Bhopal QRA V3

Embed Size (px)

DESCRIPTION

bhopal

Citation preview

  • 5/21/2018 Bhopal QRA V3

    1/29

    Toxic QRAs 8/7/2014

    Fig. 1: Logic Diagram For Toxic Mini-QRA

    Start at

    Tab QRA

    Tab QRA Tab VM Tab VM

    Select Select Vulnerability Model Obtain 4

    Toxic Chemical (1 - 20) 1 = CPQRA LC50 Concentrations

    4 Scenario Descriptions 2 = TNO

    4 Release Durations 3 = Specific Rat Data

    4 Generic Failure Rates 4 = Manual Input of k1, k2 & nAuto Sort Fatality Data

    Determine IR Data

    Determine Societal Risk

    Tab FR Tab IR

    Select Failure Plot Individual Risk to 1E-06 and 1E-08 Fatalities/Yr

    Rates For 4

    Generic Systems

    Tab SR

    Plot Societal Risk vs Dutch QRA Criteria

    Tab PP

    Select Physical

    Properties

    Tabs S1 - S9

    Select Source Term Models - Delivers Rate Of Discharge and Release Durations

    S1 = 2 Liquid and 2 Vapour Orifice Calculations - Sonic & Sub-Sonic Flow

    S2 = Source Term Model - 2 Liquid and 2 Vapour Models + Logistics

    S3 = Evaporation Rate From Un-Restrained Pool Spreading - Transient Release

    S4 = Evaporation Rate From Restrained Pool Spreading - Transient release

    S5 = Evaporation Rate From Volatile Liquid Below Boiling Point - Steady State Release

    S6 = Depressurization of a Pressurized Vessel - Transient Release

    S7 = Release From PSV of a Vessel Containing Toxic Liquid Under Fire or Reactive Chemical ConditionsS8 = A Generalized Correlation for Flashing Choked Flow of Initially Subcooled Liquid

    S9 = Release of Heavy Toxic gases From Elevated Stacks or PSVs.

    Tabs GC & GI

    Select Dispersion Model Yields LC50 Distances & Durations For 4 Selected Scenarios

  • 5/21/2018 Bhopal QRA V3

    2/29

    Mini QRA For MIC Storage 8/7/2014

    Basis MIC Plant Under Poor Safety Management System (CPQRA Vulnerability Model)

    Release and Dispersion Summary Based on a Continuous Gaussian Dispersion Model, CPQRA Vulnerability Probit Constants and Selected Source Term Models

    BHOPAL - Incidents From One 90,000 lb Storage Tank Select (1 - 20) = 4 Chemical = MIC

    Select Model (1 - 2) 1 Gaussian Dispersion

    Scenario Dischg Rate Duration LC50 Gaussian Source Source Term Frequency

    Incident Description kgm - kgm/s Minutes ppmv LC50 Dist, m Term Tab Description Failure/Yr

    1 2" Liq Leak 15.4353 60 39.86 2,172 Tab S4 Into 1,000 sm Dyked Area 1.02E-03

    2 1/2" Liq Leak 1.54 60 39.86 545 Tab S4 Into 100 sm Restricted Curb Area 2.16E-03

    3 Runaway Rx 3.6936 100 18.23 1,869 Tab S7 & S9 PSV to 8 Inch Stack 108' High 4.00E-074 Tank Rupture 30.8739 85 23.38 4,355 Tab S3 Into 1,670 sm Unrestricted Area 1.35E-05

    Failure Frequency For System Components

    Incident No. 1 - Generic System For 2" Liq Leak

    Failure Rate Generic System For Phase Of No. In Frequency Source

    No. Incident 1 2" Liq Leak Leak Events/yr System Failure/Yr Fr FR database

    34 Valve or Flange Leak Vap or Liq 1.00E-04 10 1.00E-03 Technica

    35 Impact Failure Of Pipe Vap or Liq 1.00E-05 1 1.00E-05 CPQRA

    54 Med Pipe Rupt >2"

  • 5/21/2018 Bhopal QRA V3

    3/29

    Toxic Chemical Vulnerability Model 8/7/2014

    Case Vulnerability Model (VM) Basis = CPQRA Probits

    Toxic Basis 1 (1 = CPQRA, 2 = TNO, 3 = Rat Data, 4 = Manual Input k1, k2, & n)

    Select 1 to 20 4 MIC STEL 15 min. = ? ppmv CPQRA Probits

    Time = 100 minutes Pr = k1 + (k2)[LN(Dose)] = 4.9999

    Avg Conc'n = 18.23 ppmv Dose =S(C^n)(t)= 6.66E+02

    Avg Conc'n = 42.52 mgm/m3 @ t = 25.00 C n = 0.6530

    % Fatality = 50.16% 51.78% 49.97% k1 = -5.6420

    Risk Message Fatality Potential Dose k2 = 1.6370

    MW = 57.1

    Fatality = IDLH LC1 LC10 LC50 LC90

    Probit = 1.6462 2.67 3.72 5 6.28

    Minutes Avg ppmv Avg ppmv Avg ppmv Avg ppmv Avg ppmv

    1 914.16 2,382.19 6,361.61 21,066.96 69,764.87

    2 316.25 824.10 2,200.76 7,287.97 24,134.67

    5 77.74 202.57 540.96 1,791.45 5,932.51

    10 26.89 70.08 187.14 619.74 2,052.31

    60 1.73 4.51 12.04 39.86 132.00

    85 1.01 2.64 7.06 23.38 77.43

    100 0.79 2.06 5.51 18.23 60.37

    Lethal Toxicity Chart For MIC CPQRA Probits (Page down)

    0.10

    1.00

    10.00

    100.00

    1,000.00

    10,000.00

    100,000.00

    1,000,000.00

    1 10 100

    AVG

    PPMV

    EXPOSURE DURATION, MINUTES

    FATALITY CHART FOR SELECTED CHEMICAL

    LC01

    LC10

    LC50

    LC90

    LC99

    IDLH

    Data

    ERP

    ERP

    eg, LC50 = 50% Fatality

  • 5/21/2018 Bhopal QRA V3

    4/29

    Toxic Chemical Vulnerability Model 8/7/2014

    ppmv - min.

    LC99.9

    8.09

    Avg ppmv

    379,313.68

    131,220.93

    32,255.24

    11,158.48

    717.71

    421.02

    328.26

    Pt.

    2

    3

  • 5/21/2018 Bhopal QRA V3

    5/29

    Failure Rates For Database LOOKUP Case =

    Failure Rate

    No. Description Phase Per Year Source 95% Confiden

    1 Instantaneous Vessel Rupture Liquid 1.00E-06 Nussey HSE

    2 Instantaneous Vessel Rupture Vapor 1.00E-06 Nussey HSE Basis: CPQRA,

    3 Vessel Leakage Liquid 2.40E-05 Nussey HSE

    4 Vessel Leakage Vapor 3.60E-05 Nussey HSE Upper Confiden

    5 Catastrophic Dist'n Tower Vap or Liq 6.50E-06 CPQRA, p-459 f1 = 2(x + 1)

    6 Serious Dist'n Tower Leak Vap or Liq 1.00E-05 CPQRA, p-459 f2 = 2(n - x)7 2 Inch Hole In Pipe Liquid 1.60E-06 Nussey HSE

    8 1 Inch Hole In Pipe Liquid 3.20E-06 Nussey HSE Where

    9 1/2 Inch Hole In Pipe Liquid 4.00E-06 Nussey HSE

    10 1/4 Inch Hole In Pipe Liquid 1.60E-05 Nussey HSE

    11 2 Inch Hole In Pipe Vapor 2.40E-06 Nussey HSE Upper Confide

    12 1 Inch Hole In Pipe Vapor 4.80E-06 Nussey HSE

    13 1/2 Inch Hole In Pipe Vapor 6.00E-06 Nussey HSE Lower Limit of

    14 1/4 Inch Hole In Pipe Vapor 2.40E-05 Nussey HSE

    15 Gillotine 1 Inch Liquid 1.20E-07 Nussey HSE Where F1 and16 Gillotine 1/2 Inch Liquid 4.00E-05 Nussey HSE Typically, 95%

    17 Gillotine 1/4 Inch Liquid 1.60E-04 Nussey HSE

    18 Gillotine 1 Inch Vapor 1.80E-07 Nussey HSE Example:

    19 Gillotine 1/2 Inch Vapor 6.00E-05 Nussey HSE

    20 Gillotine 1/4 Inch Vapor 2.40E-04 Nussey HSE

    21 Pipe Splits - 1 Inch Liquid 1.20E-06 Nussey HSE

    22 Pipe Splits - 1/2 Inch Liquid 4.00E-04 Nussey HSE Item

    23 Pipe Splits - /4 Inch Liquid 1.60E-03 Nussey HSE 1

    24 Pipe Splits - 1 Inch Vapor 1.80E-06 Nussey HSE 2

    25 Pipe Splits - 1/2 Inch Vapor 6.00E-04 Nussey HSE 3

    26 Pipe Splits - 1/4 Inch Vapor 2.40E-03 Nussey HSE 4

    27 Gasket (3mm thk) 1/4 Dia Liquid 2.00E-06 Nussey HSE 5

    28 Gasket (3mm thk) 1/4 Dia Vapor 3.00E-06 Nussey HSE 6

    29 Gasket (1.6mm thk) 1/4 Dia Liquid 1.20E-06 Nussey HSE

    30 Gasket (1.6mm thk) 1/4 Dia Vapor 1.80E-06 Nussey HSE

    31 Tanker Cplg Transfer Hose Liquid 1.20E-06 Nussey HSE

    32 Tanker Cplg Transfer Hose Vapor 1.80E-06 Nussey HSE33 Tanker Cplg Transfer Hose Liquid 5.00E-04 CPQRA

    34 Valve or Flange Leak Vap or Liq 1.00E-04 Technica Upper Confide

    35 Impact Failure Of Pipe Vap or Liq 1.00E-05 CPQRA

    36 PSV Leakage at Norm Press Vap or Liq 1.00E-04 CPQRA

    37 PSV Under Fire Vap or Liq 3.00E-06 CPQRA

    38 Pump Case Rupture Liquid 6.60E-05 Technica

    39 P S l L k Li id 6 60E 04 T h i E 5 5 21

  • 5/21/2018 Bhopal QRA V3

    6/29

    47 Complete Nipple Screw Fail Vap or Liq 5.00E-03 Technica

    48 Leak Errosion / Mech Stress Vap or Liq 1.35E-05 Technica

    49 Pipe Rup Along Transfer Line Vap or Liq 6.70E-05 Technica50 Coll'n Vehicle to Pipe support Vap or Liq 4.40E-06 Technica Eqn 5.5.24

    51 Sight Glass failure Vap or Liq 4.50E-02 Technica

    52 Small Pipe Rupt 2" 6" / meter Vap or Liq 2.60E-06 CPQRA, P-459

    58 Brittle Vessel Failure Vap or Liq 6.30E-04 ADL - FT59

    60

    61

    62

    63

    64

    65

    66

    6768

    69

    70

  • 5/21/2018 Bhopal QRA V3

    7/29

    Estimate the Frequency of Leaks and Catastrophic Rupture For An LPG Storage Sphere

    ce Limits Of Failure Rate Data - For PV Catastrophic Rupture Failure

    , Page 351 See allso V.C. Marshall, Major Chemical Hazards, P-71

    ce Limit Lower Confidence Limit

    Eqn 5.5.22 f3 = 2(2 - x + 1) Eqn 5.5.25

    Eqn 5.5.23 f4 = 2(x) Eqn 5.5.26

    x = number of observations of failure

    n = sample size, vessel years

    ce Limit = (x + 1)F1 / [(n-x) + (x + 1)F1] Eqn 5.5.21 with f1 and f2

    onfidence = x / [(n-x + 1)F2 + x] Eqn 5.5.24 with f3 and f4

    F2 = value of F-distribution with degrees of freedom f1 and f2 confidence level is used.

    Data Of Smith and Warwick, 1983, CPQRA, page 358

    20,000 pressure vessels with an exposure of n = 310,000 vessel years = n

    This includes pipe failures and vessel failures.

    Failures Table 4: F1 Table 4: F2

    PV Catastrophic Rupture Failur 2 2.1 5.63

    Catastrophic Pipework Failure 10 1.55 1.84

    Pipe Work Leaks 34 1.30 1.37

    Vessel Leaks 42 1.28 1.33

    1 - 2 Inch Leak Size Failures 25 1.35 1.45

    2 - 6 Inch leak Size Failures 153 1.00 1.00

    Select 1 to 4 1 Observed Failures, x = 2

    PV Catastrophic Rupture Failure / vessel yr = 6.45E-06 /vessel yr = x / n

    nce limit, f1 = 6 Eqn 5.5.22 f1 = 2(x + 1)

    f2 = 619996 Eqn 5.5.23 f2 = 2(n - x)

    From Table VII of Hald (1952a) for P = 0.95, F1 = 2.10 Table 4, p-258

    U C fid Li it 20 32E 06 PV C t t hi R t F il / l

  • 5/21/2018 Bhopal QRA V3

    8/29

    From Table VII of Hald (1952a) for P = 0.95, F2 = 5.63 Table 4, p-258

    Lower Confidence Limit = 1.15E-06 PV Catastrophic Rupture Failure / vessel-yrs

    Failure per 1E06 Hours = 1.31E-04 PERD Lower = 0.00E+00 PERD page = 0

    The analyst can be 95% certain the value for PV Catastrophic Rupture Failure

    falls in the range Lower Limit = 1.15E-06 to Upper L = 2.03E-05failures per vessel year

    Index = 1.00 17.73

    PV Catastrophic Rupture Failure / vessel yr = 1.15E-06 6.45E-06 2.03E-05

    Failure Rate Within 95% Confidence Limits 1.00 5.63 17.73

  • 5/21/2018 Bhopal QRA V3

    9/29

    Slope m Constant b

    Hole In Pipe - Liq Phase -1.02877 -12.3186 Hole In Pipe - Liq Pha

    Inch Fail/Yr Inch Fail/Yr Inch Fail/Yr

    2.00 2.40E-06 2 2.19E-06 2 1.60E-06

    1.00 4.80E-06 1 4.47E-06 1 3.20E-06

    0.50 6.00E-06 0.50 9.12E-06 0.5 4.00E-06

    0.25 2.40E-05 0.25 1.86E-05 0.25 1.60E-05

    Hole In Pipe - Vapor P

    Inch Fail/Yr

    2.00 2.40E-06

    1.00 4.80E-06

    0.50 6.00E-06

    0.25 2.40E-05

    1.00E-06

    1.00E-051.00E-04

    1.00E-03

    1.00E-02

    1.00E-01

    1.00E+00

    0.10 1.00 10.00

    Series1

    Series2

  • 5/21/2018 Bhopal QRA V3

    10/29

  • 5/21/2018 Bhopal QRA V3

    11/29

    Slope m Constant b

    e -1.02877 -12.724

    Inch Fail/Yr

    2 1.46E-06

    1 2.98E-06

    0.5 6.08E-06

    0.25 1.24E-05

    Slope m Constant b

    ase -1.02877 -12.3186

    Inch Fail/Yr

    2 2.19E-06

    1 4.47E-06

    0.50 9.12E-06

    0.25 1.86E-05

  • 5/21/2018 Bhopal QRA V3

    12/29

    Incident No. 3 - Estimated Fault Tree Analysis For BHOPAL Event - Poor Safety Management System

    MIC Flows To Atm Fr Top VGS

    E6 = E5*P5 = 4.00E-07 per Yr

    And

    MIC Flows To Flare Stack Flare Stack Not Available Due To

    Line Maintenance

    E5 =P4*E4 = 4.00E-06 per Yr P5 = 0.1

    And

    VGS Pump Fails to Start MIC Flows To Off Line VGS

    VGS On Standby

    Est'd P4 = 0.01 E4 = E3*P3 = 4.00E-04 per Yr

    And

    Tank At Amb Temp & Runaway Operator Does Not Control

    Reaction Starts Very Fast Runaway

    E3=E1+E2 = 2.00E-03 per Yr P3=P1+P2 = 0.20

    Or Or

    Water Fr N2 Header Water Enters By Sabotage Inst Alarms & Oprs Do Not Operators Fail To Notice Alarms

    Operator error Disgruntled Employee Respond. Incorrect Set Pt. Runaway Takes Off

    E1/Yr = 1.00E-03 E2/Yr = 1.00E-03 Prob P1= 0.10 Prob P2= 0.10

  • 5/21/2018 Bhopal QRA V3

    13/29

    IR

    1.00E-07

    1.00E-06

    1.00E-05

    1.00E-04

    1.00E-03

    1.00E-02

    1.00E-01

    1.00E+00

    AccumulatedRiskPerYear

    Individual Risk

    Data Pts.

    Best Fit

  • 5/21/2018 Bhopal QRA V3

    14/29

    Societal F_N Curve 8/7/2014

    1.00E-07

    1.00E-06

    1.00E-05

    1.00E-04

    1.00E-03

    1.00E-02

    1 10 100 1000 10000

    Freq Of N or MoreFatalities/Yr

    No. Fatalities, N

    Societal F-N Curve For MIC Storage Area

    Acceptable

    Unacceptable

    Case StudyUnacceptable

    Mitig'nReqd

    Acceptable

    Dutch Criteria For Acceptable To Unacceptable - BM - HSE Escape Model

  • 5/21/2018 Bhopal QRA V3

    15/29

    Physical Properties

    Chemical = MIC

    Vessel Pressure at Failure =. 7.02 barg Press, P = 116.35

    Vessel Temp. at Failure, T = 115.56 C T = 240

    Atm Boiling Point, Tnb = 38.89 C Tnb = 102

    Mol Wt. = 57.1 Atm Press. = 14.696

    UEL, vol % = % Relative Humidity, RH = 50.00%

    LEL, vol % = %

    Heat Of Combustion, HC = 4.4.E+05 J/kgm HC = 189Spec Heat Ratio, Cp/Cv = 1.146 Ideal Gas Cp-Cv = 2 Cp = 15.71

    Liquid Density @ atm bp = 977.10 kgm.cu.m. DL = 61

    Latent Ht @ atm bp, L = 4.03E+05 J/kgm L = 173.3

    Liq Heat Capacity, CpL = 1,800 J/kgm/K CpL = 0.43

    Vapor Pressure, vp = 7.02 barg Vapor Pressure, vp = 116.35

    Ambient Temperature = 293.00 K 68.00 F 20.00

    Liquid Head, hL = 6.10 meters hL = 20

    TNT Equivalent Heat Of Combustion 4.65E+06 J/kgm TNT HC = 2,000

    Vessel Failure During = PSV Flow See Tab S7Special Conditions = Nitrogen Pad Lost

    Basis Engineering Data Book - Natural Gas Process Suppliers Association - 9th Edition - 1972 - Cha

  • 5/21/2018 Bhopal QRA V3

    16/29

    Antoinne Constants

    Not added to PP yet

    vp, psi =10^(A+B/(C+C))

    psia C = 115.56

    F A = 5.01922143

    F B = -976.81162

    psia C = 215.1785

    Default = 50%

    BTU/lbBTU/lb mole/F

    lb/cf

    BTU/lb

    BTU/lb/F

    psia

    C

    ft.

    BTU/lb (Default = 2,000)

    pter 16

  • 5/21/2018 Bhopal QRA V3

    17/29

    Screen 4 Calculation of Source Terms (See Tab PID for Typical Credible Scenarios)

    Liquid Leaks For Vessel Holes, Full Bore and Partial Pipe Diameter Breaks

    Basis = Eqn 2.1.7 CPQRA, P449

    Scenario = 1 2" Liq Leak Scenario = 2 1/2" Liq

    Dia. = 0.0508 meters Dia. = 0.0127 meters

    Area = 0.0020 sq.m. Area = 0.00013 sq.m.

    GL = 47.67 kg/sec GL = 2.98 kg/sec

    Drain Time = 14.27 minutes Drain Time= 228.35 minutes

    Type = Long Term - Continuous Type = Long Term - Continuo

    Determine % Flash If Flash is less than 10%, assume rainout will occur and special pool d

    Frac Flashed = 1-EXP(-CpL*(T - Tnb) / L) = 28.99% > 10%, Assume No

    Vapor Leaks For vessel Holes, Full Bore and Partial Pipe Diameter Breaks

    Basis = Eqn 2.1.1 Page 450 CPQRA

    Scenario 3 = 2 Inch Vapor leak Case = 25% Dia., mDia. = 0.0508 meters Dia = 0.0127 meters

    Area = 0.00203 sq.m. Area = 0.000127 sq.m.

    Critical Ratio = 1.74 Crit Ratio = 1.74

    DP Ratio = 8.02 DP Ratio = 8.02

    Is Flow Sonic? Sonic Is Flow Sonic? Sonic

    Flow factor = 0.68 Flow factor 0.68

    Alpha 221.04 Alpha = 221.04

    GV for 2 Vapor Lines = 10.05 kg/s Gv = 0.63 kg/sec

    Frac Flashed as above = 28.99% Frac Flshd= 28.99%

    Flash Vapor wo Entrain't = 26,095 kgms Q wo Ent = 26,095 kgms

    Time to Depressure = 43.29 minutes Time to Dep 692.65 minutes

    Type For 1 Lines = Long Term - Continuous Type = Long Term - Continuous

  • 5/21/2018 Bhopal QRA V3

    18/29

    Leak

    0.50 Inch

    Note

    s

    ispersion is ( Note)

    ainout for Any Liquid Releases & Assume 100% vapor

    To be checked out

    0.50 Inch

    Note

    Assumes constant flash vapor rate.

  • 5/21/2018 Bhopal QRA V3

    19/29

    Representative Set Of Source Terms 8/7/2014

    Turbulent Free Jets

    New TNO Yellow Book, Chapter 3

    Example , Part 6, Page 22 Turbulent Free Jet

    Data Chemical MIC Outflow = Upwards

    MW = 57.1

    Cp/Cv = 1.30 ideal gas where Cp-Cv = 2

    Ves Press = 72.1 psia 497,057.40 pascals 4.97 bar abs

    Atm Press = 14.7 psia 101,341.80 pascals 1.01 bar abs

    Amb Temp = 77 F 298.20 K

    Hole Dia = 2.00 inches 5.08 cm Hole area, Ao 0.00202688 sq.m.

    Flow Coeff = 0.60

    Viscosity = 0.0083 centipoise

    LEL = 2.10%UEL = 9.50%

    Test For Sonic Flow 15,363 lb/hr

    MW Air = 28.84 21% O2

    Pr/Pa = 4.90 [Pr/Pa]^(1/k)= 3.40

    Crit Ratio = 1.83

    Note Pr/Pa > Crit Press Ratio - Sonic Flow

    TNO Initial Flow Rate, mo = 1.94 kg/sec

    Ambient Air density = 1.18 kg/m3

    Gas Density In Vessel, Dg,r = 11.44 kgm/m3

    Gas expansion factor = 0.63

    Gas Density at Opening, Dg,o 7.18 kgm/m3

    Gas Velocity at Opening, Uo 221.61 m/s

    Test For turbulence - Re No. greater than 2.5E+04

    Re No. = 7.54E+06 Re > 25000 - Turbulent Flow - Eqns apply.

    Gas Dens After Expan'n, Do,e 3.37 kgm/m3

    Equivalent Dia., deq = 0.0575 meters 2.26 inches

    b1 = 106.93 Eqn (6), p-12, Constant for the velocity distribution

    b2 = 104.18 Eqn (7), p-12, Constant for the concentration distribution.

    (b1+b2)/b1= 1.97

    Density of Gas relative to air = 1.98 Relative Density Outside 0.14 to 1.53 Limits - Extrapolations Are Approximate

    Rela gas density after exp = 2.86 Eqn 8, p-13

    0.32 denominator term = 0.37

    Eqn 14, p-14 At LEL, jm = 2.10% x/deq = 253.46 x LEL = 14.56 meters

    Eqn 14, p-14 At UEL, jm = 9.50% x/deq = 58.06 x UEL = 3.34 meters

    -0.80

    -0.60-0.40

    -0.20

    0.00

    0.20

    0.40

    0.60

    0.80

    0.00 10.00 20.00

    JetWidth,Meters

    Jet length, Meters

    Concentration Profile in the Free jet

    LEL

    LEL

    UEL

    UEL

  • 5/21/2018 Bhopal QRA V3

    20/29

    Representative Set Of Source Terms 8/7/2014

    Calculation Of Jet Footprint at LEL 7.88224006

    x/deq Incs = 22.33x/deq Conc'n, Jm y/deq x, meters y, meters -y,meters b3 x"

    253.46 2.10% 0.00 14.56 0.00 0.00 0 #DIV/0!

    231.13 2.31% 6.91 13.28 0.40 -0.40 0.0299126 13.2820663

    208.81 2.55% 9.06 12.00 0.52 -0.52 0.04337723 11.999155

    186.48 2.86% 10.18 10.72 0.59 -0.59 0.05460403 10.7162437

    164.16 3.26% 10.67 9.43 0.61 -0.61 0.06499374 9.43333244

    141.83 3.78% 10.66 8.15 0.61 -0.61 0.07517899 8.15042114

    119.51 4.51% 10.23 6.87 0.59 -0.59 0.08561338 6.86750985

    97.18 5.57% 9.40 5.58 0.54 -0.54 0.09676832 5.58459855

    74.86 7.29% 8.18 4.30 0.47 -0.47 0.10931158 4.30168725

    52.53 10.55% 6.54 3.02 0.38 -0.38 0.12448862 3.0187759630.21 19.09% 4.40 1.74 0.25 -0.25 0.14556116 1.73586466

    7.88 100.00% 1.52 0.45 0.09 -0.09 0.19257183 0.45295336

    Calculation Of Jet Footprint at UEL 7.88224006

    x/deq Incs = 4.56

    x/deq Conc'n, Jm y/deq x, meters y, meters -y,meters

    58.06 9.50% 0.00 3.34 0.00 0

    53.50 10.35% 1.54 3.07 0.09 -0.09

    48.94 11.37% 2.03 2.81 0.12 -0.12

    44.38 12.61% 2.31 2.55 0.13 -0.13

    39.82 14.16% 2.46 2.29 0.14 -0.14

    35.25 16.14% 2.51 2.03 0.14 -0.14

    30.69 18.76% 2.48 1.76 0.14 -0.14

    26.13 22.40% 2.37 1.50 0.14 -0.14

    21.57 27.79% 2.19 1.24 0.13 -0.13

    17.01 36.60% 1.94 0.98 0.11 -0.11

    12.44 53.59% 1.60 0.72 0.09 -0.09

    7.88 100.00% 1.18 0.45 0.07 -0.07

    Calculation Of Volume Of Gas Between UEL and LEL by Eqn 19, p-16

    1 to LEL 0.021 0.0225 0.025 0.0275 0.03 0.035 0.04 0.045

    (a) = /3/b2 = 0.010052249 0.01005225 0.01005225 0.01005225 0.01005225 0.01005225 0.01005225 0.01005225

    (b) = 2nd term = 0.003604627 0.00360463 0.00360463 0.00360463 0.00360463 0.00360463 0.00360463 0.00360463

    (a)(b) = 3.62346E-05 3.6235E-05 3.6235E-05 3.6235E-05 3.6235E-05 3.6235E-05 3.6235E-05 3.6235E-05

    (c) = 3rd term = 3.847577893 3.84757789 3.84757789 3.84757789 3.84757789 3.84757789 3.84757789 3.84757789

    (d) = 1/jh^2-1 2266.573696 1974.30864 1599 1321.31405 1110.11111 815.326531 624 492.82716

    (e) = (c)(d) = 8720.818846 7596.30628 6152.27705 5083.85873 4271.23897 3137.03233 2400.88861 1896.19089

    (f) = 4th term = -534.1622151 -497.787532 -446.862977 -405.197431 -370.476143 -315.914119 -274.992601 -243.164754

    (g) = 5th term = 21.97008552 21.5777252 20.9785432 20.4365172 19.9416862 19.065036 18.3056471 17.6358186

    (h) = 6th term = 0.921114028 0.91970272 0.91735054 0.91499836 0.91264618 0.90794181 0.90323745 0.89853309(e) - (f) + (g) + (h) = (i) = 9277.872261 8116.59125 6621.03592 5510.40767 4662.56945 3472.91943 2695.09009 2157.88999

    (i)(a)(b)=Vg,Gas Vol, Eq19= 0.3362 0.2941 0.2399 0.1997 0.1689 0.1258 0.0977 0.0782

    Vgas 1-2 0.04 0.05 0.04 0.03 0.04 0.03 0.02 0.01

    Vgas/javg 1.93 2.28 1.53 1.07 1.33 0.75 0.46 0.30

    Sum (V/j) 10.34 m3 total volume of gas By Simple Inc'ts, Vol. Gas = 10.07 m3

  • 5/21/2018 Bhopal QRA V3

    21/29

    Methodology For Evaporation From Unrestricted Spill 8/7/2014

    Summary Table, Evaporation of Refrigerated MIC

    CASE 1: BHOPAL - Incident No. 4 - Loss Of Refrigerated MIC

    Unrestrained Circular Pool On Average Soil Surface is Penetrable

    Total Spill 40,824 kgms Pool Ht, mm 25 Rough Sand or Gravel

    Flash Liq 40,824 kgms From Pool of Area = 1,670.37 sq. m.

    Flash Vap 0 kgms During First Minute of Spill

    Wind 11.18 mph Atmospheric Stability = Neutral Conditions

    Ground at 21.11 deg C

    SEE TABLE 4, Page 7 Incremental Total Ground Incremental Total Total

    Wind Ground Conduction MIC MIC MIC

    Convection Conduction From Maxim Lost To Lost To Remaining

    Evaporation Evaporation Pool Formed Atmosphere Atmosphere In Spill AreaTime Fr, sec Time to, sec kgm. kgm. kgm. kgm. kgm kgm.

    0.00 16.47 0.00 898.01 0.00 898.01 898.01 39,925.99

    16.47 60.00 138.77 2,188.94 2,188.94 2,327.71 3,225.72 37,598.28

    60.00 120.00 191.26 1,186.79 3,375.72 1,378.05 4,603.77 36,220.23

    120.00 180.00 191.26 866.87 4,242.59 1,058.13 5,661.90 35,162.10

    180.00 240.00 191.26 717.62 4,960.21 908.88 6,570.78 34,253.22

    240.00 300.00 191.26 626.18 5,586.39 817.45 7,388.23 33,435.77

    300.00 360.00 191.26 562.74 6,149.13 754.01 8,142.23 32,681.77

    360.00 420.00 191.26 515.39 6,664.52 706.66 8,848.89 31,975.11

    420.00 480.00 191.26 478.30 7,142.82 669.57 9,518.46 31,305.54

    480.00 540.00 191.26 448.22 7,591.05 639.49 10,157.95 30,666.05540.00 600.00 191.26 423.19 8,014.24 614.46 10,772.41 30,051.59

    600.00 660.00 191.26 401.94 8,416.18 593.21 11,365.61 29,458.39

    660.00 720.00 191.26 383.60 8,799.78 574.87 11,940.48 28,883.52

    720.00 5,112.00 14,000.59 14,882.57 23,682.36 28,883.17 40,823.65 0.35

    Time To Evaporate Spill = 85.20 Minutes Total Lost To Atm in Ist Min = 3,225.72 kgms.

    Total Lost To Atm in Ist Min = 7,111 lbs

    % Vaporzd in ist Minute = 7.90%

    Initial rate = 3,225.72 kgm/min. 426,569 lb/hr

    Avg rate = 479.15 kgm/min. 63,363 lb/hr 1056.34 lb/min.Dispn rate = 1,852.44 kgm/min. 244,966 lb/hr 1/2 way between initial and avg rate

    Dispn rate = 30.87 kgms/sec

  • 5/21/2018 Bhopal QRA V3

    22/29

    Methodology For Major Spill Into Dyked Area 8/7/2014

    Summary Table, Evaporation of Refrigerated MIC

    CASE BHOPAL - Scenario 1 - Leak Into 1,000 m2 Restricted Area

    Bunded Circular Pool On Average Soil Surface is Penetrable

    Total Spill 40,824 kgms Dyke Dia = 35.84 Tank Dia = 3 meters

    Flash Liq 40,824 kgms From Pool of Area = 1,001.32 sq. m.

    Flash Vap 0 kgms During First Minute of Spill

    Wind 11.18 mph Atmospheric Stability = Neutral Conditions

    Ground at 21.44 deg C

    See Table 5, Page Incremental Total Ground Incremental Total Total

    Wind Ground Conduction MIC MIC MIC

    0.016666667 Convection Conduction From Maxim Lost To Lost To RemainingEvaporation Evaporation Pool Formed Atmosphere Atmosphere In Spill Area

    Time fr, hour Time to, hour kgm. kgm. kgm. kgm. kgm kgm.

    0.00 0.0167 100.42 1,540.51 1,540.51 1,640.93 1,640.93 39,183.07

    0.02 0.0333 100.42 638.10 2,178.62 738.52 2,379.45 38,444.55

    0.03 0.0500 100.42 489.63 2,668.25 590.05 2,969.51 37,854.49

    0.05 0.0667 100.42 412.78 3,081.03 513.20 3,482.71 37,341.29

    0.07 0.0833 100.42 363.67 3,444.69 464.09 3,946.79 36,877.21

    0.08 0.1000 100.42 328.78 3,773.47 429.20 4,375.99 36,448.01

    0.10 0.1167 100.42 302.34 4,075.82 402.76 4,778.75 36,045.250.12 0.1333 100.42 281.41 4,357.23 381.83 5,160.59 35,663.41

    0.13 0.1500 100.42 264.31 4,621.54 364.73 5,525.32 35,298.68

    0.15 0.1667 100.42 249.99 4,871.53 350.41 5,875.73 34,948.27

    0.17 0.1833 100.42 237.77 5,109.31 338.19 6,213.92 34,610.08

    0.18 3.22 18,296.38 16,303.29 21,412.59 34,599.67 40,813.59 10.41

    Time To Evaporate Spill = 3.22 Hours Total Lost To Atm in Ist Min = 1,640.93 kgms.

    Loss To Atm in 2nd Min. = 738.52 kgms

    Initial Rate = a 1,640.93 kgm/min.Avg Rate = b 211.30 kgm/min.

    Leak Rate and Source term Disp'n Rate = (a+b)/2 926.12 kgm/min.

    Disp'n Rate = (a+b)/2 15.44 kgm/sec

    Initial Rate = a 3,617.60 lb/min.

    Avg Rate = b 465.84 lb/min.

    Disp'n Rate = (a+b)/2 2,041.72 lb/min.

    Disp'n Rate = (a+b)/2 122,503.31 lb/hr

  • 5/21/2018 Bhopal QRA V3

    23/29

    Methodology for Liquid Evaporation Rate - Non Boiling Liquids 8/7/2014

    CONVECTIVE EVAPORATION OF VOLATILE LIQUIDS FROM RECTANGULAR POOLS

    Basis: Lihou Course, p-4, Clancy V.J. Chem Proc Hazards, 1974, p-80, IChemE Symp. Ser. No. 39a

    Liquid = Acrylonitrile U.S. EPA Example 4Vapor Mol Wt = 53.1 If multicomponent, evaporation rate may be unsteady state

    Liq Temp, T = 77 deg F 298.00 deg K 25.00 deg C

    VP at T, Ps = 2.06 psia 0.1420 bar

    Pool width, y = 110.43 feet 33.66 meters Area, sf = 12195.00

    Pool Length, x = 110.43 feet 33.66 meters, (wind across this dimension)

    Wind Speed, U 3.355 mph 1.50 meters/sec

    Calculations per equations 9, Page 4

    Satd Vap Density 0.018984 lb/cu. ft. 0.3041 kgm/cu. m RHOS = MW*VP/(10.73*R)

    Unstable Neutral Stable

    n factor 0.2 0.25 0.2

    K factor 0.001278 0.00157 0.001786

    Rate, kgm/s = 0.44562 0.50161 0.62275 Eqn 9 No Conduction

    Rate, kgm/min 26.74 30.10 37.36

    Rate, lb/min = 58.94 66.35 82.37

    Rate, lb/hr = 3,536.64 3,981.03 4,942.44

    CONVECTIVE EVAPORATION OF VOLATILE LIQUIDS FROM CIRCULAR POOLS

    Basis: Clancy V.J. Chem Proc Hazards, 1974, p-80, IChemE Symp. Ser. No. 39a

    Liquid = Acrylonitrile Example 2, Page 4, Lihou Course

    Vapor Mol Wt = 53.1 If multicomponent, evaporation rate may be unsteady state

    Liq Temp, T = 77 deg F 298.00 deg K 25.00 deg C

    VP at T, Ps = 2.06 psia 0.1420 bar

    Pool Radius, r = 62.30 feet 18.99 meters Area, sf = 12,195.00Wind Speed, U 3.355 mph 1.50 meters/sec

    Calculations per equations 10, Page 4

    Satd Vap Density 0.018984 lb/cu. ft. 0.3041 kgm/cu. m RHOS = MW*VP/(10.73*R)

    Unstable Neutral Stable

    n factor 0.2 0.25 0.2

    K' factor 0.003846 0.004685 0.005285

    Rate, kgm/s = 0.44966 0.50775 0.61791 Eqn 10 No Conduction

    Rate, kgm/min 26.98 30.46 37.07

    Rate, lb/min. = 59.48 67.16 81.73

    Rate, lb/hr = 3,568.76 4,029.73 4,904.03

  • 5/21/2018 Bhopal QRA V3

    24/29

    TIME TO DEPRESSURE A VESSEL WITH LIQUID AT ITS BOILING POINT 8/7/2014

    Case No. Chlorine 90 Ton Tank Car Example

    FlowPhys Properties of CHLORINE No Inert Gas Pad

    Starting Liq Temp = 77.00 F Vessel Dia., ft 10

    Starting Psia 112.90 Vap Press Tan-Tan L, ft 40

    Final Psia 14.70 % Full 66.00%

    Number Incs 20 Vessel Vol., cf 3,142 89 m3

    Dp/Inc 4.91 Liq cf= 2,073 181,077 lbs

    Number of Nozzles 1 Vapor cf 1,068 1,671 lbs

    Flow Coeff Assumed = 1.0000 Conservative

    Nozzle Dia., inches 2.00 Cp/Cv = 1.36

    Time Vapor Rate Vessel Press Flow Liq In Vessel Vapor Lost to Accumulated

    Minutes lb/hr Psia Condition Lbs Atmos., lbs. lbs Vapor

    0.00 48,154 112.90 Sonic 181,077 0 0

    1.46 46,091 107.99 Sonic 179,972 1,145 1,145

    3.04 44,045 103.08 Sonic 178,828 1,187 2,331

    4.76 41,997 98.17 Sonic 177,638 1,234 3,565

    6.64 39,947 93.26 Sonic 176,397 1,286 4,8518.71 37,897 88.35 Sonic 175,102 1,343 6,194

    11.00 35,844 83.44 Sonic 173,746 1,405 7,599

    13.54 33,789 78.53 Sonic 172,325 1,473 9,072

    16.36 31,732 73.62 Sonic 170,835 1,545 10,616

    19.53 29,671 68.71 Sonic 169,270 1,621 12,238

    23.10 27,608 63.80 Sonic 167,626 1,703 13,940

    27.14 25,541 58.89 Sonic 165,900 1,788 15,728

    31.73 23,471 53.98 Sonic 164,087 1,877 17,606

    37.00 21,396 49.07 Sonic 162,186 1,970 19,576

    43.09 19,317 44.16 Sonic 160,192 2,066 21,64350.20 17,233 39.25 Sonic 158,103 2,165 23,807

    58.60 15,143 34.34 Sonic 155,919 2,265 26,072

    68.67 13,048 29.43 Sonic 153,638 2,367 28,439

    81.07 10,844 24.52 Sub Sonic 151,259 2,469 30,908

    97.57 7,858 19.61 Sub Sonic 148,783 2,572 33,480

    126.99 3,048 14.70 Sub Sonic 146,211 2,673 36,153

    Overall Mass Balance Dispersion Modeling Of Transient Conditions

    Initial Final Initial lb/hr = 48,154 Sonic

    Lb in Liquid = 181,077 146,211 Avg lb/hr = 17,082 Sonic

    Lb in Vapor = 1,671 383 Final lb/hr = 3,048 Sub Sonic

    Lb Lost To Atm = 0 36,153

    Totals = 182,747 182,747 For Disp'n, lb/hr = 1/2(Init'l + Avg Rates)

    % of Total Lost to Atm = 19.78% Disp'n, lb/hr= 32,618 Sonic

  • 5/21/2018 Bhopal QRA V3

    25/29

    SIZING AND COST OF FARRIS PSV SYSTEMS 8/7/2014

    PSV SIZING FOR FIRE CODITIONS

    Chemical MIC PSV 109 V-11Mol Wt 57.1

    Method (1=NFPA,2=API-520) 1

    Orientation (1=H,2=V) 1 Horrizontal Vessel Fator for Wetted Area = 0.75

    Diameter 8 ft.

    Tan to Tan 40 ft.

    Max Liq Height 6 ft.

    Tot Vessel Area 1,125.95 sq. ft

    Wetted Area = 844.46 sf to max 50 ft. if Vertical

    Heat Input, Q = 2,710,643 BTU/Hr

    Gas Constant 315 (If unknown, set = 315, See Area_Phys_Prop)

    Atmospheric Pressure = 14.7 psiaCredit Factor (1 to 5) 3 Insulation in accordance with 2-2.5.7 (generally only double steel walled)

    NFPA Protection factor = 0.3

    Operating Pressure = 14.7 psia

    Design pressure = 40 psig

    PSV Set Pressure = 75.4545455 psig Design = 40 psig

    PSV Flow factor For Fire = 1.21

    PSV Flow Pressure = 106 psia Set pressure adjusted so that Temp > 212F to boil cooling water applied to vessel

    PSV Flow Temp = 240 F From Phys Props

    Latent Heat at Flow Temp, L = 173.3 BTU/lb Fr Phys Prop

    Vapor Density at Flow Temp = 1.03 lb/cf Fr Phys Prop

    Ideal Vap Den @ Flow Temp = 0.8058 lb/cf Compress Factor @ Flow Temp= 0.7824 Assume 1.0 if unknown

    Flow Factor For Max PSV Cap = 1.8741 Set at 1 for design. Adjust for max PSV flow capacity

    Vapor Flow = Q/L 29,314 lb/hr G = 3.6936 kgms/sec

    Back Press < 55% flow Press ? 1 1 = yes, 2 = 0Vaiable or fixed?

    Kb, Back Press factor = 1 See Farris , p-3.06 Sizing Section

    PSV Oficie Area Req'd 2.8530 Sq. inches Adjust till Area Req'd = Selected Area

    Select PSV Class = L

    Selected Orifice Area = 2.853 sq. in.

    Estimated Inlet Size = 3 inches (Check DP less 3% of set pressure to prevent chattering)

    Estimated Outlet Size = 4 inches (Check DP less 10% of set pressure to prevent chattering for conventional PSV type)Note: to overcome chattering use a balanced bellows PSV

    Orifice Selection Typical Inlet ypical Outlet

    Selection Size Size

    Class Sq. in. Sq. in. Inches Inches

    D 0.110 1 2

    E 0.196 1 2

    F 0.307 1.5 2

    G 0.503 1.5 2.5

    H 0.785 1.5 3J 1.287 2 3

    K 1.838 3 4

    L 2.853 2.853 3 4

    M 3.600 3.6 4 6

    N 4.340 4.34 4 6

    P 6.380 6.38 4 6

    Q 11.050 11.05 6 8

    R 16 000 16 6 8

  • 5/21/2018 Bhopal QRA V3

    26/29

    Fauske Generalized Correlation For Flashing Choked Flow 8/7/2014

    A Generalized Correlation for Flashing Choked Flow of Initially Subcooled Liquid

    J.C. Leung, M.A. Grolmes, Fauske & Associates, Inc., AICheE Journal, April 1988, Vol. 34, No. 4, P-688

    Fauske Example, P-690

    Initial Liq Temp, To = 512.06 F 540 K

    Initial Vessel Pressure, Po = 798 PSIA 5.50 MPa

    Vapor Pressure at T, Ps = 760 PSIA 5.24 MPa

    Liquid Density, rfo = 48.26 lb/cf 773.00 kg/cu.m. vfo = 1/ rfo = 0.001294

    Vapor Density, rgo = 1.6794 lb/cf 26.90 kgm/cu.m. vgo = 1/rgo = 0.037175

    Liquid Latent Heat, hfgo = 697.72 btu/lb 1,622.90 kJ/kg

    Liquid Specific Heat, Cfo = 1.2035 btu/lb/F 5,039.00 J/kg/K

    Omega, w = Cfo*To*Ps*((vfo-vgo)/hfgo)^2/vfo = 5.39 Eqn 5

    ns = Ps / Po, by definition, the saturation pressure ratio = 0.9524

    nct = (2*Omega-1)/(2*Omega) = 0.9072 Eqn 11

    Is ns>=nct? If true, Eqn 10 can be used, = TRUE Eqn 10 can be used

    nc = ns*(1/nct)*(1-(1-nct/ns)^0.5) = 0.8211 Eqn 10

    Gc* = nc / (Omega*ns)^0.5 = critical mass velocity = 0.3625 Eqn 9a,

    Po in psia to kgm/sq.m.*g = psia*703*9.81 = Po' = 5.50E+06 (kgm/sq.m.)(m/sec^2)

    Gc = (Gc*)(Po'*rfo)^0.5 1.74E+07 lb/hr/sf 23,644 kgm/sq.m./s by Eqn 9a and 9b

    If, for example, the hole diameter is 1.0 inch, calculate the rate of two phase flow?

    Orifice Dia = 1.00 inch 2.54E-02 meter

    Orifice Area = D^2/4 = 5.45E-03 sf 5.07E-04 sq.m.

    2 Flow Rate = (Gc)(A) = 95,086.03 lb/hr 11.98 kgm/sec

    This paper gives a generalized correlation for f lashing choked flow of an initially subcooled liquid.

    The model assumptions are:

    1. Piping resistance are not included, the release is from a hole in the vessel.

    2. Isentropic flow.

    3. Thermal equilibrium.

    4. Equal phase velocities once saturation is reached.

    The model is a limiting case, without consideration of nonequilibrium effects.

    In this regard, it gives a lower-bound estimate for the mass flow rate and should be a

    useful tool for many engineering applications.

    For Two Phase Flow With Piping Resistance, 1987 Boston Vapor Cloud Conference, p-257.

    To account for piping resistance, Fauske determined a flow reduction factor, FR = 1.9454*(L/D equivalent)^-0.2091

    Determine the equivalent length in the usual manner, determine the flow, as above, and mult iply by the flow reduction

    factor, FR.

  • 5/21/2018 Bhopal QRA V3

    27/29

    Touchdown Distance by Hoot and Meroney as presented by Gerry Havens, 1987 VC Conference In Boston, p-568 (R1)

    Also, Chapter 3, Page 18, Workbook Of Test Cases For Vapor Cloud Source Models / CCPS / AIChE (R2)

    Bordurtha Eq (1) Max Conc = 3.44*Cs*100*[D/(2*H + hs)]^1.95*vs/U*0.000001

    Havens Touchdown Distance, X = 0.56*Dj*{(H/Dj) 3*[(2+hs/H)^3-1]*Ua/Uj}^0.5*Frh+Xbar (R1) p-576Havens Touchdown Conc = 3.1*(Q/U/Dj 2)*((2*H+hs)/Dj) -1.95/Dv*1000000 (R1) p-576

    Havens Horizontal Froud No., Frh = Ua/((g*Dj*(RHOj-RHOa)/RHOa))^0.5 (R1) p-576

    Havens Xbar = (Dj*Ua/Uj)*Fr^2 (R1) p-576

    Bordurtha Plume Rise = 1.32*D*(Vs/U)^0.333*SG^0.333*Fr 0.667*0.001

    Bordurtha Froud No. Fr = 31.62*Vs/(9.806*D*(SG-1)/SG) 0.5

    Source Richardson No. = [g(Dg-Da)/Da](p/4)(Dj)(Uj) / {(Ua)(u*)^2} (R2) p-20

    u* = (0.065)(Ua)= 0.3250 m/sec (R2) p-20

    Wind Velocity, Ua = 5.00 m/s g = 9.815

    Initial Jet Velocity, Vs = Uj = 63.64 m/s Q = 3.693564 kgms/sec

    RHO, Initial Jet Density 1.7896 kgm/cu.m.

    RHO air = 1.1786 kgm/cu.m.

    Jet Diameter, Dj 0.2032 meters D = 203.20 mm 8.00

    Bordurtha Froude No., Fr = 77.15 Within HMP Froude No. Range 115.01 to 52.03

    Havens Horizontal Froude No. = Ffh = 4.92 Within HMP Horizontal Froude No. Range 5.44 to 0.88

    Havens & Bordurtha Plume Rise, H = 13.05 meters max ht 42.80 ft.

    Havens X bar, Dist To Max = 95.03 meters downwind distance to max rise 311.76

    Existing Stack Height, hs = 32.92 meters 108 ft.

    Havens C.L. Touchdown Distance 866.96 meters

    Bordurtha Conc'n at Touchdown = 488 ppmv

    Havens Concentration at Touchdown = 488 ppmvSource Richardson No. = 97.86 Rio > 10 and Dense Gas Model Justified

    Exit Nozzle Reynolds No. = 2.31E+06 Re = 6.31(W)/(d)/(Visc cP) (Min.=2.5E04 by Oohms)

    Xbar, m = 95.03

    Xbar

    2,397 ppmv at stack exit elevation

    14 m

    108 Ft. Stack Ht. 488.09 ppmv Concentration at Touchdown

    32 m A grade level virtual distance will

    be established at this concentration

    in a heavy gas model.

    (x,y) coords at base of stack=(0,0)

    TD Radius = 14.39 metersTouchdown Dis, X TD Area = 650.20 m2

    866.96 meters

    2,844.31 ft.

  • 5/21/2018 Bhopal QRA V3

    28/29

    CPQRA Simplified Approaches 8/7/2014

    All in one eqn with wind at 2m, z = 0 and H = 0 TNO Disp'n Coefficients

    ppmv = 1/((Dis+VS) (b+d)/(kgm/s/(PI()*m/s*a*Avg Time Factor*(MW*Atm Press/14.7/1000000/0.082/K Vap)*c)))

    Meters = (kgm/s/(PI()*U2*a*ATCF*(ppm*MW*AtmP/14.7/1000000/0.082/K)*c)) (1/(b+d))-Virt Dis

    Senario 1 Scenario 2 Scenario 3 Scenario 4

    kgms/s = 3.6936 15.44 1.54 3.69 30.8739

    Wind meas'd @ 10.00 10.00 10.00 10.00 10.00 ft.

    U10 = 5.00 5.00 5.00 5.00 5.00 m/s

    Wind at = 2.00 2.00 2.00 2.00 2.00 (1) Wind Speed at 2 meters = U2 = U10(

    Wind Corect'n = 0.15 0.15 0.15 0.15 0.15 CPQRA Table 2.3, p-83

    U2 = 3.93 3.93 3.93 3.93 3.93 Corrected to 2 meters height

    a = 0.128 0.128 0.128 0.128 0.128 Stab (1 - 6) = 4

    b = 0.905 0.905 0.905 0.905 0.905 Rough (1 - 5) 2

    c = 0.2 0.20 0.20 0.20 0.20

    d = 0.76 0.76 0.76 0.76 0.76MW = 57.1 57.1 57.1 57.1 57.1

    Probit Constant, -5.64 -5.64 -5.64 -5.64 -5.64

    Probit Constant, 1.64 1.64 1.64 1.64 1.64

    Probit "n" Const 0.65 0.65 0.65 0.65 0.65

    Probit = 5.00 5.00 5.00 5.00 5.00 (2.67 = LC01, 3.72 = LC10, 5 = LC50)

    Atm P = 14.7 14.70 14.70 14.70 14.70

    K = 293.3 293.30 293.30 293.30 293.30

    TD Distance = 866.96 0.00 0.00 866.96 0.00 meters

    TD Conc = 488.09 1.00E+06 1.00E+06 488.09 1.00E+06 ppmv

    Virt Dist = 192.69 4.96 1.24 192.69 7.22 meters, (Can set conc = 1,000,000 ppmv

    Sample Time = 100.00 60.00 60.00 100.00 85.00 minutesATCF = 1.5849 1.431 1.431 1.585 1.534 average time correction factor.

    Conc = 18.23 39.86 39.86 18.23 23.38 ppmv

    Try Conc = 18.23 18.23 ppmv Dist By CPQRA =

    TD - VD = 674.27 674.27

    Dis Fr Virt Dis = 1,195 2,172 545 1,195 4,355 meters 3920.92 ft.

    ppmv = 18.23 Dis fr Stk = 1,869 Fr All In One Eqn. as a check

    EPA and TNO Instantaneous Release Consequence Analysis 8/7/2014

  • 5/21/2018 Bhopal QRA V3

    29/29

    EPA and TNO Instantaneous Release Consequence Analysis 8/7/2014

    EPA PUFF and TNO Point Source Methods For Instantaneous Releases Risk Class Consequence Zone Description Logic

    Basis: TNO 1979 Yellow Book, EPA Report 600/3-82-078, Wind Corrctd to 2 Meters Ht. 1 100% Certain Fatality > 50% Fatality

    2 Wounded / Req Hospitaization Betwenn 1% & 50% Fatality

    Case Study: BHOPAL AS AN INSTANTANEOUS RELEASE FR PRESSURED VESSEL 3 May Require Hospitalization Between 1% Fatal & IDLH Pr

    4 Coughing, Choking, Vomiting Between IDLH Pr & ERPG2 Pr

    5 No Serious Problems Less Than ERPG2 Probit

    Input Data Units Consequences For Special Areas Of Concern (AOCs) Methodology = EPA

    Chemical Code No. (1-20) = 4 MIC Risk Class = 5 2 3 4

    30 Minute IDLH = 5 ppmv fr database Location = Risk Class 1 Risk Class 2 Risk Class 3 Risk Class 4 Units

    IDLH Probit Value = 1.6462 fr database Dist Of Concern= 534 3,362 7,549 11,992 meters

    60 Minute ERPG2 = 1.00 ppmv fr database Vir Dis @ 100% 0 0 0 0 meters

    ERPG2 Probit = 1.0604 fr database Dist For Dispn = 534 3,362 7,549 11,992 meters

    Tons of Product Released = 45 Tons Peak C.L. Conc = 66,434.56 585.86 73.28 22.31 ppmv

    Atmospheric Pressure = 14.7 psia Avg Conc = 37,505 331 41 13 ppmv

    Amount Vaporized at Atm = 1 Wt. Frac Exposure Min. = 0.69 3.63 7.55 11.47 minutesTemp Of Flash Vapor = 77 F Dose(C^n)(t)= 6.66E+02 1.60E+02 8.58E+01 6.00E+01 ppmv-min

    MW of Vapor = 57.1 fr database Probit = 5.0000 2.6700 1.6462 1.0604 Probit

    Std Deviations For Cloud = 2.15 < 2.15 For 90% of cloud > % Fatality = 50.17% 0.94% 0.00% 0.00% Fr Probits

    Initial Dilution = 1.0000 Vol Frac Risk Conseq = No Problems Wounded>Hospit May Req Hospit Cough/Chkg/Vom See Above

    PUFF Methodology = 1 (EPA = 1, TNO = 2) Cld Arriv Time= 2.26 14.27 32.03 50.88 min., W@ 2m

    k1 Dose Constant = -5.642 fr database Consequence Summary (With Virtual Distance, If Any) Methodology = EPA

    k2 Dose Constant 1.637 fr database 2 m Wind Vel

    n Dose Constant = 0.653 fr database Consequence EPA Dist Fr Peak C.L. Fixed on C.L. Cloud Time Of

    Ambient Temp = 77 F < Cloud Temp Default > % Fatality Source, m Conc, ppmv Avg PPMV Exp Min. Arrival, Min.

    Wind Speed Referenced at = 10 Meter Height 100 50 Out Of Range Out Of Range Out Of Range 0.21

    Wind Speed At Ref Ht. = 11.1835 mph m/s= 5.00 90 194 893,514 504,426 0.27 0.82Wind Speed Correctd to 2m = 8.78 mph m/s= 3.93 80 275 365,686 206,445 0.38 1.17

    LC50 Peak Concentration = 66,434.56 ppmv (for Briggs Only) 70 354 190,955 107,802 0.47 1.50

    Stability Class A,B,C,D,or F D Stabil Class 4 60 438 110,368 62,308 0.57 1.86

    Ground Roughness (1 to 5) = 2 Rural, Zo = 0.1m 50 534 66,435 37,505 0.69 2.26

    Wind Variation, +/- 20.00 +/- Degrees 40 650 39,989 22,576 0.82 2.76

    Wind Speed Ht Corr Factor = 0.15 CPQRA, Table 2.3, p-83 30 805 23,113 13,048 1.00 3.41

    20 1,036 12,069 6,814 1.25 4.40

    Alternate Disp'n Coeff'ts 10 1,467 4,940 2,789 1.71 6.22

    Briggs Dispn Checking Only For Checking Dist 1 3,362 586 331 3.63 14.27

    Initialization Counter 2 1 resets Newton Rapson IDLH 7,549 73 41 7.55 32.03

    Distance to LC50 Conc = 0.5722 km. - Briggs Disp'n Coef ERPG2 11,992 22.31 13 11.47 50.88

    R.A. Hawrelak 7:48 PM 240621230.xls.ms_office