Upload
others
View
3
Download
0
Embed Size (px)
Kirchhoff-Institut
für Physik
Prof. Dr. Petrich Biophotonics II (SS 2018)
Biophotonics IIgeneral remarks
BIOPHOTONICS I (WS 2017/18)
I. Imaging Systems• human vision
• microscopy
II. Light Scattering• Mie scattering
• light propagation in tissue
BIOPHOTONICS II (SS 2018)
III. Biospectroscopy• Fluorescence spectroscopy
• Phosphorescence, bio- and
chemiluminescence
• Vibrational spectroscopy
IV. Lasers in medicine• Laser interaction with tissue
• Applications
Literature:
• Bergmann-Schäfer, Optik (Walter de Gruyter)
• E. Hecht, Optik (Addison-Wesley)
• J. Bille, W. Schlegel, Medizinische Physik 3
(Springer)
• P.N. Prasad, Biophotonics (Wiley)
• T. Vo-Dinh, Biomedical Photonics Handbook (CRC
Press)
• V.V Tuchin, Handbook of Optical Biomedical Diagnostics
(SPIE Press)
• G.G. Hammes, Spectroscopy for the biological sciences
(Wiley)
• J.R. Lakowicz, Principles of Fluorescence
Spectroscopy (Springer)
• It is NOT required to have attended the „Biophotonics I“ lecture prior to visiting „Biophotonics II“.
• Lecture „Biophotonics II“ will be credited with 2 CP subject to successfully passing the written exam.
• If you intend to obtain credit points, i.e. to participate in the exam, you will have to register at:
https://uebungen.physik.uni-heidelberg.de/v/892
1
Kirchhoff-Institut
für Physik
Biophotonics IIgeneral remarks
Klausur : July 23rd, 2018, 9:15-10:45 h
registration: https://uebungen.physik.uni-heidelberg.de/v/892
Please bring your own, completely empty (!) white paper sheets
Allowed:
- 1 DIN A4 page with hand-written information such as formulas etc.
(both sides are o.k.)
- Pencil, etc., simple pocket calculator (not on smart phone, ipad and such !)
- Brain
Not allowed:- Internet connection of any kind
- Smart phones, cell phone, ipads etc., notebooks, netbooks etc.
- Your neighbor‘s solutions
Personal advice: 1.) be on time
2.) carefully read the question, then think, then write
Prof. Dr. Petrich Biophotonics II (SS 2018) 2
Kirchhoff-Institut
für Physik
Biophotonics IIlecture #9 (June 25th, 2018): summary
Prof. Dr. Petrich Biophotonics II (SS 2018)
IV. LASERS IN MEDICINE
Light Amplification by
Stimulated Emission
of Radiation
IV.2. lasers in biology and medicine
IV.1 laser basics
• high power
• narrow band (e.g. 1 MHz)
• „coherent“ (autocoherence
function close to 1)
• small divergence
IV.3. photochemical interaction
IV.4. photothermal interaction
IV.5. photoablation
IV.6. photodisruption and
plasmainduced interaction
3
Kirchhoff-Institut
für Physik
Biophotonics IIlecture #9 (June 25th, 2018): summary
Prof. Dr. Petrich Biophotonics II (SS 2018)
IV.3. photochemical interaction
IV.3.1. effects of ultraviolett
radiation
IV.3.2. photodynamic
therapy (PDT)
UV-A (400-315 nm):
deeper penetration than UV-B
Destroys collagen
Stimulates release of melanin
Does not cause skin redening
Indirect DNA damage
UV-B (315-280 nm):
Destroys collagen
Causes melanin production
direct DNA damage
(apoptosis, mutation (!))
UV-C (280-200 nm):
Most dangerous UV
Absorbed by ozone
Direct DNA damage
Application: sterilization
IV. LASERS IN MEDICINE
Light Amplification by
Stimulated Emission
of Radiation
IV.2. lasers in biology and medicine
IV.1 laser basics
• high power
• narrow band (e.g. 1 MHz)
• „coherent“ (autocoherence
function close to 1)
• small divergence
4
Kirchhoff-Institut
für Physik
Biophotonics IIabsorption spectrum of water
Prof. Dr. Petrich Biophotonics II (SS 2018) 5
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
IV.3. photochemical interaction
IV.4. photothermal interaction
IV.5. photoablation
IV.6. photodisruption and
plasmainduced interaction
Prof. Dr. Petrich Biophotonics II (SS 2018) 6
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
Thermal properties of selected materials
water
blood
fat
cartilage
liver tissue
aorta
copper
diamond
densitysubstance water content k
IV.4. photothermal interaction
Prof. Dr. Petrich Biophotonics II (SS 2018) 7
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
Prof. Dr. Petrich Biophotonics II (SS 2018) 8
Kirchhoff-Institut
für Physik
Biophotonics IIIV.2. Lasers in biology and medicine
10000 1000
1E-4
1E-3
0,01
0,1
1
10
100
1000
10000
1 10
1 0,1
1000 100
Zolotarev et al.
Hale et al.
Irvine et al.
a (dermis)
s' (dermis)
a (HbO in blood)
a (Hb in blood)
ab
so
rptio
n c
oe
ffic
ien
t
of
wa
ter
[1/c
m]
wavenumber [cm-1]
var. dyes N
d:Y
LF
XeF
XeC
l
KrF
Ti:Sapphire
CO
2
Ho:Y
AG
Er:
YA
G
Nd:Y
AG
Alexandrite
diode
Kry
pto
n-i
on
Rub
y
Nd:Y
AG
(2
)A
rgo
n-i
on
wavelength [m]
ArF
photon energy [eV]
frequency [THz]
R
Prof. Dr. Petrich Biophotonics II (SS 2018) 9
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
Temperature elevation following laser heating of media in the
absence (−NT) and presence of multi-wall nanotubes
(MWNTs) (+NT) at an irradiance of 15.3 W/cm2 for 1.5 and 5
min, respectively. Temperatures are measured from a radial
distance of 4 mm from the laser center
Cancer Res. Dec 1, 2010; 70(23): 9855–9864.
Fluorescence immunostained images of cyanine 2-linked HSP27-
antibodies, AMCA-linked HSP70 antibodies, and Rhodamin Red-X
linked HSP90 antibodies in human prostate cancer cell line PC3
cells following various treatment protocols and assssed 16 hours
after photothermal treatment. Scale bars are 50 μm.
Ytterbium fiber laser
max. power 3 W
beam diameter 5 mm
wavelength 1064 nm
Photothermal therapy using multi-well carbon nanotubes
Prof. Dr. Petrich Biophotonics II (SS 2018) 10
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
nwkec.org
diabetic retinopathy
non-proliferatingtiny (fluid and blood)
leaks in blood
vessels of people
with diabetes
proliferatingneovascularization
due to closure of a
vessel
Prof. Dr. Petrich Biophotonics II (SS 2018) 11
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
nw
ke
c.o
rg
non-proliferating diabetic retinopathytiny (fluid and blood) leaks in blood vessels
proliferating diabetic retinopathyneovascularization due to closure of a vessel
panretinal laser photocoagulationfocal laser photocoagulation Prof. Dr. Petrich Biophotonics II (SS 2018) 12
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
http
://ww
w.w
ebm
d.c
om
/eye
-health
/eye
-health
-too
l-spottin
g-v
isio
n-p
roble
ms/d
efa
ult.h
tm
age-related macular degeneration (AMD)
Dry form. The "dry" form of macular
degeneration is characterized by the presence
of yellow deposits, called drusen, in the macula.
A few small drusen may not cause changes in
vision; however, as they grow in size and
increase in number, they may lead to a
dimming or distortion of vision that people find
most noticeable when they read. In more
advanced stages of dry macular degeneration,
there is also a thinning of the light-sensitive
layer of cells in the macula leading to atrophy,
or tissue death. In the atrophic form of dry
macular degeneration, patients may have blind
spots in the center of their vision. In the
advanced stages, patients lose central vision.
Wet form. The "wet" form of macular
degeneration is characterized by the growth of
abnormal blood vessels from the choroid
underneath the macula. This is called choroidal
neovascularization. These blood vessels leak
blood and fluid into the retina, causing distortion
of vision that makes straight lines look wavy, as
well as blind spots and loss of central vision.
These abnormal blood vessels eventually scar,
leading to permanent loss of central vision.
Prof. Dr. Petrich Biophotonics II (SS 2018) 13
Kirchhoff-Institut
für Physik
Biophotonics IIIV.4. Photothermal interaction
http://www.webmd.com/eye-health/eye-vision-tv/video-diabetic-retinopathy
Prof. Dr. Petrich Biophotonics II (SS 2018) 14
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
Prof. Dr. Petrich Biophotonics II (SS 2018) 15
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
Prof. Dr. Petrich Biophotonics II (SS 2018) 16
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
ACS Nano, 2013, 7 (4), pp 2988–2998
DOI: 10.1021/nn303202k
An incision in the skin of the abdomen closed using traditional
sutures (a) and laser soldered using human albumin (b) is
compared two days after surgery. Thirty days after surgery, the
sutured scar (c) is much larger and more noticeable than the laser
soldered scar (d). (Courtesy Tel Aviv University)
laser tissue welding
Prof. Dr. Petrich Biophotonics II (SS 2018) 17
Kirchhoff-Institut
für Physik
Aus: P. Prasad, Introduction to Biophotonics, Wiley (2003)
Biophotonics IIIV. Lasers in medicine
Prof. Dr. Petrich Biophotonics II (SS 2018) 18
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
Laser hair removal
http
://vbil.b
ioen.illin
ois
.edu/
C.C
.Die
rickx, w
ww
.Lum
enis
.com
ww
w.p
en
nm
ed
.org
Prof. Dr. Petrich Biophotonics II (SS 2018) 19
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
Prof. Dr. Wolfgang Petrich Biophotonics II 23.6.2014 page 20
IV.3. photochemical interaction
IV.4. photothermal interaction
IV.5. photoablation
IV.6. photodisruption and
plasmainduced interaction
Prof. Dr. Petrich Biophotonics II (SS 2018) 20
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
drpelias.com
Prof. Dr. Petrich Biophotonics II (SS 2018) 21
Kirchhoff-Institut
für Physik
Biophotonics IIIV. Lasers in medicine
htt
p://w
ww
.pro
me
dla
serc
linic
s.c
o.u
k/la
ser-
tatto
o-a
nd-p
igm
enta
tio
n
Remark on tatoo pigments
e.g.as in paint for autombiles
(titantium dioxide, cadmium
sulfide, chrom oxide, cadmium
selenide, iron oxide), „carbon
black“, organic pigments…
From R. Vasold, Gesundheitsrisiko durch
Tätowierungspigmente, HAUT 3/08, p. 104-107Prof. Dr. Petrich Biophotonics II (SS 2018) 22