổn định hệ thống tiêu chuẩn ổn định Routh - Hurwitz.

2- Tiêu chuẩn ổn định tần số thông qua đặc tính tần số của hệ thống để xét ổn

định. Tiêu chuẩn Mikhailôv và tiêu chuẩn Nyquyrtz.

* Khảo sát nghiệm của phương trình đặc trưng.

Hàm truyền của hệ kín dạng chính tắc.

G(s).H(s)1G(s)

U(S)Y(S)

(1)

)].[G(S).U(SG(s).H(s)1

1Y(S)

(2)

Y(s) - hàm đáp ứng.

Hình 4.2

G(s).U(s) - hàm kích thích.

)s(H).s(G1

1

- hàm của hệ.

* Hàm kích thích chỉ ảnh hưởng tới đáp ứng ổn định của hệ mà không ảnh hưởng

tới dạng của đáp ứng quá độ vì thế có thể cho G(s) . U(s) = 0.

Hay: Y(s) . (1 + G(s) . H(s)) = 0 (3)

1 + G(s) . H(s)) = 0 (4)

(4) phương trình đặc trưng của hệ kín. (sử dụng phương trình này đánh giá

ổn định của hệ).

Ta đã biết: G(s). H(s) - hàm truyền mạch hở của hệ đó là một tỷ số

giữa các đa thức của biến (S).

Gọi N(s) : đa thức tử số.

D(s) : đa thức mẫu số.

G(s)

H(s)

U(s) Y(s)

Page 78: Bài giảng kỹ thuật điều khiển tự động

Ta có: 0D(s)

N(s)D(s)D(S)N(S)

1G(S).H(S)1 (5)

D(s) + N(s) = 0 (6)

Phân tích phương trình (6) ra thừa số:

D(s) + N(s) = (S - r1) (S - r2) ... (S - rn) = 0

Trong đó: ri nghiệm của phương trình đặc trưng (i = 1, ..., n)

* Để hệ ổn định mọi nghiệm của phương trình đặc trưng đều có phần thực

âm.

Ví dụ: Một hệ chính tắc có các hàm truyền sau:

G(s) = )4S(S

3

; H(s) = 1

Xác định phương trình đặc trưng và đánh giá ổn định của hệ:

1 + G(s) . H(s) = 1 + )4S(S

3

=

)4S(S

3S4S2

= 0

Nghiệm của phương trình đặc trưng là -1 ; -3 nghiệm quá độ chứa các

số mũ có hệ số âm hệ ổn định.

4.4. Các tiêu chuẩn ổn định đại số Routh - Hurwith.

4.4.1- Điều kiện cần để hệ thống điều khiển tự động ổn định.

Trước khi xét các tiêu chuẩn ổn định ta cần tìm dấu hiệu để phán đoán tính

ổn định của hệ thống.

“Điều kiện cần để hệ thống điều khiển tự động tuyến tính ổn định là các hệ

số của phương trình đặc trưng đều dương”.

Từ phương trình (6): D(s) + N(s) = 0.

Ta có thể viết: ao.Sn + a1Sn-1 + ... + an-1 . S + an = 0

(phương trình đặc trưng viết dưới dạng khai triển).

Ta có thể kiểm chứng lại điều kiện trên, nếu giả sử hệ thống ổn định: Như

thế nghiệm của phương trình đặc trưng sẽ là:

S1 = - 1 ; S2 = -2 + j2 ; S3 = - 3 - j 3 ; ... ; Sn = -n

Trong đó: i > 0 ( i = 1, 2, ..., n)

Giả sử phương trình có n nghiệm ta có thể viết:

ao (S - S1) (S - S2) ( S - S3) ... (S - Sn) = 0

hay ao (S + 1) (S + 2 - j2) (S + 2 + j2) ... (S + n) = 0

ao (S + 1) [(S + 2)2 + 2

2 ] ... (S + n) = 0

Vì các số hạng đều là dương nên ta có thể khải triển thành:

a’oSn + a’1S(n-1) + ... + a’n-1S + a’n = 0

Page 79: Bài giảng kỹ thuật điều khiển tự động

Vì thế khi hệ thống ổn định bắt buộc các hệ số của phương trình đặc trưng

phải dương (điều kiện cần).

Ví dụ: 1) Hệ thống điều khiển có phương trình đặc trưng:

0,04.S3 + 0,4S2 + S + 50 = 0

Vì ai > 0 nên có thể ổn định.

2) S4 + 2S3 - 0,5 S2 + 3S + 20 = 0 không ổn định.

Vì không thoả mãn điều kiện ổn định cần thiết.

4.4.2.Tiêu chuẩn Routh: (không chứng minh).

* Điều kiện cần và đủ để hệ thống ổn định (tuyến tính) là tất cả các số hạng

trong cột thứ nhất cuả bảng Routh dương.

* Giả sử với phương trình đặc trưng bậc 5.

aoS5 + a1S4 + a2S3 + a3S2 + a4S + a5 = 0

Bảng Routh được lập như sau:

Error! Not a valid link.

Error! Not a valid link.

hai hàng đầu được dùng các hệ số của phương trình đặc trưng xếp

theo chiều mũi tên.

các hàng sau có các số hạng tính theo biểu thức:

bo = = ; b1 = =

b2 = = ; b3 = =

b4 = = ; b5 =

Nhận xét:

- Mỗi số hạng trong hàng thứ ba của bảng Routh là một thương số:

Page 80: Bài giảng kỹ thuật điều khiển tự động

+ Tử số: định thức cấp hai mang dấu âm với cột thứ nhất của nó cũng là cột

thứ nhất của hai hàng đứng sát trên hàng có số hạng đang tính. Còn cột thứ hai của

định thức chính là cột đứng sát bên phải số hạng đang tính của hai hàng trên.

+ Mẫu số: Trong tất cả số hạng của một hàng có chung mẫu số chính là số

hạng đứng ở cột thứ nhất và hàng sát ngay trên hàng đang tính.

Ví dụ: 1) Cho phương trình đặc trưng của hệ thống:

S4 + 2S3 + 8S2 + 4S + 3 = 0

Lập bảng Routh:

1 8 3

2 4 0

6 3 0

3 0

3

Hệ thống ổn định vì tất cả các số hạng trong cột thứ nhất đều dương.

Ví dụ 2: Cho phương trình đặc trưng của hệ thống:

S5 + S4 + 3 S3 + 4S2 + S + 2 = 0

Lập bảng Routh:

1 3 1

1 4 2

-1 -1

3 2

-3

1

2

Hệ thống không ổn định vì các số hạng trong cột thứ nhất không cùng dấu

đại số.

Ví dụ 3: Cho phương trình đặc trưng của hệ thống.

S3 + K.S2 + 2S + 3 = 0

Xác định K để hệ thống ổn định:

K > 0

Bảng Routh:

1 2

K 3

(2K-3)/k 2K - 3 > 0

33/2 < K

Page 81: Bài giảng kỹ thuật điều khiển tự động

4.4.3- Tiêu chuẩn ổn định Hurwitz.

Phát biểu: Điều kiện cần và đủ để cho hệ thống tuyến tính ổn định là

các định thức Hurwitz dương.

* Cách lập định thức Hurwitz:

Các hệ số của phương trình đặc trưng: ao , a1 , a2 , ..., an

0 = a0 ; 1 = a1 ; 2 = 2o

31

aa

aa ... tổng quát n có ncột , nhàng .

Đường chéo chính của n bắt đầu từ a1 đến an các số hạng trên cùng một cột

nằm trên đường chéo chính có chỉ số tăng dần, dưới đường chéo chính chỉ số giảm

dần. Các số hạng có chỉ số bé hơn 0 và cao hơn n đều ghi 0.

Ví dụ: Phương trình đặc trưng bậc 3.

ao S3 + a1S2 + a2S + a3 = 0

ao > 0 ; 1 = a1 > 0

2 = 2o

31

aa

aa = a1a2 - aoa3 > 0

3 =

31

2o

31

aa0

0aa

0aa

= 2 . a3 > 0

Nhận xét:

1- Tiêu chuẩn Routh có thể áp dụng xét cho hệ thống bất kỳ.

2- Tiêu chuẩn Hurwitz có thể ứng dụng cho các hệ thống có phương

trình đặc trưng bậc thấp.

3- Cả tiêu chuẩn Routh và Hurwitz đều dùng để xét ổn định cho cả hệ

thống hở và kín.

4.5. Ứng dụng MatLab

Kiểm tra ổn định của hệ thống điều khiển bằng phần mềm MatLab

- Theo tiêu chuẩn Routh:

Tính định thức cấp 2,3 , ... để xác định các hệ số trong bảng Routh

>> det ( [a0 a2]; [a1 a3 ])

- Theo tiêu chuẩn Hurwitz:

Tính các định thức Hurwitz

>> det ( [ a1 a3 a5]; [a0 a2 a4]; [0 a1 a3])

Page 82: Bài giảng kỹ thuật điều khiển tự động

Kết quả: 3

- Theo tiêu chuẩn Nyquist:

>> Nyquist (sys)

Hoặc

>> Nyquist (sys, )

Trong đó:

>> sys = tf( num, den)

Hoặc: >> sys = zpk ([z], [p], k)

Chương 5

Page 83: Bài giảng kỹ thuật điều khiển tự động

TÍNH ĐIỀU KHIỂN ĐƯỢC VÀ TÍNH QUAN SÁT

ĐƯỢC CỦA HỆ THỐNG ĐIỀU KHIỂN

Khái niệm về điều khiển được và quan sát được (controllability and

Observability) do R - Kalman đưa ra 1961.

* Điều khiển được của một hệ thống là với một tác động vào liệu có thể

chuyển được trạng thái của hệ từ thời điểm đầu to đến thời điểm cuối t1 trong

khoảng thời gian hữu hạn (t1 - to) hay không.

* Tính quan sát được của hệ thống là với các toạ độ đo được ở đầu ra của hệ

liệu ta có thể khôi phục được (Reconstrucbility) các vectơ trạng thái x trong một

khoảng thời gian hữu hạn hay không?

5.1- Tính điều khiển được của hệ thống tuyến tính liên tục.

Hệ thống tuyến tính mô tả bởi phương trình trạng thái cấp n.

x (t) = A x(t) + B u(t) (5-1)

Được gọi là điều khiển được hoàn toàn khi và chỉ khi ma trận sau đây có

hạng bằng n.

P = [B AB A2B ... An-1B] (5-2)

Rank (P) = n

Ví dụ: Cho hệ thống mô tả bởi sơ đồ sau:

Hình 5.1

Ta có: )s(U

)s(Y =

4SS2

202

Đặt: x1 = y

x 1 = x2

x 2 = - 2x1 - 0,5 x2 + 10 u.

Phương trình trạng thái tương ứng.

10 1/S 1/S Y(t)U(t)

0,5

0,2

+ 2 1

x2

x1

Page 84: Bài giảng kỹ thuật điều khiển tự động

2

1

x

x

=

5,02

10

2

1

x

x +

10

0 u

Ta có: B =

10

0 ; AB =

5,02

10

10

0 =

5

10

P =

510

100

det (P) = - 100 0 Rank (P) = 2

Hệ cấp hai trên điều khiển được hoàn toàn.

5.2- Tính quan sát được của hệ thống liên tục.

Hệ tuyến tính liên tục được mô tả bởi hệ phương trình:

x (t) = A x(t) + Bu(t)

y(t) = C x(t) (5-3)

Được gọi là quan sát được hoàn toàn khi và chỉ khi ma trận sau có hạng bằng

n.

L = {C’ A’C’ (A’)2C’ ... (A’)n-1C’ } (5-4)

Rank (L) = n

Ví dụ: Cho hệ có phương trình trạng thái:

)t(x

)t(x

2

1

=

23

10

)t(x

)t(x

2

1 +

3

1 u(t)

y = { 1 0 }

)t(x

)t(x

2

1

C’ =

0

1 ; A’ =

21

30

A’.C’ =

1

0

L =

10

01 ; det (L) = -1 0

Rank (L) = 2

Hệ thống quan sát được hoàn toàn.

5.3- Tính điều khiển được của hệ điều khiển gián đoạn.

Một hệ điều khiển gián đoạn gọi là điều khiển được nếu ta có thể tìm được

một vectơ điều khiển u(k) để chuyển hệ thống từ trạng thái ban đầu bất kỳ đến trạng

thái cuối bất kỳ trong một khoảng thời gian giới hạn.

Page 85: Bài giảng kỹ thuật điều khiển tự động

Vậy ta cần tìm điều kiện xác định để chuyển hệ thống từ trạng thái x(o) đến

trạng thái cuối x(n) đã cho.

Giả sử ta có phương trình trạng thái:

x(k+1) = Ad x(k) + Bd u(k)

y(k) = Cd x(k) (5-5)

Ta viết lại (5-5):

x(1) = Ad x(o) + Bd u(o)

x(2) = Ad x(1) + Bd u(1) = A2

d x(o) + AdBd u(o) + Bd u(1)

...............

x(n) = Adx(n-1)+Bdu(n-1) = An

d x(o)+A1n

d

Bdu(o) +...+ Bd(u(n-1)

hoặc là:

x(n) - A nd x(o) = [ A

1n

d

Bd A

2n

d

Bd ... Bd ]

)1n(u

)1(u

)o(u

(5-

6)

Vì: x(o) , x(n) và Ad là đã biết nên (5-6) chỉ tồn tại duy nhất nghiệm

u(k) khi hạng của ma trận sau là n.

M = [A1n

d

Bd A

2n

d

Bd ... Bd ]

Rank (M) = n

Ví dụ: Cho hệ thống cấp II sau:

)1k(x

)1k(x

2

1 =

951,00

488,01

)k(x

)k(x

2

1 +

00488,0

00123,0 u(k)

y(k) = [ 1 0 ]

)k(x

)k(x

2

1

Theo tiêu chuẩn Kalman:

Ad . Bd =

951,00

488,01

00488,0

00123,0 =

00464,0

00361,0

M =

00488,000464,0

00123,000361,0 det(M) 0

Rank(M) = 2

Hệ điều khiển được.

5.4- Tính quan sát được của hệ thống điều khiển gián đoạn.

Page 86: Bài giảng kỹ thuật điều khiển tự động

Hệ thống gọi là quan sát được nếu theo số liệu đo được ở đầu ra y(k) ta có

thể xác định được trạng thái x(k) của nó.

y(k) = Cd x(k)

y(o) = Cd x(o)

y(1) = Cd x(1) = CdAd x(o)

...........

y(n-1) = CdA1n

d

x(o)

Hay: N = [C’d A’d(n) C’d (A’d)(n-1)….C’d ] có hạng bằng n.

5.5. Ứng dụng MatLab

- Kiểm tra tính điều khiển được:

>> C0 = Ctrb (A,B)

Hoặc

>> C0 = Ctrb (sys)

Kết quả: Rank (C0) = k (hằng số)

k: là số trạng thái điều khiển được.

- Kiểm tra tính quan sát được:

>> Ob = Obsv (A,C)

Hoặc

>> Sys = ss (A,B,C,D)

>> Ob = obsv (Sys)

Kết quả: Rank (Ob) = k.

Page 87: Bài giảng kỹ thuật điều khiển tự động

Chương 6

THIẾT KẾ HỆ THỐNG ĐIỀU KHIỂN6.1. Mở đầu

Thiết kế hệ thống điều khiển bao gồm các bước như bài toán tổng hợp hệ thống

điều khiển, và tuân theo một số nguyên tắc thiết kế sau:

Nguyên tắc điều khiển tự động:

Các hệ thống điều khiển thường tuân theo 3 nguyên tắc điều khiển chủ yếu sau:

1) Nguyên tắc giữ ổn định

Tức là duy trì đầu ra cố định, theo nguyên tắc này nếu các tác động bên ngoài có

thể đo được, còn đặc tính đối tượng được xác định trước thì sử dụng phương pháp

bù tác

động bên ngoài, như hình vẽ

ở nguyên tắc này cần đo nhiễu và tính được

trị số của nó tác động vào thiết bị điều

chỉnh. Trong thiết bị điều chỉnh ngoài phần

tử chuyển đổi và cơ cấu chấp hành còn có các thiết bị đo G4 để tác động tới phần tử

chuyển đổi G1, tạo ra “lệnh” cho cơ cấu chấp hành G2.

Phương pháp thứ 2 của nguyên tắc này là điều khiển theo sai lệch (nguyên tắc phản

hồi) được sử dụng khi tác động bên ngoài không đo được và đặc tính đối tượng

cũng không xác định được. Đó là hệ thống phản hồi mà tín hiệu ra C được đưa về so

với tín hiệu vào chuẩn R để tạo

nên sai lệch E tác động đối với

phần tử điều khiển.

Phương pháp thứ 3 để giữ ổn

định đầu ra là hỗn hợp

hai phương pháp trên.

G1 G2 G3

G4

U

R

H×nh 6-1

H×nh 6-2

RG1 G2

H

U

G3

B

C+-

-+R

BG1

Hình 6-3

H

U

G2 G3C

G4

E

Page 88: Bài giảng kỹ thuật điều khiển tự động

V RTB§ Kc § T§ K

TB§ K1

TB§ K

2) Nguyên tắc điều khiển chương trình

Tức là nguyên tắc điều khiển để tín hiệu ra thay đổi theo một chương trình mong

muốn nào đó theo thời gian: C = C(t)

Tín hiệu điều khiển phụ thuộc quy luật thay đổi theo thời gian của đầu ra, ta có thể

xác lập được quan hệ đó. Rất nhiều hệ điều khiển theo nguyên tắc này, ví dụ thay

đổi nhiệt độ trong một lò nung, thay đổi cường độ ánh sáng trong phòng tuỳ theo

giờ giấc trong ngày, thay đổi tốc độ, bước tiến dao của một máy tiện khi chuyển từ

chế độ gia công thô sang gia công tinh...

3) Nguyên tắc thích nghi

Hình 6-4

- Khi cần điều khiển những đối tượng phức tạp hoặc nhiều đối tượng đồng

thời, mà phải đảm bảo cho một tín hiệu có giá trị cực trị, hoặc một chỉ tiêu

tối ưu nào đó....

- Hệ thống tự thích nghi bao gồm hai phần chủ yếu:

Đối tượng điều khiển

Thiết bị điều khiển

Hệ thống này là hệ thống nhiều vòng: mạch vòng cơ bản có đối tượng điều

khiển và thiết bị điều khiển cơ bản.

Mạch vòng: Hệ thống điều khiển thông thường.

Là nguyên tắc điều khiển để tạo ra tín hiệu ra (đại lượng ra) theo sự biến đổi của tín

hiệu vào (đại lượng vào).

6.2. Các khâu động học của hệ thống điều khiển

Phạm vi của môn học đề cập đến các khâu động học cơ bản thường sử dụng trong

ngành cơ khí.

a. Khâu khuếch đại (P)

Hình 6 -1

Page 89: Bài giảng kỹ thuật điều khiển tự động

Cơ cấu đòn bẩy ở hình 6-1 hoạt động như bộ khuếch đại với hệ số khuếch đại Kp.

Hoặc lực quán tính và gia tốc quan hệ là F = m.a; điện áp và dòng điện quan hệ là

U = R.I ... đều là các khâu khuếch đại, có thể gọi là các phần tử P.

b. Khâu quán tính (P- T1)

Mô hình tính toán của khâu quán tính (P- T1) có dạng:

T. + Xa = K.Xe (6.1)

Ví dụ xylanh thủy lực có pittong mang khối lượng m chuyển động với vận tốc v thì

phương trình cân bằng lực là:

m. = F - f.v , với f là hệ số ma sát nhớt (6.2)

Hình 6-2

a)Sơ đồ ví dụ b) Đặc tính c) Ký hiệu

c. Khâu tích phân (I)

Mô hình toán của khâu tích phân thể hiện là đầu ra bằng tích phân của đầu vào:

Xa = KI. (6-

3)

KI là hệ số khuếch đại của khâu tích phân.

Ví dụ 1: Hành trình của pittong - xy lanh tính theo lưu lượng vào là

S = . = KI. (6-

4)

Với A là diện tích của pittong và KI là hệ số khuếch đại của khâu tích phân.

Ví dụ 2: Bộ truyền vít me đai ốc bi có quan hệ như sau

Page 90: Bài giảng kỹ thuật điều khiển tự động

S = tx. (6-

5)

Nếu số vòng quay n không đổi thì S = tx.n.t

Hình 6-3

d. Khâu vi phân (D)

Mô hình toán của khâu vi phân thể hiện đầu ra tỷ lệ với vi phân đầu vào:

xa = KD. (6-6)

Ví dụ: quan hệ giữa dòng điện và điện áp qua tụ điện C thể hiện theo công thức là

Ic = C. = KD. (6-7)

KD = C là hệ số khuếch đại của khâu D

Ic: là tín hiệu ra

Uc: là tín hiệu vào

Hình 6-4

e. Khâu điều chỉnh PI

Page 91: Bài giảng kỹ thuật điều khiển tự động

(6-8)

Hình 6-5

f. Khâu điều chỉnh PD

(6-9)

Hình 6-6

g. Khâu điều chỉnh PID

(6-10)

Hình 6-7

Page 92: Bài giảng kỹ thuật điều khiển tự động

Chương 7

THIẾT KẾ HỆ THỐNG ĐIỀU KHIỂN

THỦY LỰC7.1. Các phần tử thủy lực cơ bản

7.1.1. Van điều khiển

a. Van trượt có mép điều khiển dương, trung gian và âm

Hình 7-1. Sơ đồ các loại mép điều khiển của van

a- Van có mép điều khiển dương (+x0)

b- Van có mép điều khiển trung gian (x0 = 0)

c- Van có mép điều khiển âm (- x0)

d- Đặc tính lý thuyết Q - x(Q-I)

Khi x0 > 0 gọi là van trượt có mép điều khiển dương, con trượt di chuyển trong

vùng x0 lưu lượng vẫn bằng 0 và vùng này có thể gọi là vùng “chết”.

Khi x0 = 0 gọi là van trượt có mép điều khiển trung gian.

Khi x0 < 0 gọi là van trượt có mép điều khiển âm, tại vị trí trung gian ( con trượt

chưa di chuyển) đã hình thành tiết diện chảy và lưu lượng dầu đã qua van.

b. Van solenoid

Cấu tạo của van solenoid gồm các bộ phận chính (hình 7-2).

Con trượt của van sẽ hoạt động ở hai hoặc ba vị trí tùy theo tác động của nam

châm. Có thể gọi van solenoid là loại van điều khiển có cấp.

Page 93: Bài giảng kỹ thuật điều khiển tự động

Hình 7-2: Cấu tạo và ký hiệu của van solenoid

a- Cấu tạo và ký hiệu của van solenoid điều khiển trực tiếp (1,5 - vít hiệu chỉnh vị

trí của lõi sắt từ; 2,4 - lò xo; 3,6 - cuộn dây của nam châm điện)

b- Cấu tạo và ký hiệu của van solenoid điều khiển gián tiếp ( 1- van sơ cấp; 2- van

thứ cấp).

c. Van tỷ lệ

Cấu tạo của van tỷ lệ như hình 7-3 gồm: Thân van, con trượt, nam châm điện.

Để thay đổi tiết diện chảy của van, tức là thay đổi hành trình của con trượt bằng

cách thay đổi dòng điện điều khiển nam châm. Có thể điều khiển con trượt ở vị trí

bất kỳ trong phạm vi điều chỉnh nên van tỷ lệ có thể gọi là loại van điều khiển vô

cấp.

Page 94: Bài giảng kỹ thuật điều khiển tự động

Hình 7-3

d. Van servo

* Nguyên lý làm việc:

Hình 7-4: Sơ đồ nguyên lý của bộ phận điều khiển con trượt của van servo

Bộ phận điều khiển con trượt của van servo thể hiện trên hình 7-4. Hai nam châm

vĩnh cửu đặt đối xứng tạo thành khung hình chữ nhật, phần ứng trên đó có hai cuộn

daayvaf cánh chặn dầu ngàm với phần ứng, tạo nên một kết cấu vững. Định vị phần

ứng và cánh chặn dầu là một ống đàn hồi, ống này có tác dụng phục hồi cụm phần

ứng và cánh chặn về vị trí trung gian khi dòng điện vào hai cuộn dây cân bằng. Nối

với cánh chặn dầu là càng đàn hồi, càng này nối trực tiếp với con trượt. Khi dòng

điện vào hai cuộn dây lệch nhau thì phần ứng bị hút lệch, do sự đối xứng của các

cực nam châm mà phần ứng sẽ quay. Khi phần ứng quay, ống đàn hồi sẽ biến dạng

đàn hồi, khe hở từ cánh chặn đến miệng phun dầu cũng sẽ thay đổi ( phía này hở ra

và phía kia hẹp lại). Điều đó dẫn đến áp suất ở hai phía con trượt lệch nhau và con

trượt được dịch chuyển. Như vậy:

- Khi dòng điện điều khiển ở hai cuộn dây bằng nhau hoặc bằng 0 thì phần ứng,

cánh, càng và con trượt ở vị trí trung gian.

- Khi dòng i1 i2 thì phần ứng sẽ quay theo một chiều nào đó tùy thuộc vào dòng

điện của cuộn dây nào lớn hơn. Giả sử phần ứng quay ngược chiều kim đồng hồ,

cánh chặn dầu cũng quay theo làm tiết diện chảy của miệng phun dầu thay đổi, khe

hở miệng phun phía trái rộng ra và khe hở ở miệng phun phía phải hẹp lại. Áp suất

dầu vào hai buồng con trượt không cân bằng, tạo lực dọc trục, đẩy con trượt di

chuyển về bên trái hình thành tiết diện chảy qua van( tạo đường dẫn dầu qua van)

(hình 7-5a).

Đồng thời khi con trượt sang trái thì càng sẽ cong theo chiều di chuyển của con

trượt làm cho cánh chặn dầu cũng di chuyển theo. Lúc này khe hở ở miệng phun trái

hẹp lại và khe hở ở miệng phun phải rộng lên, cho đến khi khe hở của hai miệng

Page 95: Bài giảng kỹ thuật điều khiển tự động

phun bằng nhau và áp suất hai phía bằng nhau thì con trượt ở vị trí cân bằng (hình

7-5b).

Tương tự như trên nếu phần ứng quay theo chiều ngược lại thì con trượt sẽ di

chuyển theo chiều ngược lại.

Hình 7-5: Sơ đồ nguyên lý hoạt động của van servo

* Ký hiệu của van servo:

Hình 7-6

7.2. Tính toán, thiết kế các mạch điều khiển thủy lực

Ví dụ: Hệ thủy lực thực hiện chuyển động tịnh tiến

Áp suất và lưu lượng dầu cung cấp cho xylanh thủy lực là hai đại lượng quan trọng

đảm bảo cho hệ truyền được tải trọng, vận tốc hoặc vị trí cần thiết.

Phân tích sơ đồ hệ thống ở hình 7-7.

Page 96: Bài giảng kỹ thuật điều khiển tự động

Hình 7- 7: Sơ đồ của hệ thủy lực chuyển động tịnh tiến

Lực quán tính: Fa = m.a (7.1)

Fa = .a ( Theo hệ Anh)

Lực ma sát: Fc = m.g.f (7.2)

Fc = WL.f ( Theo hệ Anh)

Lực ma sát trong xylanh thường bằng 10% lực tổng cộng, nghĩa là: Fs = 0,10. F

Lực do tải trọng ngoài FE

Lực tổng cộng tác dụng lên pittong là: F = + Fc + Fs +

FE (daN) (7.3)

Theo hệ Anh F = + Fc + Fs

+ FE (lbf)

Trong đó: m là khối lượng chuyển động, kg

WL: Trọng lực (lbf)

a: gia tốc chuyển động, cm/s2 (in/s2)

Fc: Lực ma sát của bộ phận chuyển động, daN (lbf)

FE : ngoại lực, daN (lbf)

Fs : Lực ma sát trong pittong- xylanh, daN (lbf)

Phương trình cân bằng pittong:

P1.A1 = P2.A2 + F (7.4)

Đối với xy lanh không đối xứng thì lưu lượng ra và vào không bằng nhau:

Page 97: Bài giảng kỹ thuật điều khiển tự động

Q1 = Q2.R với R = (7.5)

Độ sụt áp qua van:

Ps - P1 = ( P2 -PT). R2 (7.6)

Trong đó: P1 và P2 áp suất ở 2 buồng của xy lanh

Ps là áp suất cung cấp cho van

PT áp suất dầu ra khỏi van

A1, A2 diện tích hai phía của pittong.

Từ công thức (7.5) và (7.6) ta tìm được P1, P2 như sau:

P1 = (7.7)

P2 = PT + (7.8)

Lưu lượng dầu vào xy lanh để pittong chuyển động với vân tốc cực đại là:

QL = vmax.A1 (cm3/s) (7.9)

Hoặc QL = .A1 (l/p)

Nếu tính theo hệ Anh: QL = vmax.A1 (in3/s) (7.10)

QL = .A1 (usgpm)

Lưu lượng dầu qua van ứng với độ sụt áp 35 bar ( 500PSI) là:

QR = QL. (l/b) (7.11)

Theo hệ Anh: QR = QL. (usgpm)

Với cách phân tích như trên khi pittong làm việc theo chiều ngược lại:

P1 = PT + (Ps - P2). R2 (7.12)

P2 =

(7.13)

và QR cũng xác định tương tự như công thức (7.11). Lưu lượng lớn nhất của một

trong hai trường hợp trên sẽ được dùng để chọn van.

Bài toán trên cũng ứng dụng cho xy lanh có kết cấu đối xứng (A1 = A2) và tải trọng

âm.

Page 98: Bài giảng kỹ thuật điều khiển tự động

II. Phần 2: Phần thảo luận, bài tập

II1. Yêu cầu đối với sinh viên

- Mục tiêu: Giúp sinh viên nắm rõ lý thuyết và biết xây dựng mô hình toán của hệ

thống điều khiển trong ngành cơ khí và từ đó thiết kế một hệ thống điều khiển tự

động có ứng dụng trong thực tế.

- Nhiệm vụ của sinh viên: Đọc kỹ lý thuyết ở nhà

Tìm hiểu những kiến thức xung quanh kiến thức đã học

Tham gia thảo luận đầy đủ

- Hình thức thảo luận : Các sinh viên được chia làm các nhóm thảo luận

Trình bày ý kiến theo từng nhóm

Thảo luận trên lớp có trợ giúp của giảng viên.

- Đánh giá : Chấm điểm cho từng sinh viên theo thang điểm 4.

II.2. Các nội dung cụ thể

Page 99: Bài giảng kỹ thuật điều khiển tự động

Chương 1: Các vấn đề cơ bản của hệ thống điều khiển tự động

Mục tiêu: Nắm rõ lý thuyết, xây dựng được mô hình toán của các hệ thống điều

khiển tự động.

Bài tập:

Xây dựng mô hình toán của các hệ thống.

Chương 2: Hàm truyền đạt

Mục tiêu: Biết cách xây dựng hàm truyền đạt của một hệ thống

Các nội dung của bài toán phân tích hệ thống khi biết hàm truyền đạt của

hệ thống.

Bài tập:

- Cho hệ thống được mô tả bởi phương trình vi phân, sơ đồ khối, sơ đồ graph tín

hiệu ... Hãy xác định hàm truyền đạt của hệ thống đó.

Chương 3: Phương trình trạng thái

Mục tiêu: Biết cách xây dựng phương trình trạng thái của một hệ thống bất kỳ.

Phân tích hệ thống khi biết phương trình trạng thái.

Bài tập: Biết hệ thống được mô tả bởi phương trình vi phân, hàm truyền đạt, sơ đồ

khối... Hãy xác định phương trình trạng thái của hệ thống đó và phân tích hệ thống.

Chương 4 : Ổn định của hệ thống điều khiển

Mục tiêu: Phân tích được hệ thống điều khiển về tính chất ổn định của hệ thống đó

bằng các tiêu chuẩn kiểm tra ổn định.

Bài tập: Biết các mô hình toán của hệ thống điều khiển

Áp dụng các tiêu chuẩn kiểm tra ổn định

Chương 5: Tính điều khiển được và tính quan sát được của hệ thống

điều khiển

Page 100: Bài giảng kỹ thuật điều khiển tự động

Mục tiêu: Phân tích được hệ thống điều khiển về tính chất quan sát được và điều

khiển được của hệ thống đó bằng các tiêu chuẩn.

Bài tập: Biết các mô hình toán của hệ thống điều khiển

Áp dụng các tiêu chuẩn để kiểm tra.

Chương 6: Thiết kế hệ thống điều khiển tự động thủy lực

Mục tiêu: Thiết kế hệ thống điều khiển thủy lực có ứng dụng trong ngành cơ khí...

Bài tập: Sinh viên thiết kế một hệ thống điều khiển tự động.

Page 101: Bài giảng kỹ thuật điều khiển tự động

TÀI LIỆU THAM KHẢO[1]. Modern control systems Engineering, Z.Gajic and M.Lelic, Prentice Hall, Engle

wood Cliffs, NewJersey, 1996.

[2]. Digital control systems, Kuo.B, Sounder college Pulishing, Newyork, 1992.

[3]. Modern control engineering, Katsuhiko Ogata, International edition.

[4]. Cơ sở điều khiển hệ thống tự động, tập I,II,III, Đặng Vũ Giao, NXB ĐH &

THCN, Hà Nội, 1978

[5]. Lý thuyết điều khiển tuyến tính, Nguyễn Doãn Phước, NXB Khoa học và kỹ

thuật, 2007.

[6]. Hệ thống điều khiển tự động thủy lực, Trần Xuân Tùy, NXB Khoa học và Kỹ

thuật, Hà Nội, 2002.

Page 102: Bài giảng kỹ thuật điều khiển tự động