Bat phuong trinh tuyen tap

Embed Size (px)

DESCRIPTION

Bat phuong trinh tuyen tap

Citation preview

  • Part 1 : Cc bi ton

    Bi 1 : Gii bt phng trnh (x 1)x2 2x+ 5 4xx2 + 1 2 (x+ 1)Li gii tham kho :

    (x 1)x2 2x+ 5 4xx2 + 1 2 (x+ 1)

    (x+ 1) (2 +x2 2x+ 5)+ 2x (2x2 + 1x2 2x+ 5) 0 (x+ 1) (2 +x2 2x+ 5)+ 2x (4x2 + 4 x2 + 2x 5)

    2x2 + 1 +

    x2 2x+ 5 0

    (x+ 1) (2 +x2 2x+ 5)+ 2x (x+ 1) (3x 1)2x2 + 1 +

    x2 2x+ 5 0

    (x+ 1)[(2 +x2 2x+ 5)+ 2x (3x 1)

    2x2 + 1 +

    x2 2x+ 5

    ] 0

    (x+ 1)[4x2 + 1 + 2

    x2 2x+ 5 + 2(x2 + 1) (x2 2x+ 5) + (7x2 4x+ 5)

    2x2 + 1 +

    x2 2x+ 5

    ] 0

    C 7x2 4x+ 5 = 7(x2 4

    7x+

    4

    49

    )+31

    7 31

    7nn biu thc trong ngoc lun > 0.

    Do bt phng trnh x+ 1 0 x 1Vy tp nghim ca bt phng trnh l T = (;1]

    Bi 2 : Gii bt phng trnhx+ 2 + x2 x+ 2 3x 2

    Li gii tham kho :

    iu kin : x 23

    bpt x+ 23x 2 + x2 x 2 0

    2 (x 2)x+ 2 +

    3x 2 + (x 2) (x+ 1) 0

    (x 2)[ 2

    x+ 2 +3x 2 + x+ 1

    ] 0

    BT PHNG TRNH V T

  • Maths287 BT PHNG TRNH V T

    Xt f (x) =2

    x+ 2 +3x 2 + x+ 1 f

    (x) =

    1x+ 2

    +3

    3x 2(x+ 2 +

    3x 2) + 1 > 0

    f (x) f (23

    )> 0

    Do bt phng trnh x 2 0 x 2

    Vy tp nghim ca bt phng trnh l T =

    [2

    3; 2

    ]Bi 3 : Gii bt phng trnh 4

    x+ 1 + 2

    2x+ 3 (x 1) (x2 2)

    Li gii tham kho :

    iu kin : x 1Nhn thy x = - 1 l mt nghim ca bt phng trnh

    Xt x > - 1 ta c bt phng trnh tng ng vi

    4(

    x+ 1 2)+ 2 (2x+ 3 3) x3 x2 2x 12 4 (x 3)

    x+ 1 + 2+

    4 (x 3)2x+ 3 + 3

    (x 3) (x2 + 2x+ 4)

    (x 3)(

    4x+ 1 + 2

    +4

    2x+ 3 + 3 (x+ 1)2 3

    ) 0

    V x > - 1 nnx+ 1 > 0 v

    2x+ 3 > 1 4

    x+ 1 + 2+

    42x+ 3 + 3

    < 3

    Do 4

    x+ 1 + 2+

    42x+ 3 + 3

    (x+ 1)2 3 < 0

    Suy ra bt phng trnh x 3 0 x 3Vy tp nghim ca bt phng trnh l T = {1} [3; +)

    Bi 4 : Gii bt phng trnh

    x (x+ 2)

    (x+ 1)3 x 1

    Li gii tham kho :

    iu kin : x 0 . Khi x 0 ta c(x+ 1)3 x > 0

  • Maths287 BT PHNG TRNH V T

    x (x+ 2)

    (x+ 1)3 x 1x (x+ 2) (x+ 1)3 x

    x2 + 2x x3 + 3x2 + 4x+ 1 2 (x+ 1)x (x+ 1) x3 + 2x2 + 2x+ 1 2 (x+ 1)x2 + x 0 (x+ 1) (x2 + x+ 1 2x2 + x) 0 x2 + x+ 1 2x2 + x 0 (x2 + x 1)2 0 x2 + x = 1 x = 1

    5

    2

    Kt hp vi iu kin ta c nghim ca bt phng trnh l x =

    5 12

    Bi 5 : Gii bt phng trnh1x+ 2

    1x 1 2

    3x 1

    Li gii tham kho :

    iu kin : 2 < x < 1 ()

    bpt 3(

    1x+ 2

    1x 1) (x+ 2)2 (x 1)2

    3 x+ 2x 1 (x+ 2x 1)t a =

    x+ 2x 1 x+ 2.x 1 = 1 a

    2

    2

    Ta c bt phng trnha a32 3 a3a+6 0 (a+ 2) (a2 2a+ 3) 0

    a 2 x+ 2x 1 2 x+ 2 + 2 x 1 x+ 6 + 4x+ 2 x 1 4x+ 2 (2x+ 7) (1)(1) lun ng vi iu kin (*). Vy tp nghim ca bt phng trnh l T = (2;1)

    Bi 6 : Gii bt phng trnh

    x+ 1

    x+ 13 x > x1

    2

    Li gii tham kho :

    iu kin : x [1; 3] \ {1}

  • Maths287 BT PHNG TRNH V T

    bptx+ 1

    (x+ 1 +

    3 x)

    2 (x 1) > x1

    2 x+ 1 +

    x2 + 2x+ 32 (x 1) > x

    1

    2()

    Trng hp 1 : 1 < x 3 (1)() x+ 1 +x2 + 2x+ 3 > 2x2 3x+ 1 2 (x2 + 2x+ 3) +x2 + 2x+ 3 6 > 0

    x2 + 2x+ 3 > 32 x

    (27

    2;2 +7

    2

    )

    Kt hp vi (1) ta c x (1;2 +7

    2

    )Trng hp 2 : 1 < x < 1 (2)() x+ 1 +x2 + 2x+ 3 < 2x2 3x+ 1 2 (x2 + 2x+ 3) +x2 + 2x+ 3 6 < 0

    0 x2 + 2x+ 3 < 32 x

    [1; 2

    7

    2

    )(2 +7

    2; 3

    ]

    Kt hp vi (2) ta c x [1; 2

    7

    2

    )

    Vy tp nghim ca bt phng trnh l T =

    [1; 2

    7

    2

    )(1;2 +7

    2

    )

    Bi 7 : Gii bt phng trnh6x2 2 (3x+ 1)x2 1 + 3x 6

    x+ 1x 12 x2 (x2 + 2) 0Li gii tham kho :

    iu kin : 1 x 2Ta c

    (x+ 1)2 = x2 + 2x+ 1 x2 + x2 + 1 + 1 2x2 + 2 < 2x2 + 4 x+ 1

  • Maths287 BT PHNG TRNH V T

    bpt 6x2 2 (3x+ 1)x2 1 + 3x 6 0 4 (x2 1) 2 (3x+ 1)x2 1 + 2x2 + 3x 2 0

    (

    x2 1 x+ 12

    )(x2 1 x

    2 1) 0 (1)

    Xt 1 x 2 ta c x2 1 x2 1 3 2 < 0

    Do bt phng trnh x2 1 x+ 12 0 1 x 5

    4

    Vy tp nghim ca bt phng trnh l T =

    [1;5

    4

    ]

    Bi 8 : Gii bt phng trnh 2x3 +

    5 4xxx+

    10

    x 2

    Li gii tham kho :

    iu kin : x > 0

    bpt 2x2 4x+ 5 x2 2x+ 10 2 (x2 2x+ 10)x2 2x+ 10 15 0 x2 2x+ 10 3 x2 2x+ 10 9bt phng trnh cui lun ng. Vy tp nghim ca bt phng trnh l T = (0;+)

    Bi 9 : Gii bt phng trnh 3(2x2 xx2 + 3) < 2 (1 x4)

    Li gii tham kho :

    bpt 2 (x4 + 3x2) 3xx2 (x2 + 3) 2 < 0t x

    x3 + 3 = t x4 + 3x2 = t2

    Khi bpt 2t2 3t 2 < 0 12< t < 2 1

    2< xx2 + 3 < 2

    * Vi x 0 ta c

    bpt{

    x 0xx2 + 3 < 2

    {

    x 0x4 + 3x2 4 < 0

    {x 0x2 < 1

    0 x < 1

    * Vi x < 0 ta c

  • Maths287 BT PHNG TRNH V T

    bpt{

    x < 0

    12< xx2 + 3

    {

    x < 012> xx2 + 3

    {x < 0

    x4 + 3x2 14< 0

    x < 0x2 < 3 +10

    2

    3 +10

    2< x < 0

    Vy tp nghim ca bt phng trnh l T =

    (3 +10

    2; 1

    )

    Bi 10 : Gii bt phng trnh

    x+ 24 +

    x

    x+ 24x 0

    bptx+ 24 +

    x

    x+ 24x 35

    12

    Li gii tham kho

    iu kin : |x| > 1Nu x < - 1 th x+

    xx2 1 < 0 nn bt phng trnh v nghim

    Do bpt x > 1x2 + x2

    x2 1 +2x2x2 1

    1225

    144> 0

    x > 1x4

    x2 1 + 2.x2x2 1

    1225

    144> 0

    t t =x2x2 1 > 0

    Khi ta c bpt t2 + 2t 1225144

    > 0 t > 2512

    Ta c

    x > 1x2x2 1 >

    25

    12

    x > 1x4

    x2 1 >625

    144

    x (1;5

    4

    )(5

    3;+

    )

  • Maths287 BT PHNG TRNH V T

    Vy tp nghim ca bt phng trnh l

    (1;5

    4

    )(5

    3;+

    )

    Bi 16 : Gii bt phng trnhx2 8x+ 15 +x2 + 2x 15 4x2 18x+ 18

    Li gii tham kho

    iu kin : x (;5] [5; +) {3}D thy x = 3 l mt nghim ca bt phng trnh

    Vi x 5 ta cbpt(x 5) (x 3) +(x+ 5) (x 3) (x 3) (4x 6) x 3 (x 5 +x+ 5) x 3.4x 6 x 5 +x+ 5 4x 6 2x+ 2x2 25 4x 6 x2 25 x 6 x2 25 x2 6x+ 9

    x 173

    Kt hp ta c 5 x 173

    Vi x 5 ta c(5 x) (3 x) +(x 5) (3 x) (3 x) (6 4x) 5 x+x 5 6 4x 5 x x 5 + 2x2 25 6 4x x2 25 3 x x2 25 9 6x+ x2

    x 173

    Kt hp ta c x 5

    Vy tp nghim ca bt phng trnh l T = (;5] [5;17

    3

    ] {3}

  • Maths287 BT PHNG TRNH V T

    Bi 17 : Gii bt phng trnh2x+ 4 22 x > 12x 8

    9x2 + 16

    Li gii tham kho

    iu kin : 2 x 2

    bpt 2x+ 4 22 x > 2.(2x+ 4) 4 (2 x)9x2 + 16

    2x+ 4 22 x > 2.(

    2x+ 4 22 x) (2x+ 4 + 22 x)9x2 + 16

    (2x+ 4 22 x)(1 2 (2x+ 4 + 22 x)9x2 + 16

    )> 0

    (2x+ 4 22 x) (2x+ 4 + 22 x)(1 2 (2x+ 4 + 22 x)9x2 + 16

    )> 0

    (6x 4) (9x2 + 16 2 (2x+ 4 + 22 x)) > 0 (3x 2) (9x2 + 16 2 (2x+ 4 + 22 x)) (9x2 + 16 + 2 (2x+ 4 + 22 x)) > 0 (3x 2)

    (9x2 + 16 4(2x+ 4 + 22 x)2) > 0

    (3x 2) (9x2 + 8x 32 168 2x2) > 0 (3x 2) (8x 168 2x2 + x2 4 (8 2x2)) > 0 (3x 2) (8 (x 28 2x2)+ (x 28 2x2) (x+ 28 2x2)) > 0 (3x 2) (x 28 2x2) (8 + x+ 28 2x2) > 0 (3x 2) (x 28 2x2) > 0 [ 2 x < 23

    43

    3< x 2

    Bi 18 : Gii bt phng trnh 32x+ 1 + 3

    6x+ 1 > 3

    2x 1

    Li gii tham kho

    bpt 32x 1 32x+ 1 < 36x+ 1 2 3 3(2x 1) (2x+ 1) ( 32x 1 32x+ 1) < 6x+ 1 3(2x 1) (2x+ 1) ( 32x 1 32x+ 1)+ 2x+ 1 > 0

  • Maths287 BT PHNG TRNH V T

    32x+ 1[

    3

    (2x 1)2 + 3(2x 1) (2x+ 1) + 3(2x+ 1)2] > 0

    32x+ 1 > 0

    x > 12

    ( do biu thc trong ngoc lun dng)

    Vy tp nghim ca bt phng trnh l T =

    (12;+

    )

    Bi 19 : Gii bt phng trnh (4x2 x 7)x+ 2 > 10 + 4x 8x2

    Li gii tham kho

    iu kin : x 2bpt (4x2 x 7)x+ 2 + 2 (4x2 x 7) > 2 [(x+ 2) 4] (4x2 x 7) (x+ 2 + 2) > 2 (x+ 2 2) (x+ 2 + 2) 4x2 x 7 > 2x+ 2 4 4x2 > x+ 2 + 2x+ 2 + 1

    4x2 > (x+ 2 + 1)2

    {

    x+ 2 > 2x 1 (1)x+ 2 < 2x 1 (2) (I){ x+ 2 < 2x 1 (3)x+ 2 > 2x 1 (4) (II)

    Xt (I) t (1) v (2) suy ra

    {x 22x 1 < 2x 1 2 x < 0

    Khi h (I) {2 x < 0x+ 2 < 2x 1

    {2 x 1/2x+ 2 < (2x 1)2 x [2;1)

    Xt (II) t (3) v (4)

    {x 22x 1 < 2x 1 x > 0

    Khi h (II) {

    x > 0x+ 2 < 2x 1

    {x > 1/2

    x+ 2 < (2x 1)2 x (

    5+41

    8; +

    )Vy tp nghim ca bt phng trnh l T = [2;1)

    (5+41

    8; +

    )

  • Maths287 BT PHNG TRNH V T

    Bi 20 : Gii bt phng trnh 4x+ 1 +

    4x+ 42x+ 3 + 1

    (x+ 1) (x2 2x) 0

    Li gii tham kho

    iu kin : x 1

    bpt x+ 1 = 04 +

    4x+ 1

    2x+ 3 + 1 (x2 2x)x+ 1 ()

    Xt (*)

    Nu 0 x 2 suy ra VT > 0 v VP < 0 bt phng trnh v nghimNu 1 x < 0 suy ra VT > 4 v VP < 3 bt phng trnh v nghim

    Nu x > 2 ta c bpt 4x+ 1

    +4

    2x+ 3 + 1 x2 2x

    f (x) =4x+ 1

    +4

    2x+ 3 + 1nghch bin trn (2;+)

    g (x) = x2 2x ng bin trn (2;+)Vi x < 3 ta c f (x) > f (3) = 6 = g (3) > g (x) bt phng trnh v nghim

    Vi x 3 ta c f (x) f (3) = 6 = g (3) g (x)Vy tp nghim ca bt phng trnh l T = [3;+) {1}

    Bi 21 : Gii bt phng trnh 32x 1 4x 1 4

    2x2 3x+ 1

    36

    Li gii tham kho

    iu kin : x 1Ta thy x = 1 l nghim ca bt phng trnh.

    Xt x 6= 1 chia hai v ca bt phng trnh cho 42x2 3x+ 1 ta c

    3. 42x 1x 1 4.

    4

    x 12x 1

    16

    t t = 42x 1x 1

    4

    x 12x 1 =

    1

    ta ( iu kin t > 0)

  • Maths287 BT PHNG TRNH V T

    Khi ta c bpt 3t 4t 1

    6 36t2 t 46 0

    t 1666(l)

    t 3

    2(n)

    Vi t

    32ta c 4

    2x 1x 1

    3

    2 2x 1

    x 1 9

    4 x+ 5

    4 (x 1) 0 1 < x 5

    Vy tp nghim ca bt phng trnh l T = [1; 5]

    Bi 22 : Gii bt phng trnh x+ 1 +x2 4x+ 1 3x

    Li gii tham kho

    iu kin :

    [0 x 23x 2 +3

    Vi x = 0 bt phng trnh lun ng

    Vi x > 0 chia hai v bt phng trnh chox ta c

    bpt x+ 1x+

    x+

    1

    x 4 3 (1)

    t t =x+

    1x 2 t2 = x+ 1

    x+ 2

    Ta c bt phng trnht2 6 3 t

    3 t < 0{ 3 t 0t2 6 (3 t)2

    t 52

    Do x+

    1x 5

    2 x 2 x 1

    2 x

    (0;1

    4

    ] [4; +)

    chnh l tp nghim ca bt phng trnh

    Bi 23 : Gii bt phng trnh 8

    2x 3x+ 1

    + 3 62x 3 + 4x+ 1

    Li gii tham kho

    iu kin : x 32

  • Maths287 BT PHNG TRNH V T

    8

    2x 3x+ 1

    + 3 62x 3 + 4x+ 1

    82x 3 + 3x+ 1 6(2x 3) (x+ 1) + 4 64 (2x 3) + 9 (x+ 1) + 48(2x 3) (x+ 1) 36 (2x 3) (x+ 1)+16 + 48

    (2x 3) (x+ 1)

    72x2 173x 91 0

    79 x 13

    8

    Kt hp vi iu kin ta c tp nghim ca bt phng trnh l T =

    [3

    2;13

    8

    ]

    Bi 24 : Gii bt phng trnh5

    2

    x3 + x+ 2 x2 + 3

    Li gii tham kho

    iu kin : x 1Nhn thy x = - 1 l mt nghim ca bt phng trnh

    bpt 52

    (x+ 1) (x2 x+ 2) (x2 x+ 2) + (x+ 1)

    t

    {a =x2 x+ 2 0

    b =x+ 1 0

    C a2b2 = x2x+2x1 = x22x+1 = (x 1)2 0 (a b) (a+ b) 0 a bKhi bt phng trnh tr thnh

    5

    2ab a2 + b2 2a2 5ab+ b2 0 (a 2b) (2a b) 0 a 2b 0 a 2b x2 x+ 2 2x+ 1 x2 x+ 2 4x+ 4 x2 5x 2 0

    x (; 5

    33

    2

    ][5 +33

    2;+

    )

    Kt hp vi iu kin ta c tp nghim ca bt phng trnh l T =

    [5 +33

    2;+

    )

    {1}

  • Maths287 BT PHNG TRNH V T

    Bi 25 : Gii bt phng trnh 3x3 1 2x2 + 3x+ 1

    Li gii tham kho

    iu kin : x 1Nhn thy x = 1 l mt nghim ca bt phng trnh

    bpt 2x (x3 + x)x+ 1

    + 2 (x+ 2)x+ 1 > x3 + x+ 2x (x+ 2)

    (x3 + x)(

    2xx+ 1

    1) (x+ 2)x+ 1

    (2xx+ 1

    1)> 0

    (x3 + x (x+ 2)x+ 1) (2xx+ 1) > 0

    {

    x3 + x (x+ 2)x+ 1 > 02xx+ 1 > 0{x3 + x (x+ 2)x+ 1 < 02xx+ 1 < 0

    Xt hm s f (t) = t3 + t f (t) = 3t2 + 1 > 0 tNn hm f(t) ng bin trn R.

    Trng hp 1 :

    {f (x) > f

    (x+ 1

    )2xx+ 1 > 0

    {x >x+ 1

    2x >x+ 1

    x > 1 +5

    2

    Trng hp 2 :

    {f (x) < f

    (x+ 1

    )2xx+ 1 < 0

    {x 3 x+x2 6x+ 11

    (x 1)2 + 2 +x 1 >

    (3 x)2 + 2 +3 x

    Xt hm s f (t) =t2 + 2 +

    t

    Ta c f (t) =t

    t2 + 2+

    1

    2t> 0 t [1; 3]

  • Maths287 BT PHNG TRNH V T

    Nn f(t) ng bin nn f (x 1) > f (3 x) x 1 > 3 x x > 2Kt hp vi iu kin ta c tp nghim ca bt phng trnh l T = (2; 3]

    Bi 27 : Gii bt phng trnhx3 3x2 + 2x

    x4 x2 12

    Li gii tham kho

    iu kin : x (;1) (1;+)x (x 1) (x 2)|x|x2 1

    12

    Nu x < - 1 ta c

    bpt (1 x) (x 2)x2 1

    12

    x (;1){

    1 x > 0x 2 < 0

    (1 x) (x 2)x2 1 < 0 0x 2 0

    (1 x) (x 2)x2 1 0 0 th x > - 1 ta c bt phng trnh tr thnh ( chia cho y3)

    bpt(x

    y

    )3+ 3

    (x

    y

    )2 4 0

    (x

    y 1)(

    x

    y+ 2

    )2 0

    [x/y 1x/y = 2

    Trng hp 1 :x

    y= 2 x = 2x+ 1 x = 2 22

    Trng hp 2: xy 1 x x+ 1 1 x 1 +

    5

    2

  • Maths287 BT PHNG TRNH V T

    Kt hp vi iu kin ta c tp nghim ca bt phng trnh l T =

    [1; 1 +

    5

    2

    ]

    Bi 30 : Gii bt phng trnh 2

    x2 + x+ 1

    x+ 4+ x2 4 2

    x2 + 1

    Li gii tham kho

    iu kin : x > 4

    bpt 2(

    x2 + x+ 1

    x+ 4 1)+ x2 3 2

    x2 + 1

    x2 + 1

    2.x2 + x+ 1

    x+ 4 1

    x2 + x+ 1

    x+ 4+ 1

    + x2 3 4 (x2 + 1)(

    2 +x2 + 1

    )x2 + 1

    2 (x2 3)

    (x+ 4) (x2 + x+ 1) + x+ 4+ x2 3 + d x

    2 3(2 +x2 + 1

    )x2 + 1

    0

    (x2 3)[

    2(x+ 4) (x2 + x+ 1) + x+ 4

    + 1 +1(

    2 +x2 + 1

    )x2 + 1

    ] 0

    x2 3 0 3 x 3Kt hp iu kin ta c tp nghim ca bt phng trnh l T =

    [3;3]