Bai tap Giai tich - Tap 1 - Khoa Toán - Tin · PDF fileMôc lôc RjQ&KL LŒi nªi fi˙u iii C‚c ký hiÖu vµ kh‚i niÖm vii Bµi t¸p 1 SŁ thøc 3 1.1 C¸n tr“n fióng vµ

Embed Size (px)

Citation preview

  • o

    n Ch

    i

    Mc lc

    Li ni u iii

    Cc k hiu v khi nim vii

    Bi tp

    1 S thc 3

    1.1 Cn trn ng v cn di ng ca tp cc s thc. Linphn s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.2 Mt s bt ng thc s cp . . . . . . . . . . . . . . . . . . 11

    2 Dy s thc 19

    2.1 Dy n iu . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.2 Gii hn. Tnh cht ca dy hi t . . . . . . . . . . . . . . 30

    2.3 nh l Toeplitz, nh l Stolz v ng dng . . . . . . . . . 37

    2.4 im gii hn. Gii hn trn v gii hn di . . . . . . . . 42

    2.5 Cc bi ton hn hp . . . . . . . . . . . . . . . . . . . . . . 48

    3 Chui s thc 63

    3.1 Tng ca chui . . . . . . . . . . . . . . . . . . . . . . . . . 67

    3.2 Chui dng . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    3.3 Du hiu tch phn . . . . . . . . . . . . . . . . . . . . . . . 90

    3.4 Hi t tuyt i. nh l Leibniz . . . . . . . . . . . . . . . 93

    3.5 Tiu chun Dirichlet v tiu chun Abel . . . . . . . . . . . . 99

    i

  • o

    n Ch

    i

    ii Mc lc

    3.6 Tch Cauchy ca cc chui v hn . . . . . . . . . . . . . . 102

    3.7 Sp xp li chui. Chui kp . . . . . . . . . . . . . . . . . . 104

    3.8 Tch v hn . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Li gii

    1 S thc 121

    1.1 Cn trn ng v cn di ng ca tp cc s thc. Linphn s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    1.2 Mt s bt ng thc s cp . . . . . . . . . . . . . . . . . . 131

    2 Dy s thc 145

    2.1 Dy n iu . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    2.2 Gii hn. Tnh cht ca dy hi t . . . . . . . . . . . . . . 156

    2.3 nh l Toeplitz, nh l Stolz v ng dng . . . . . . . . . . 173

    2.4 im gii hn. Gii hn trn v gii hn di . . . . . . . . 181

    2.5 Cc bi ton hn hp . . . . . . . . . . . . . . . . . . . . . . 199

    3 Chui s thc 231

    3.1 Tng ca chui . . . . . . . . . . . . . . . . . . . . . . . . . 231

    3.2 Chui dng . . . . . . . . . . . . . . . . . . . . . . . . . . 253

    3.3 Du hiu tch phn . . . . . . . . . . . . . . . . . . . . . . . 285

    3.4 Hi t tuyt i. nh l Leibniz . . . . . . . . . . . . . . . 291

    3.5 Tiu chun Dirichlet v tiu chun Abel . . . . . . . . . . . . 304

    3.6 Tch Cauchy ca cc chui v hn . . . . . . . . . . . . . . 313

    3.7 Sp xp li chui. Chui kp . . . . . . . . . . . . . . . . . . 321

    3.8 Tch v hn . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

    Ti liu tham kho 354

  • o

    n Ch

    i

    Li ni u

    Bn ang c trong tay tp I ca mt trong nhng sch bi tp gii tch(theo chng ti) hay nht th gii .

    Trc y, hu ht nhng ngi lm ton ca Vit Nam thng s dnghai cun sch ni ting sau (bng ting Nga v c dch ra ting Vit):

    1. Bi tp gii tch ton hc ca Demidovich (B. P. Demidovich;1969, Sbornik Zadach i Uprazhnenii po Matematicheskomu Analizu,Izdatelp1stvo Nauka, Moskva)

    v

    2. Gii tch ton hc, cc v d v bi tp ca Ljaszko, Bojachuk,Gai, Golovach (I. I. Lyashko, A. K. Boyachuk, YA. G. Gai, G. P.Golobach; 1975, Matematicheski Analiz v Primerakh i Zadachakh,Tom 1, 2, Izdatelp1stvo Vishaya Shkola).

    ging dy hoc hc gii tch.

    Cn ch rng, cun th nht ch c bi tp v p s. Cun th haicho li gii chi tit i vi phn ln bi tp ca cun th nht v mt sbi ton khc.

    Ln ny chng ti chn cun sch (bng ting Ba Lan v c dchra ting Anh):

    3. Bi tp gii tch. Tp I: S thc, Dy s v Chui s (W. J.Kaczkor, M. T. Nowak, Zadania z Analizy Matematycznej, Czesc Pier-wsza, Liczby Rzeczywiste, Ciagi i Szeregi Liczbowe, WydawnictwoUniversytetu Marii Curie - Sklodowskiej, Lublin, 1996),

    4. Bi tp gii tch. Tp II: Lin tc v Vi phn (W. J. Kaczkor, M.T. Nowak, Zadania z Analizy Matematycznej, Czesc Druga, Funkcje

    iii

  • o

    n Ch

    i

    iv Li ni u

    Jednej ZmiennejRachunek Rozniczowy, Wydawnictwo UniversytetuMarii Curie - Sklodowskiej, Lublin, 1998).

    bin dch nhm cung cp thm mt ti liu tt gip bn c hc v dygii tch. Khi bin dch, chng ti tham kho bn ting Anh:

    3*. W. J. Kaczkor, M. T. Nowak, Problems in Mathematical Analy-sis I, Real Numbers, Sequences and Series, AMS, 2000.

    4*. W. J. Kaczkor, M. T. Nowak, Problems in Mathematical Analy-sis II, Continuity and Differentiation, AMS, 2001.

    Sch ny c cc u im sau:

    Cc bi tp c xp xp t d cho ti kh v c nhiu bi tp hay.

    Li gii kh y v chi tit.

    Kt hp c nhng tng hay gia ton hc s cp v ton hchin i. Nhiu bi tp c ly t cc tp ch ni ting nh, Ameri-can Mathematical Monthly (ting Anh), Mathematics Today (tingNga), Delta (ting Balan). V th, sch ny c th dng lm ti liucho cc hc sinh ph thng cc lp chuyn cng nh cho cc sinhvin i hc ngnh ton.

    Cc kin thc c bn gii cc bi tp trong sch ny c th tm trong

    5. Nguyn Duy Tin, Bi Ging Gii Tch, Tp I, NXB i Hc QucGia H Ni, 2000.

    6. W. Rudin, Principles of Mathematical Analysis, McGraw -HilBook Company, New York, 1964.

    Tuy vy, trc mi chng chng ti trnh by tm tt l thuyt gipbn c nh li cc kin thc c bn cn thit khi gii bi tp trong chngtng ng.

    Tp I v II ca sch ch bn n hm s mt bin s (tr phn khnggian metric trong tp II). Kaczkor, Nowak chc s cn vit Bi Tp GiiTch cho hm nhiu bin v php tnh tch phn.

    Chng ti ang bin dch tp II, sp ti s xut bn.

  • o

    n Ch

    i

    Li ni u v

    Chng ti rt bit n :

    - Gio s Phm Xun Ym (Php) gi cho chng ti bn gc tingAnh tp I ca sch ny,

    - Gio s Nguyn Hu Vit Hng (Vit Nam) gi cho chng ti bngc ting Anh tp II ca sch ny,

    - Gio s Spencer Shaw (M) gi cho chng ti bn gc ting Anhcun sch ni ting ca W. Rudin (ni trn), xut bn ln th ba, 1976,

    - TS Dng Tt Thng c v v to iu kin chng ti bin dchcun sch ny.

    Chng ti chn thnh cm n tp th sinh vin Ton - L K5 H oTo C Nhn Khoa Hc Ti Nng, Trng HKHTN, HQGHN, ck bn tho v sa nhiu li ch bn ca bn nh my u tin.

    Chng ti hy vng rng cun sch ny s c ng o bn c nnhn v gp nhiu kin qu bu v phn bin dch v trnh by. Rt mongnhn c s ch gio ca qu v bn c, nhng kin gp xin gi v:Chi on cn b, Khoa Ton C Tin hc, trng i hc Khoahc T nhin, i hc Quc gia H Ni, 334 Nguyn Tri, ThanhXun, H Ni.

    Xin chn thnh cm n.

    H Ni, Xun 2002.

    Nhm bin dch

    on Chi

  • o

    n Ch

    i

  • o

    n Ch

    i

    Cc k hiu v khi nim

    R - tp cc s thc

    R+ - tp cc s thc dng

    Z - tp cc s nguyn

    N - tp cc s nguyn dng hay cc s t nhin

    Q - tp cc s hu t

    (a, b) - khong m c hai u mt l a v b

    [a, b] - on (khong ng) c hai u mt l a v b

    [x] - phn nguyn ca s thc x

    Vi x R, hm du ca x l

    sgn x =

    1 vi x > 0,

    1 vi x < 0,0 vi x = 0.

    Vi x N,

    n! = 1 2 3 ... n,(2n)!! = 2 4 6 ... (2n 2) (2n),

    (2n 1)!! = 1 3 5 ... (2n 3) (2n 1).

    K hiu(

    nk

    )= n!

    k!(nk)! , n, k N, n k, l h s ca khai trin nhthc Newton.

    vii

  • o

    n Ch

    i

    viii Cc k hiu v khi nim

    Nu A R khc rng v b chn trn th ta k hiu sup A l cntrn ng ca n, nu n khng b chn trn th ta quy c rngsup A = +.

    Nu A R khc rng v b chn di th ta k hiu inf A l cndi ng ca n, nu n khng b chn di th ta quy c rnginf A = .

    Dy {an} cc s thc c gi l n iu tng (tng ng n iugim) nu an+1 an (tng ng nu an+1 an) vi mi n N. Lpcc dy n iu cha cc dy tng v gim.

    S thc c c gi l im gii hn ca dy {an} nu tn ti mt dycon {ank} ca {an} hi t v c.

    Cho S l tp cc im t ca dy {an}. Cn di ng v cn trnng ca dy , k hiu ln lt l lim

    nan v lim

    nan c xc nh

    nh sau

    limn

    an =

    + nu {an} khng b chn trn, nu {an} b chn trn v S = ,sup S nu {an} b chn trn v S 6= ,

    limn

    an =

    nu {an} khng b chn di,+ nu {an} b chn di v S = ,inf S nu {an} b chn di v S 6= ,

    Tch v hn

    n=1

    an hi t nu tn ti n0 N sao cho an 6= 0 vi

    n n0 v dy {an0an0+1 ... an0+n} hi t khi n ti mt giihn P0 6= 0. S P = an0an0+1 ... an0+n P0 c gi l gi tr catch v hn.

    Trong phn ln cc sch ton nc ta t trc n nay, cc hmtang v ctang cng nh cc hm ngc ca chng c k hiul tg x, cotg x, arctg x, arccotg x theo cch k hiu ca cc sch cngun gc t Php v Nga, tuy nhin trong cc sch ton ca Mv phn ln cc nc chu u, chng c k hiu tng t ltan x, cotx, arctan x, arccotx. Trong cun sch ny chng ti ss dng nhng k hiu ny bn c lm quen vi nhng k hiu c chun ho trn th gii.

  • o

    n Ch

    i

    Bi tp

  • o

    n Ch

    i

  • o

    n Ch

    i

    Chng 1

    S thc

    Tm tt l thuyt

    Cho A l tp con khng rng ca tp cc s thc R = (,).S thc x R c gi l mt cn trn ca A nu

    a 6 x,x A.

    Tp A c gi l b chn trn nu A c t nht mt cn trn.

    S thc x R c gi l mt cn di ca A nu

    a x,a A.

    Tp A c gi l b chn di nu A c t nht mt cn di.

    Tp A c gi l b chn nu A va b chn trn v va b chn di.R rng A b chn khi v ch khi tn ti x > 0 sao cho

    |a| 6 x,a A.

    Cho A l tp con khng rng ca tp cc s thc R = (,).S thc x R c gi l gi tr ln nht ca A nu

    x A, a 6 x,a A.

    Khi , ta vitx = max{a : a A} = max a

    aA.

    3

  • o

    n Ch

    i

    4 Chng 1. S thc

    S thc x R c gi l gi tr b nht ca A nu

    x A, a x,a A.

    Khi , ta vitx = min{a : a A} = min a

    aA.

    Cho A l tp con khng rng ca tp cc s thc R = (,). Gis A b chn trn.

    S thc x R c gi l cn trn ng ca A, nu x l mt cntrn ca A v l cn trn b nht trong tp cc cn trn ca A. Tc l,

    a 6 x,a A,

    > o,a A, a > x .

    Khi , ta vitx = sup{a : a A} = sup a

    aA.

    Cho A l tp con khng rng ca tp cc s thc R = (,). Gis A b chn di.

    S thc x R c gi l cn di ng ca A, nu x l mt cndi ca A v l cn trn ln nht trong tp cc cn di ca A. Tc l,

    a x,a A,

    > o,a A, a < x + .

    Khi , ta vitx = inf{a : a A} = inf a

    aA.

    Tin v cn trn ng ni rng nu A l tp con khng rng,b chn trn ca tp cc s thc, th A c cn trn ng (duy nht).