Bart Muys presentatie

Embed Size (px)

Citation preview

  • 8/7/2019 Bart Muys presentatie

    1/37

    Bio-d iese l Produc t ion f romJ a t ro p h a c u r c a s L.L ife cyc le, Energy balance , Global WarmingPo t en t ia l a nd Land Use I m pac tBart MUYS, Wouter ACHTEN, Erik MATHIJS, Virendra P.

    SINGH*, Lou VERCHOT*

    Dept. Land Management & Economics, K.U.Leuven, Belgium*ICRAF, New Delhi, Nairobi

    Contact: [email protected]

    www.biw.kuleuven.be/lbh/lbnl/forecoman/english/index.asp

    W W W.K U L E U V E N.B E

  • 8/7/2019 Bart Muys presentatie

    2/37

    The Jatropha hype

    W W W.K U L E U V E N.B E

    Jatropha projects reported on the Internet

  • 8/7/2019 Bart Muys presentatie

    3/37

    Jatrophas multiple promises

    W W W.K U L E U V E N.B E

    drought resistent (minimum 200 mm rainfall)

    high production of quality oil (up to 8 t seeds/ha/yr)

    poverty reduction combatting desertification

    multipurpose

  • 8/7/2019 Bart Muys presentatie

    4/37

    Why is there a hype for tropical biofuels?

    W W W.K U L E U V E N.B E

    in Europe:

    EU policies on renewables

    Kyoto obligations

    but lack of space in Europe and higher NPP in tropics

    cheaper production in tropics

    tax exemptions and subsidies also valid for imported

    bioenergy Rapeseed oil too expensive

  • 8/7/2019 Bart Muys presentatie

    5/37

    Why is there a hype for tropical biofuels?

    W W W.K U L E U V E N.B E

    in developing countries:

    become OPEC

    produce cash crop with rising prices

    become independent from oil import

    realize a positive import/export balance

  • 8/7/2019 Bart Muys presentatie

    6/37

    Is their use sustainable?

    W W W.K U L E U V E N.B E

    The example of oil palm:

    highly positive energy and GHG balances thanks to

    high production if locally used

    important loss of this balance through shipping and

    transformation to diesel

    strong negative GHG balance if resulting from

    conversion of natural forest (extremely negative if

    conversion from peatland forest, cfr. SE Asia) in this case also high land use impact as a

    consequence of biodiversity loss

  • 8/7/2019 Bart Muys presentatie

    7/37

  • 8/7/2019 Bart Muys presentatie

    8/37

    LCA approach

    W W W.K U L E U V E N.B E

  • 8/7/2019 Bart Muys presentatie

    9/37

  • 8/7/2019 Bart Muys presentatie

    10/37

    1. Plantation unit process

    W W W.K U L E U V E N.B E

    Jatropha Seed

    Production

    Land area + site

    characteristics

    Plantation

    establishment

    Plantation

    management

    Energy, machines,infrastructure and auxilaries

    Air emissions

    Stand biomass

    Seeds

    Jatropha Seed

    Production

    Land area + site

    characteristics

    Plantation

    establishment

    Plantation

    management

    Energy, machines,infrastructure and auxilaries

    Air emissions

    Stand biomass

    Seeds

  • 8/7/2019 Bart Muys presentatie

    11/37

    Propagation

    Generative (seeds)

    Vegetative (cuttings)

    Direct seeding

    - Sowing according to plant geometry

    - Rainfall or life saving irrigation

    Precultivating seedlings

    - Nursery polybags 12,522,5 cm

    - Nursery seedbeds: 225-30 cm

    Direct Planting

    - Rainfall or life saving irrigation

    Precultivating plants- Nursery beds: 3030 cm

    - 30 200 cm long

    - 2,5 4,5 cm diameter

    - lower part of branch

    - 2 seeds at 2 cm depth

    Plantation design

    Living fences

    Block Plantation

    - Planting pits: 454545 cm

    - spacing: 22; 2,52,5 or 33 m

    - 15-25 cm within and between rows

    Also erosion control and prevention

    WA1

    WA2

    WA3

    WA4

    WA5

  • 8/7/2019 Bart Muys presentatie

    12/37

    Dia 11

    WA1 The longer and bigger diameter, the higher the survival rate.Wouter Achten; 23-1-2007

    WA2 Same options as in generative propagationWouter Achten; 23-1-2007

    WA3 - use light soil: sandy loam, mixed with compost ratio 1:1- afterwards transferring in polybags or in the fieldWouter Achten; 23-1-2007

    WA4 pregermination treatment is possible, not necessary: soak the seeds in cold watrer for 24hrsWouter Achten; 23-1-2007

    WA5 arrows depict the most common handling; althoug other options are possible of course (see slide 2)Wouter Achten; 23-1-2007

  • 8/7/2019 Bart Muys presentatie

    13/37

    W W W.K U L E U V E N.B E

    Plantation management

    Pruning

    Weeding

    Fertilizing

    Irrigating

    Field should be free of weeds at all times

    Depending on site and agro-climatic situation

    Canopy management

    Around 6 month age

    Cut back at 30-45 cm

    During 2nd and

    ongoing years

    Prune branches at -

    30-45 cm

    End of 1st year

    Pinch or prune the

    secondary and tertiarybranches

    - Pruning during

    dry winter period

    - Every 10 yearscut back plant till

    45 cm stump

    Living fence:Pinch terminals

    Drawings from Henning R. The Jatropha Booklet - http://www.jatropha.de/ - visited 30/01/2006

    WA6

    WA7

    WA8

    WA

  • 8/7/2019 Bart Muys presentatie

    14/37

    Dia 12

    WA6 - for more branch and inflorescense development ==> more fruit (cutting terminals induces more laterals)- to keep the crop at manageble heightWouter Achten; 23-1-2007

    WA7 mainly: Super phosphate NPK + Mg, Ca and SWouter Achten; 23-1-2007

    WA8 this is 4 weeks after pruningWouter Achten; 23-1-2007

    WA9 - cut back entire plant- regrowth will be quick and yield is postponed for 1 yearWouter Achten; 23-1-2007

  • 8/7/2019 Bart Muys presentatie

    15/37

    W W W.K U L E U V E N.B E

    Combatting desertification by restoration of

    vegetative cover in degraded areas Prevention and control of soil erosion through its

    unique root architecture (taproot + 4 laterals)

    Potential environmental benefits of

    Jatropha cultivation

  • 8/7/2019 Bart Muys presentatie

    16/37

    Meta-analysis of dry seed yield

    against (a) rainfall and (b) age

    W W W.K U L E U V E N.B E

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 2 4 6 8 10

    Age (yr)

    Dryseedyield(kg/h

    a/yr)

    Paraguay

    NIcaragua

    Mix

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 200 400 600 800 1000 1200 1400 1600

    Average annual rainfall (mm)

    Dryseedyield(kg/ha/yr)

    Mean = 1132

    StDev = 608.6

    Mean = 2653

    StDev = 1644.3

    a.

    b.

    Achten et al., subm. to Biomass & Bioenergy

  • 8/7/2019 Bart Muys presentatie

    17/37

    Oil extraction unit process

    W W W.K U L E U V E N.B E

    Oil Extraction

    Jatropha seeds

    Energy, machines,

    infrastructure and auxilaries

    Air emissions &

    waste water

    Crude oil

    Seed cake

    Oil Extraction

    Jatropha seeds

    Energy, machines,

    infrastructure and auxilaries

    Air emissions &

    waste water

    Crude oil

    Seed cake

  • 8/7/2019 Bart Muys presentatie

    18/37

    Kernel and shell composition

    W W W.K U L E U V E N.B E

    Kernel

    0.18

    30.35

    4.13

    2.82

    4.41

    2.70

    24.85

    54.59

    4.48

    0 20 40 60 80

    gross energy

    (MJ/kg)

    Acid detergent

    lignin (wt%) *

    Adic detergent

    fibre (wt%) *

    Neutral

    detergent fibre

    (wt%) *

    crude fibre

    (wt%)

    Ash (wt%)

    Crude protein

    (wt%)

    Crude fat (wt%)

    moisture (wt%)

    n=27

    n=8

    n=8

    n=24

    n=8

    n=38

    n=37

    n=38

    n=14

    Shell

    9.33

    1.17

    4.37

    75.59

    86.64

    30.93

    4.93

    19.38

    51.13

    0 20 40 60 80 100

    gross energy

    (MJ/kg)

    Acid detergent

    lignin (wt%)

    Adic detergent

    fibre (wt%)

    Neutral

    detergent fibre

    (wt%)

    crude fibre

    (wt%)

    Ash (wt%)

    Crude protein

    (wt%)

    Crude fat (wt%)

    moisture (wt%)

    n=9

    n=8

    n=8

    n=8

    n=3

    n=9

    n=8

    n=8

    n=8

    Achten et al., subm. to Biomass & Bioenergy

    Liquid Biofuel potential

    Fodder potential

    Biofuel potential

    Solid biofuel &

    composting potential

    Biofuel potential

  • 8/7/2019 Bart Muys presentatie

    19/37

    Crude oil composition and

    characteristics

    W W W.K U L E U V E N.B E

    Range Mean StDevn

    Specific gravity / density (g/cm) 0.860 - 0.933 0.914 0.018 13

    Calorific value (MJ/kg) 37.83 - 42.05 39.63 1.52 9

    pour point (C) -3 2

    cloud point (C) 2 1

    Flash point 210 - 240 235 11 7

    Cetane value 38.0 - 51.0 46.3 6.2 4

    saponification number (mg/g) 102.9 - 209.0 182.8 34.3 8

    viscosity at 30C (cSt) 37.00 - 54.80 46.82 7.24 7

    Free fatty acids (wt%) 0.18 - 3.40 2.18 1.46 4

    Unsaponifiable (wt%) 0.79 - 3.80 2.03 1.57 5

    Iodine number (mg iodine/g) 92 - 112 101 7 8

    Neutralization number (mg KOH/g) 0.92 - 6.16 3.71 2.17 4

    monoglycerides (wt%) nd - 1.7 1

    diglycerides (wt%) 2.50 - 2.70 2

    triglycerides (wt%) 88.20 - 97.30 2

    Carbon residue (wt%) 0.07 - 0.64 0.38 0.29 3

    Sulfur content (wt%) 0 - 0.13 2

    Achten et al., subm. to Biomass & Bioenergy

    Potential for high

    diesel yield

    Better than palm oil, less

    good than fossil diesel

    Too high for direct

    combustion

    Degumming before

    transesterification if

    >2%

  • 8/7/2019 Bart Muys presentatie

    20/37

    Fatty acid composition of crude oil

    W W W.K U L E U V E N.B E

    C16:0

    C18:1

    C18:0

    C18:2

    Other Acids

    C16:0 C18:0 C18:1 C18:2

    22.3%

    77.5%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    Satur

    ed

    nsatu

    red

    n=22

    Mean 14.54 6.30 42.02 35.38StDev 2.37 3.41 8.07 6.26

    n=10

    C16:0 = Palmitic Acid; C18:0 = Strearic Acid; C18:1 Oleic Acid; C18:2 = Linoleic Acid. Other Acids

    containing Capric Acid, Myristic Acid (C14:0), Palmitoleic Acid (C16:1), Linolenic Acid (C18:3),

    Arachidic Acid (C20:0), Behenic Acid (C22:0), cis-11-Eicosenoic Acid (C20:1) and cis-11,14-

    Eicosadienoic Acid (C20:2).

    More unsaturated

    than palm oil but lessthan rapeseed oil and

    fossil diesel

    Achten et al., subm. to Biomass & Bioenergy

    Fatty acids with C-16-18 will yield methyl esters comparable

    to petrodiesel

  • 8/7/2019 Bart Muys presentatie

    21/37

    Biodiesel production unit process

    W W W.K U L E U V E N.B E

    Alcohol reagens

    Reaction catalyst

    Transesterification

    Jatropha oil

    Energy, machines,

    infrastructure and auxilaries

    Air emissionsand waste water

    Biodiesel

    Glycerin

    Alcohol reagens

    Reaction catalyst

    Transesterification

    Jatropha oil

    Energy, machines,

    infrastructure and auxilaries

    Air emissionsand waste water

    Biodiesel

    Glycerin

  • 8/7/2019 Bart Muys presentatie

    22/37

    JCL (m)ethyl ester characteristics compared

    with the EU and USA Standards

    W W W.K U L E U V E N.B E

    JME JEE

    range mean sd n n=1

    EN

    14214:2003

    ASTM

    D6751

    Density (g/cm) 0.864 - 0.880 0.875 0.007 6 0.89 0.86 - 0.90

    Calorific value (MJ/kg) 38.45 - 41.00 39.65 1.28 3Flash point 170 - 192 186 11 4 190 120 130Cetane value 50.0 - 56.1 52.3 2.3 5 59 min 51 min 47

    saponification number (mg/g) 202.6 1viscosity at 30C (cSt) 4.84 - 5.65 5.11 0.47 3 5.54 3.5-5.0* 1.9-6.0*

    Iodine number (mg iodine/g) 93 - 106 max 120 max 115Neutralization number (mg KOH/g) 0.06 - 0.50 0.27 0.22 3 0.08

    monoglycerides (wt%) 0.24 1 0.55 max 0.8diglycerides (wt%) 0.07 1 0.19 max 0.2

    triglycerides (wt%) nd 0 nd max 0.2Carbon residue (wt%) 0.02 - 0.50 0.18 0.27 3 max 0.3

    Sulfur content (wt%) 0.0036 - 0.5 2Sulfated ash (wt%) 0.005 - 0.014 0.013 0.002 4

    max 0.01 max 0.015

    Methyl ester content (wt%) 99.6 1 99.3 min. 96.5

    methanol (wt%) 0.06 - 0.09 2 0.05 max 0.2water (wt%) 0.07 - 0.1 1 0.16 max 0.5 max 0.2free glycerol (wt%) 0.015 - 0.03 2 nd

    total glycerol (wt%) 0.088 - 0.1 2 0.17max 0.25 max 0.24

    JME = Jatrophamethyl ester. JEE = Jatrophaethyl ester.

    Achten et al., subm. to Biomass & Bioenergy

  • 8/7/2019 Bart Muys presentatie

    23/37

    SeedsSeeds

    SeedcakeSeedcake

    CompostCompost

    FruitFruit

    Fruit Hulls

    ExtractionSeed Oil

    Bio-diesel

    Transesterification

    FermentationFertilizer

    Biogas

    (~CH4)

    Seed ShellsCombustibles

    Combustibles

    CO

    2H2Oh

    Drawings from Henning R. The Jatropha Booklet - http://www.jatropha.de/ - visited

    By-products unit process

  • 8/7/2019 Bart Muys presentatie

    24/37

    Kernel cake composition

    W W W.K U L E U V E N.B E

    Kernel Cake

    0.16

    18.25

    9.82

    6.27

    8.71

    6.57

    58.13

    1.29

    0 10 20 30 40 50 60 70

    Gross energy

    (MJ/kg)

    Acid detergent

    lignin (wt%)

    Acid detergentfiber (wt%)

    Neutral

    deteregent fiber

    (wt%)

    Crude fibre

    (wt%)

    Ash (wt%)

    crude protein in

    DM (wt%)

    lipid (wt%)

    n=13

    n=6

    n=9

    n=9

    n=7

    n=13

    n=13

    n=13

    N % P2O5 % K2O % CaO % MgO %

    4.4-6.5 2.1-3 0.9-1.7 0.6-0.7 1.3-1.4

    Potential fodder after

    detoxification

    Higher nutrient

    concentration than

    chicken or cattle

    manure

    Relatively high energy

    content: briquetting

    Achten et al., subm. to Biomass & Bioenergy

  • 8/7/2019 Bart Muys presentatie

    25/37

    Some outlooks per impact

    category

    W W W.K U L E U V E N.B E

    1. Land use impact

    2. Energy balance

    3. GHG balance

  • 8/7/2019 Bart Muys presentatie

    26/37

    How to measure the land use

    impact?

    W W W.K U L E U V E N.B E

    The simple way:

    measure how much land (A) is used during

    how much time (t) to produce 1 functional

    unit of the product (e.g. 100 km transport withJCL biodiesel):

    Impact Score S = A* t

  • 8/7/2019 Bart Muys presentatie

    27/37

    How to measure the land use

    impact?

    W W W.K U L E U V E N.B E

    The better way:

    multiply this area*time with a land quality factorQ:

    S = Q * A* t

    Time

    Qualityoftheland

    Q

    Qref

    Qact

    Qact = actual land use

    Qref= reference land

    use, i.e. thePotential Natural

    Vegetation (PNV)

    of the site

  • 8/7/2019 Bart Muys presentatie

    28/37

    Which indicators to measure Q ?

    W W W.K U L E U V E N.B E

    Using 17 quantitative indicators covering 4 themes:

    Ecosystem Structure

    Ecosystem Function

    -Vegetation (biomass & structure)

    - Biodiversity (genetic information)

    - Soil (buffering of sediment- and nutrient

    flows)

    - Water(buffering of water flows)

  • 8/7/2019 Bart Muys presentatie

    29/37

    Land Use Impact

    W W W.K U L E U V E N.B E

    VS BD SW

    JatrophaPalm0

    10

    20

    3040

    50

    60

    70

    impactscore(%)

    Jatropha

    Palm

    (preliminary result - land use change impact not included - dont quote)

    JCL in comparison with oil palm

  • 8/7/2019 Bart Muys presentatie

    30/37

    Trends in land use impact

    W W W.K U L E U V E N.B E

    1. Negative impact on vegetation structure

    high if destruction of (semi-)natural vegetation

    low if reclamation of wasteland;

    2. Negative impact on biodiversity Rather high in monoculture

    Improved by intercropping, agroforestry and if conservation

    zones

    Possible invasiveness low use of biocides

    3. Negative impact on soil

    low impact (erosion control, carbon seqestration) Higher impact if input of fertilizers and machinery

    4. Negative impact on water

    Positive on-site, negative off-site

  • 8/7/2019 Bart Muys presentatie

    31/37

    Energy balance

    W W W.K U L E U V E N.B E

    442

    27

    91

    13

    353

    120

    0 100 200 300 400 500 600 700 800 900

    [1]

    [2]

    Primary energy input (MJ)

    Jatropha cultivation

    Oil extraction

    Transesterification

    Primary energy input for the production of 1000 MJ

    Jatropha bio-diesel.

    Based on Prueksakorn & Gheewala, 2006 [1] with high input and Tobin

    & Fulford, 2005 [2] with low input production system.

  • 8/7/2019 Bart Muys presentatie

    32/37

    Energy balance

    W W W.K U L E U V E N.B E

    Potential Energy output for the production of 1000 MJ

    Jatropha biodiesel (Prueksakorn & Gheewala, 2006)

  • 8/7/2019 Bart Muys presentatie

    33/37

    Trends in energy balance

    W W W.K U L E U V E N.B E

    Positive energy balance

    Becomes less positive:

    after transesterification

    without energetic use of by-products

    with intensification of production if shipped to remote markets

  • 8/7/2019 Bart Muys presentatie

    34/37

    Greenhouse gas balance

    W W W.K U L E U V E N.B E

    246.1

    56.716.5

    0

    50

    100

    150

    200

    250

    diesel [1] [2]

    KgCO2eq.

    Greenhouse gas emissions for the production of

    1000 MJ Jatropha bio-diesel.

    Based on Prueksakorn &

    Gheewala, 2006 [1] with

    high input and Tobin &

    Fulford, 2005 [2] with low

    input production system.

  • 8/7/2019 Bart Muys presentatie

    35/37

  • 8/7/2019 Bart Muys presentatie

    36/37

    Final conclusion

    W W W.K U L E U V E N.B E

    The Jatropha hype is not sufficiently supported

    by hard data on crop production, productionoptimization, and environmental impact

    Urgent need for:- Reliable inventory data for the complete life

    cycle

    - Special focus on land use impact (including

    benefits)- Research on water relationships

  • 8/7/2019 Bart Muys presentatie

    37/37

    Thank you for your attention!

    Contact: [email protected]

    Acknowledgement: VLIR (Flemish Interuniversity Council)