BRAF (gene)

Embed Size (px)

Citation preview

  • 8/9/2019 BRAF (gene)

    1/10

    BRAF (gene)

    BRAF   is a human   gene  that makes a   protein  called B-

    Raf. The gene is also referred to as   proto-oncogene

    B-Raf and  v-Raf murine sarcoma viral oncogene ho-

    molog B, while the protein is more formally known as

    serine/threonine-protein kinase B-Raf.[2][3]

    The B-Raf protein is involved in sending  signals  inside

    cells, which are involved in directing   cell growth. In

    2002, it was shown to be faulty (mutated) in some human

    cancers.[4]

    Certain other inherited  BRAF  mutations cause birth de-fects.

    Drugs that treat cancers driven by  BRAF  mutations have

    been developed. Two of these drugs, vemurafenib[5] and

    dabrafenib are approved by FDA for treatment of late-

    stage melanoma. Vemurafenib was the first drug to come

    out of fragment-based drug discovery.

    1 Function

    Gene Regulation

    CellProliferation

    Apoptosis

    Survival Factors

    (e.g., IGF1)

    Chemokines,Hormones,

    Transmitters

    (e.g., interleukins,serotonin, etc.)

    Growth Factors

    (e.g., TGFα, EGF)

      Extracellular

    Matrix

    Integrins

    Dishevelled

    cdc42

    Fyn/ShcGrb2/SOS

    Ras

    Raf

    MEK

    FAK

    Src

    MEKK   MA PK MKK

    GSK-3β

    APC

    β-catenin

    TCF

    Myc:   Mad:

    Max   Max  ERK   JNKs

    JunFos

    β-catenin:TCF

    CREB

    PKA

    Adenylatecyclase

    PLC

    PKC

    NF-κB

    IκB

    STAT3,5

    Bcl-xL

    Cytochrome C

    Caspase 9

    Bcl-2

    Caspase 8

    FADD

    FasR

    Bad

    AbnormalitySensor   Bim

    Mt   Bax

    ARF

    mdm2

    p53

    Death factors(e.g. FasL, Tnf)

    Cytokines(e.g., EPC)

      JAKs

       C  y   t  o   k   i  n  e   R  e  c  e  p   t  o  r

    Wnt

    Hedgehog

    CycIDCDK4Rb

    E2F

    CyclE   p27

    p21

    CDK2

    RTK

    GPCR

    RTK

    G-ProteinPI3K

    Akt

    Akkα

    Glip16

    p15

    F r  i    z z l     e d  

    P  a t    c h   e d  

     S M O

    Overview of signal transduction pathways involved in apoptosis .

    The role of Raf proteins, like B-Raf is indicated in the center.

    B-Raf is a member of the  Raf kinase family of growth

    signal transduction protein kinases. This protein plays

    a role in regulating the   MAP kinase/ERKs signaling

    pathway, which affects cell division, differentiation, and

    secretion.[6]

    2 Structure

    B-Raf is a 766-amino acid, regulated signal transduction

    serine/threonine-specific protein kinase. Broadly speak-

    ing, it is composed of three conserved   domains   char-

    acteristic of the   Raf kinase family: conserved region

    1 (CR1), a  Ras-GTP-binding[7] self-regulatory domain,

    conserved region 2 (CR2), a serine-rich hinge region, and

    conserved region 3 (CR3), a catalytic  protein kinase do-

    main that  phosphorylates a consensus sequence on pro-

    tein substrates.[8] In its active conformation, B-Raf forms

    dimers via   hydrogen-bonding   and electrostatic interac-

    tions of its kinase domains.[9]

    2.1 CR1

    Conserved region 1   autoinhibits   B-Raf’s kinase do-

    main (CR3) so that B-Raf signaling is regulated rather

    than constitutive.[8] Residues 155–227[10] make up the

    Ras-binding domain (RBD), which binds to Ras-GTP’s

    effector domain to release CR1 and halt kinase inhibi-

    tion. Residues 234–280 comprise a phorbol ester/DAG-

    binding zinc finger motif that participates in B-Raf mem-

    brane docking after Ras-binding.[10][11]

    2.2 CR2

    Conserved Region 2 (CR2) provides a flexible linker that

    connects CR1 and CR3 and acts as a hinge.

    2.3 CR3

    Conserved Region 3 (CR3), residues 457–717,[10] makes

    up B-Raf’s enzymatic kinase domain. This largely con-

    served structure[12] is bi-lobal, connected by a short hinge

    region.[13] The smaller N-lobe (residues 457–530) is pri-

    marily responsible for  ATP   binding while the larger C-

    lobe (residues 535–717) binds substrate proteins.[12] The

    active site is the cleft between the two lobes, and the cat-

    alytic Asp576 residue is located on the C-lobe, facing the

    inside of this cleft.[10][12]

    2.3.1 Subregions

    P-Loop

    The P-loop  of B-Raf (residues 464–471) stabilizes the

    non-transferable   phosphate   groups of ATP during en-

    zyme ATP-binding. Specifically, S467, F468, and G469

    backbone  amides  hydrogen-bond to the β-phosphate ofATP to anchor the molecule. B-Raf functional mo-

    tifs have been determined by analyzing the homology of

    1

    https://en.wikipedia.org/wiki/Proto-oncogenehttps://en.wikipedia.org/wiki/Amidehttps://en.wikipedia.org/wiki/Glycinehttps://en.wikipedia.org/wiki/Phenylalaninehttps://en.wikipedia.org/wiki/Serinehttps://en.wikipedia.org/wiki/Phosphatehttps://en.wikipedia.org/wiki/Walker_motifshttps://en.wikipedia.org/wiki/Aspartic_acidhttps://en.wikipedia.org/wiki/Enzyme_substrate_(biology)https://en.wikipedia.org/wiki/C-terminushttps://en.wikipedia.org/wiki/Adenosine_triphosphatehttps://en.wikipedia.org/wiki/N-terminushttps://en.wikipedia.org/wiki/Zinc_fingerhttps://en.wikipedia.org/wiki/Diacylglycerolhttps://en.wikipedia.org/wiki/Phorbolhttps://en.wikipedia.org/wiki/Effector_(biology)https://en.wikipedia.org/wiki/Ras_subfamilyhttps://en.wikipedia.org/wiki/Enzyme_inhibitorhttps://en.wikipedia.org/wiki/Hydrogen_bondhttps://en.wikipedia.org/wiki/Consensus_sequencehttps://en.wikipedia.org/wiki/Phosphorylationhttps://en.wikipedia.org/wiki/Protein_kinasehttps://en.wikipedia.org/wiki/Serinehttps://en.wikipedia.org/wiki/Guanosine_triphosphatehttps://en.wikipedia.org/wiki/Ras_subfamilyhttps://en.wikipedia.org/wiki/Raf_kinasehttps://en.wikipedia.org/wiki/Protein_domainhttps://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinasehttps://en.wikipedia.org/wiki/Signal_transductionhttps://en.wikipedia.org/wiki/Amino_acidhttps://en.wikipedia.org/wiki/Cellular_differentiationhttps://en.wikipedia.org/wiki/Cell_divisionhttps://en.wikipedia.org/wiki/MAPK/ERK_pathwayhttps://en.wikipedia.org/wiki/MAPK/ERK_pathwayhttps://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinaseshttps://en.wikipedia.org/wiki/Mitogen-activated_protein_kinasehttps://en.wikipedia.org/wiki/Protein_kinasehttps://en.wikipedia.org/wiki/Signal_transductionhttps://en.wikipedia.org/wiki/Raf_kinasehttps://en.wikipedia.org/wiki/Apoptosishttps://en.wikipedia.org/wiki/Fragment-based_drug_discoveryhttps://en.wikipedia.org/wiki/Dabrafenibhttps://en.wikipedia.org/wiki/Vemurafenibhttps://en.wikipedia.org/wiki/Cancershttps://en.wikipedia.org/wiki/Mutationhttps://en.wikipedia.org/wiki/Cell_growthhttps://en.wikipedia.org/wiki/Signal_transductionhttps://en.wikipedia.org/wiki/Proto-oncogenehttps://en.wikipedia.org/wiki/Proteinhttps://en.wikipedia.org/wiki/Gene

  • 8/9/2019 BRAF (gene)

    2/10

    2   3 ENZYMOLOGY 

    Figure 1: Inactive conformation of B-Raf kinase (CR3) domain.

    P-Loop (orange) hydrophobic interactions with activation loop

    (gray) residues that stabilize the inactive kinase conformation are

    shown with sticks. F595 (red) blocks the hydrophobic pocket 

    where the ATP adenine binds (yellow). D576 (orange) is shown

    as part of the catalytic loop (magenta). Figure modified from

    PDB id 1UWH.

    PKA analyzed by Hanks and Hunter to the B-Raf kinase

    domain.[12]

    Nucleotide-Binding Pocket

    V471, C532, W531, T529, L514, and A481 form a hy-

    drophobic pocket within which the adenine of ATP is

    anchored through Van der Waals attractions upon ATP

    binding.[12][14]

    Catalytic Loop

    Residues 574–581 compose a section of the kinase do-

    main responsible for supporting the transfer of the γ-

    phosphate of ATP to B-Raf’s protein substrate. In par-

    ticular,   D576 acts as a   proton acceptor  to activate the

    nucleophilic hydroxyl oxygen on substrate serine or thre-

    onine residues, allowing the phosphate transfer reactionto occur mediated by  base-catalysis.[12]

    DFG Motif

    D594, F595, and G596 compose a motif central to B-

    Raf’s function in both its inactive and active state. In

    the inactive state, F595 occupies the nucleotide-binding

    pocket, prohibiting ATP from entering and decreasing

    the likelihood of enzyme catalysis.[9][14][15] In the active

    state, D594 chelates the  divalent magnesium cation that

    stabilizes the β- and γ-phosphate groups of ATP, orient-

    ing the γ-phosphate for transfer.[12]

    Activation Loop

    Residues 596–600 form strong hydrophobic interactions

    with the P-loop in the inactive conformation of the ki-

    nase, locking the kinase in its inactive state until the acti-

    vation loop is phosphorylated, destabilizing these interac-

    tions with the presence of negative charge. This triggers

    the shift to the active state of the kinase. Specifically,

    L597 and V600 of the activation loop interact with G466,

    F468, and V471 of the P-loop to keep the kinase domain

    inactive until it is phosphorylated.[13]

    3 Enzymology

    B-Raf is a  serine/threonine-specific protein kinase. As

    such, it catalyzes the phosphorylation of   serine   and

    threonine residues in a consensus sequence on target pro-

    teins by ATP, yielding ADP and a phosphorylated protein

    as products.[12] Since it is a highly regulated signal trans-

    duction kinase, B-Raf must first bind Ras-GTP before be-

    coming active as an enzyme.[11] Once B-Raf is activated,

    a conserved protein kinase catalytic core phosphorylates

    protein substrates by promoting the nucleophilic attack

    of the activated substrate serine or threonine   hydroxyl

    oxygen atom on the γ-phosphate group of ATP through

    bimolecular nucleophilic substitution.[12][16][17][18]

    3.1 Activation

    3.1.1 Relieving CR1 autoinhibition

    The kinase (CR3) domain of human   Raf kinases is in-

    hibited by two mechanisms:   autoinhibition   by its ownregulatory Ras-GTP-binding CR1 domain and a lack

    of post-translational   phosphorylation of key serine and

    tyrosine residues (S338 and Y341 for c-Raf) in the CR2

    hinge region. During B-Raf activation, the protein’s

    autoinhibitory CR1 domain first binds Ras-GTP’s effector

    domain to the CR1 Ras-binding domain (RBD) to re-

    lease the kinase CR3 domain like other members of the

    human  Raf kinase family. The CR1-Ras interaction is

    later strengthened through the binding of the  cysteine-

    rich subdomain (CRD) of CR1 to Ras and   membrane

    phospholipids.[8] Unlike A-Raf and C-Raf, which must

    be phosphorylated on hydroxyl-containing CR2 residuesbefore fully releasing CR1 to become active, B-Raf is

    constituitively phosphorylated on CR2 S445.[19] This al-

    lows the negatively charged phosphoserine to immedi-

    ately repel CR1 through steric and electrostatic interac-

    tions once the regulatory domain is unbound, freeing the

    CR3 kinase domain to interact with substrate proteins.

    3.1.2 CR3 domain activation

    After the autoinhibitory CR1 regulatory domain is re-

    leased, B-Raf’s CR3  kinase domain must change to its

    ATP-binding active conformer before it can catalyze pro-tein phosphorylation. In the inactive conformation, F595

    of the DFG motif blocks the hydrophobic adenine bind-

    https://en.wikipedia.org/wiki/Adeninehttps://en.wikipedia.org/wiki/Hydrophobehttps://en.wikipedia.org/wiki/Conformational_isomerismhttps://en.wikipedia.org/wiki/Adenosine_triphosphatehttps://en.wikipedia.org/wiki/Protein_kinasehttps://en.wikipedia.org/wiki/C-Rafhttps://en.wikipedia.org/wiki/ARAFhttps://en.wikipedia.org/wiki/Phospholipidhttps://en.wikipedia.org/wiki/Cell_membranehttps://en.wikipedia.org/wiki/Cysteinehttps://en.wikipedia.org/wiki/Raf_kinasehttps://en.wikipedia.org/wiki/Effector_(biology)https://en.wikipedia.org/wiki/Enzyme_induction_and_inhibitionhttps://en.wikipedia.org/wiki/Tyrosinehttps://en.wikipedia.org/wiki/Posttranslational_modificationhttps://en.wikipedia.org/wiki/Guanosine_triphosphatehttps://en.wikipedia.org/wiki/Ras_subfamilyhttps://en.wikipedia.org/wiki/Regulatory_enzymeshttps://en.wikipedia.org/wiki/Enzyme_induction_and_inhibitionhttps://en.wikipedia.org/wiki/Raf_kinasehttps://en.wikipedia.org/wiki/Bimolecular_nucleophilic_substitutionhttps://en.wikipedia.org/wiki/Alpha_and_beta_carbonhttps://en.wikipedia.org/wiki/Hydroxylhttps://en.wikipedia.org/wiki/Guanosine_triphosphatehttps://en.wikipedia.org/wiki/Ras_subfamilyhttps://en.wikipedia.org/wiki/Protein_kinasehttps://en.wikipedia.org/wiki/Signal_transductionhttps://en.wikipedia.org/wiki/Signal_transductionhttps://en.wikipedia.org/wiki/Adenosine_diphosphatehttps://en.wikipedia.org/wiki/Adenosine_triphosphatehttps://en.wikipedia.org/wiki/Consensus_sequencehttps://en.wikipedia.org/wiki/Threoninehttps://en.wikipedia.org/wiki/Serinehttps://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinasehttps://en.wikipedia.org/wiki/Cationhttps://en.wikipedia.org/wiki/Magnesiumhttps://en.wikipedia.org/wiki/Divalenthttps://en.wikipedia.org/wiki/Chelationhttps://en.wikipedia.org/wiki/Acid_catalysishttps://en.wikipedia.org/wiki/Nucleophilehttps://en.wikipedia.org/wiki/Base_(chemistry)https://en.wikipedia.org/wiki/Aspartic_acidhttps://en.wikipedia.org/wiki/Alaninehttps://en.wikipedia.org/wiki/Leucinehttps://en.wikipedia.org/wiki/Threoninehttps://en.wikipedia.org/wiki/Tryptophanhttps://en.wikipedia.org/wiki/Cysteinehttps://en.wikipedia.org/wiki/Valinehttps://en.wikipedia.org/wiki/Protein_kinase_A

  • 8/9/2019 BRAF (gene)

    3/10

    3.3 Inhibitors    3

    ing pocket while activation loop residues form hydropho-

    bic interactions with the P-loop, stopping ATP from ac-

    cessing its binding site. When the activation loop is phos-

    phorylated, the negative charge of the phosphate is unsta-

    ble in the hydrophobic environment of the P-loop. As a

    result, the activation loop changes conformation, stretch-

    ing out across the C-lobe of the kinase domain. In thisprocess, it forms stabilizing β-sheet interactions with the

    β6 strand. Meanwhile, the phosphorylated residue ap-

    proaches K507, forming a stabilizing salt bridge to lock

    the activation loop into place. The DFG motif changes

    conformation with the activation loop, causing F595 to

    move out of the adenine nucleotide binding site and into

    a hydrophobic pocket bordered by the   αC and αE he-

    lices. Together, DFG and activation loop movement upon

    phosphorylation open the ATP binding site. Since all

    other substrate-binding and catalytic domains are already

    in place, phosphorylation of the activation loop alone ac-

    tivates B-Raf’s kinase domain through a chain reactionthat essentially removes a lid from an otherwise-prepared

    active site.[13]

    3.2 Mechanism of catalysis

    Figure 2: Base-catalyzed nucleophilic attack of a ser-

    ine/threonine substrate residue on the γ-phosphate group of ATP.

    Step 1: chelation of secondary magnesium ion by N581 and de-

     protonation of substrate Ser/Thr by D576. Step 2: nucleophilic 

    attack of activated substrate hydroxyl on ATP γ-phosphate. Step

    3: magnesium complex breaks down and D576 deprotonates.

    Step 4: release of products.

    To effectively catalyze protein phosphorylation via the bi-

    molecular substitution of serine and threonine residues

    with ADP as a leaving group, B-Raf must first bind ATPand then stabilize the transition state as the γ-phosphate

    of ATP is transferred.[12]

    3.2.1 ATP binding

    B-Raf binds ATP by anchoring the adenine nucleotide

    in a   nonpolar   pocket (yellow, Figure 1) and orient-

    ing the molecule through hydrogen-bonding and electro-

    static interactions with phosphate groups. In addition to

    the P-loop and DFG motif phosphate binding describedabove, K483 and E501 play key roles in stabilizing non-

    transferable phosphate groups. The positive charge on

    the primary amine of K483 allows it to stabilize the nega-

    tive charge on ATP α- and β-phosphate groups when ATP

    binds. When ATP is not present, the negative charge of

    the E501 carboxyl group balances this charge.[12][13]

    3.2.2 Phosphorylation

    Once ATP is bound to the B-Raf kinase domain, D576 of

    the catalytic loop activates a substrate hydroxyl group, in-

    creasing its nucleophilicity to kinetically drive the phos-

    phorylation reaction while other catalytic loop residues

    stabilize the transition state.(Figure 2). N581 chelates

    the divalent magnesium cation associated with ATP to

    help orient the molecule for optimal substitution. K578

    neutralizes the negative charge on the γ-phosphate group

    of ATP so that the activated ser/thr substrate residue

    won't experience as much electron-electron repulsion

    when attacking the phosphate. After the phosphate group

    is transferred, ADP and the new phosphoprotein are

    released.[12]

    3.3 Inhibitors

    Since constitutively active B-Raf mutants commonly

    cause cancer (see Clinical Significance) by excessively

    signaling cells to grow, inhibitors of B-Raf have been

    developed for both the inactive and active confor-

    mations of the kinase domain as cancer therapeutic

    candidates.[13][14][15]

    3.3.1 Sorafenib

    BAY43-9006 (Sorafenib, Nexavar)is a V600E mutant B-Raf and  C-Raf  inhibitor approved by the  FDA  for the

    treatment of primary   liver   and  kidney   cancer. Bay43-

    9006 disables the B-Raf kinase domain by locking the en-

    zyme in its inactive form. The inhibitor accomplishes this

    by blocking the ATP binding pocket through high-affinity

    for the kinase domain. It then binds key activation loop

    and DFG motif residues to stop the movement of the ac-

    tivation loop and DFG motif to the active conformation.

    Finally, a trifluoromethyl phenyl moiety sterically blocks

    the DFG motif and activation loop active conformation

    site, making it impossible for the kinase domain to shift

    conformation to become active.

    [13]

    The distal  pyridyl  ring of BAY43-9006 anchors in the

    hydrophobic nucleotide-binding pocket of the kinase N-

    https://en.wikipedia.org/wiki/Pyridinehttps://en.wikipedia.org/wiki/Affinity_(pharmacology)https://en.wikipedia.org/wiki/Protein_kinasehttps://en.wikipedia.org/wiki/Renal_cell_carcinomahttps://en.wikipedia.org/wiki/Hepatocellular_carcinomahttps://en.wikipedia.org/wiki/Food_and_Drug_Administrationhttps://en.wikipedia.org/wiki/C-Rafhttps://en.wikipedia.org/wiki/Mutanthttps://en.wikipedia.org/wiki/Sorafenibhttps://en.wikipedia.org/wiki/Carboxylhttps://en.wikipedia.org/wiki/Aminehttps://en.wikipedia.org/wiki/Nonpolarhttps://en.wikipedia.org/wiki/Transition_statehttps://en.wikipedia.org/wiki/Leaving_grouphttps://en.wikipedia.org/wiki/Adenosine_diphosphatehttps://en.wikipedia.org/wiki/Alpha_helixhttps://en.wikipedia.org/wiki/Alpha_helixhttps://en.wikipedia.org/wiki/Beta_sheet

  • 8/9/2019 BRAF (gene)

    4/10

    4   4 CLINICAL SIGNIFICANCE 

    Figure 3: B-Raf kinase domain locked in the inactive conforma-

    tion by bound BAY43-9006. Hydrophobic interactions anchor 

    BAY43-9006 in the ATP binding site while urea group hydrogen-bonding traps D594 of the DFG motif. The BAY43-9006 trifluo-

    romethyl  phenyl  ring further prohibits DFG motif and activation

    loop movement to the active confermer via steric blockage.

    lobe, interacting with W531, F583, and F595. The hy-

    drophobic interactions with catalytic loop F583 and DFG

    motif F595 stabilize the inactive conformation of these

    structures, decreasing the likelihood of enzyme activa-

    tion. Further hydrophobic interaction of K483, L514,

    and T529 with the center phenyl ring increase the affinity

    of the kinase domain for the inhibitor. Hydrophobic

    interaction of F595 with the center ring as well de-creases the energetic favorability of a DFG conforma-

    tion switch further. Finally, polar interactions of BAY43-

    9006 with the kinase domain continue this trend of in-

    creasing enzyme affinity for the inhibitor and stabilizing

    DFG residues in the inactive conformation. E501 and

    C532 hydrogen bond the urea and pyridyl groups of the

    inhibitor respectively while the urea carbonyl   accepts a

    hydrogen bond from D594’s backbone amide nitrogen to

    lock the DFG motif in place.[13]

    The trifluoromethyl phenyl moiety cements the thermo-

    dynamic favorability of the inactive conformation when

    the kinase domain is bound to BAY43-9006 by stericallyblocking the hydrophobic pocket between the αC and αE

    helices that the DFG motif and activation loop would in-

    habit upon shifting to their locations in the active confor-

    mation of the protein.[13]

    3.3.2 Vemurafenib

    PLX4032 (Vemurafenib) is a V600   mutant   B-Raf in-

    hibitor approved by the  FDA for the treatment of late-

    stage  melanoma.[9] Unlike BAY43-9006, which inhibits

    the inactive form of the kinase domain, Vemurafenib

    inhibits the active “DFG-in” form of the kinase,[14][15]firmly anchoring itself in the ATP-binding site. By in-

    hibiting only the active form of the kinase, Vemurafenib

    Figure 4: Structures of Vemurafenib (right) and its precursor,

    PLX 4720 (left), two inhibitors of the active conformation of the

    B-Raf kinase domain

    selectively inhibits the proliferation of cells with unregu-

    lated B-Raf, normally those that cause cancer.

    Since Vemurafenib only differs from its precursor,

    PLX4720, in a  phenyl   ring added for   pharmacokinetic

    reasons,[15] PLX4720’s mode of action is equivalent to

    Vemurafenib’s. PLX4720 has good affinity for the ATP

    binding site partially because its anchor region, a 7-

    azaindole bicyclic, only differs from the natural adeninethat occupies the site in two places where nitrogen atoms

    have been replaced by carbon. This enables strong in-

    termolecular interactions like N7 hydrogen bonding to

    C532 and N1 hydrogen bonding to Q530 to be pre-

    served. Excellent fit within the ATP-binding hydropho-

    bic pocket (C532, W531, T529, L514, A481) increases

    binding affinity as well.   Ketone linker hydrogen bonding

    to water and difluoro-phenyl fit in a second hydrophobic

    pocket (A481, V482, K483, V471, I527, T529, L514,

    and F583) contribute to the exceptionally high binding

    affinity overall. Selective binding to active Raf is ac-

    complished by the terminal propyl group that binds to

    a Raf-selective pocket created by a shift of the αC he-

    lix. Selectivity for the active conformation of the ki-

    nase is further increased by a pH-sensitive deprotonated

    sulfonamide group that is stabilized by hydrogen bonding

    with the backbone peptide NH of D594 in the active state.

    In the inactive state, the inhibitor’s sulfonamide group in-

    teracts with the backbone carbonyl of that residue instead,

    creating repulsion. Thus, Vemurafenib binds preferen-

    tially to the active state of B-Raf’s kinase domain.[14][15]

    4 Clinical significance

    Mutations in the   BRAF   gene can cause disease in two

    ways. First, mutations can be inherited and cause birth

    defects. Second, mutations can appear later in life and

    cause cancer, as an oncogene.

    Inherited mutations in this gene cause

    cardiofaciocutaneous syndrome, a disease charac-

    terized by heart defects, mental retardation and a

    distinctive facial appearance.[20]

    Acquired mutations in this gene have been found in can-

    cers, including non-Hodgkin lymphoma, colorectal can-

    cer, malignant   melanoma,   papillary thyroid carcinoma,non-small-cell lung carcinoma, and  adenocarcinoma of

    the lung.[6]

    https://en.wikipedia.org/wiki/Adenocarcinoma_of_the_lunghttps://en.wikipedia.org/wiki/Adenocarcinoma_of_the_lunghttps://en.wikipedia.org/wiki/Non-small-cell_lung_carcinomahttps://en.wikipedia.org/wiki/Papillary_thyroid_cancerhttps://en.wikipedia.org/wiki/Melanomahttps://en.wikipedia.org/wiki/Colorectal_cancerhttps://en.wikipedia.org/wiki/Colorectal_cancerhttps://en.wikipedia.org/wiki/Non-Hodgkin_lymphomahttps://en.wikipedia.org/wiki/Cardiofaciocutaneous_syndromehttps://en.wikipedia.org/wiki/Oncogenehttps://en.wikipedia.org/wiki/Carbonylhttps://en.wikipedia.org/wiki/Sulfonamide_(medicine)https://en.wikipedia.org/wiki/Ketonehttps://en.wikipedia.org/wiki/Bicyclic_moleculehttps://en.wikipedia.org/wiki/Indolehttps://en.wikipedia.org/wiki/Pharmacokineticshttps://en.wikipedia.org/wiki/Phenylhttps://en.wikipedia.org/wiki/Cancerhttps://en.wikipedia.org/wiki/Sorafenibhttps://en.wikipedia.org/wiki/Melanomahttps://en.wikipedia.org/wiki/Food_and_Drug_Administrationhttps://en.wikipedia.org/wiki/Mutanthttps://en.wikipedia.org/wiki/Vemurafenibhttps://en.wikipedia.org/wiki/Amidehttps://en.wikipedia.org/wiki/Carbonylhttps://en.wikipedia.org/wiki/Ureahttps://en.wikipedia.org/wiki/Ureahttps://en.wikipedia.org/wiki/Affinity_(pharmacology)https://en.wikipedia.org/wiki/Phenyl

  • 8/9/2019 BRAF (gene)

    5/10

    4.2 BRAF inhibitors in the clinic    5

    The V600E mutation of the BRAF gene has been associ-

    ated with hairy cell leukemia in numerous studies and has

    been suggested for use in screening for Lynch syndrome

    to reduce the number of patients undergoing unnecessary

    MLH1 sequencing.[21]

    4.1 Mutants

    More than 30 mutations of the   BRAF   gene associated

    with human cancers have been identified. The frequency

    of BRAF mutations varies widely in human cancers, from

    more than 80% in melanomas and nevi, to as little as 0–

    18% in other tumors, such as 1–3% in lung cancers and

    5% in colorectal cancer.[22] In 90% of the cases, thymine

    is substituted with adenine at nucleotide 1799. This leadsto valine (V) being substituted for by glutamate (E) at

    codon 600 (now referred to as V600E) in the activa-

    tion segment that has been found in human cancers.[23]

    This mutation has been widely observed in   papillary

    thyroid carcinoma, colorectal cancer, melanoma and

    non-small-cell lung cancer.[24][25][26][27][28][29][30] BRAF-

    V600E mutation are present in 57% of Langerhans

    cell histiocytosis patients.[31] The V600E mutation is a

    likely driver mutation in 100% of cases of   hairy cell

    leukaemia.[32] High frequency of BRAF V600E muta-

    tions have been detected in ameloblastoma, a benign but

    locally infiltrative odontogenic neoplasm.[33] The V600E

    mutation may also be linked, as a single-driver mutation

    (a genetic 'smoking gun') to certain cases of papillary

    craniopharyngioma  development.[34]

    Other mutations which have been found are R461I,

    I462S, G463E, G463V, G465A, G465E, G465V,

    G468A, G468E, N580S, E585K, D593V, F594L,

    G595R, L596V, T598I, V599D, V599E, V599K,

    V599R, V600K, A727V, etc. and most of these mu-

    tations are clustered to two regions: the glycine-rich P

    loop of the N lobe and the activation segment and flank-

    ing regions.[1] These mutations change the activation seg-

    ment from inactive state to active state, for example in

    the previous cited paper it has been reported that the

    aliphatic side chain of Val599 interacts with the phenyl

    ring of Phe467 in the P loop. Replacing themedium sized

    hydrophobic Val side chain with a larger and charged

    residue as found in human cancer(Glu, Asp, Lys, or Arg)

    would be expected to destabilize the interactions that

    maintain the DFG motif in an inactive conformation, so

    flipping the activation segment into the active position.

    Depending on the type of mutation the kinase activity to-

    wards MEK  may also vary. Most of the mutants stimu-

    late enhanced B-Raf kinase activity toward MEK. How-

    ever, a few mutants act through a different mechanism be-

    cause although their activity toward MEK is reduced, theyadopt a conformation that activates wild-type C-RAF,

    which then signals to ERK.

    4.1.1 BRAF-V600E

    •   BRAF V600E is a determinant of sensitivity to

    proteasome inhibitors. Vulnerability to proteasome

    inhibitors  is dependent on persistent BRAF signal-

    ing, because BRAF-V600E blockade by PLX4720

    reversed sensitivity to   carfilzomib in BRAF-mutantcolorectal cancer cells.  Proteasome inhibition might

    represent a valuable targeting strategy in BRAF

    V600E-mutant colorectal tumors.[35]

    4.2 BRAF inhibitors in the clinic

    As mentioned above, some pharmaceutical firms are de-

    veloping specific inhibitors of mutated B-raf protein for

    anticancer use because BRAF is a well-understood, high

    yield target.[14][36] Vemurafenib (RG7204 or PLX4032),

    licensed by the US  Food and Drug Administration   as

    Zelboraf for the treatment of metastatic melanoma in Au-

    gust 2011, is the current state-of-the-art example for why

    active B-Raf inhibitors are being pursued as drug can-

    didates. Vemurafenib is biochemically interesting as a

    mechanism to target cancer due to its high efficacy and

    selectivity.[9] In Phase II[37] and Phase III[38] clinical tri-

    als, B-Raf not only increased metastatic melanoma pa-

    tient chance of survival but raised the response rate to

    treatment from 7-12% to 53% inthe sameamount of time

    compared to the former best chemotherapeutic treatment:

    dacarbazine. In spite of the drug’s high efficacy, 20% of

    tumors still develop resistance to the treatment. In mice,

    20% of tumors become resistant after 56 days. [39] Whilethe mechanisms of this resistance are still disputed, some

    hypotheses include the overexpression of B-Raf to com-

    pensate for high concentrations of Vemurafenib[39] and

    upstream upregulation of growth signaling.[40]

    More general B-raf inhibitors include GDC-0879, PLX-

    4720, Sorafenib Tosylate.  dabrafenib, LGX818

    5 Interactions

    BRAF (gene) has been shown to interact with:

    •   AKT1,[41]

    •   C-Raf,[42]

    •   HRAS,[43][44] and

    •   YWHAB.[45][46]

    6 References

    [1] Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-DuvazD, Good VM, Jones CM, Marshall CJ, Springer CJ, Bar-

    ford D, Marais R (March 2004). “Mechanism of ac-

    https://en.wikipedia.org/wiki/YWHABhttps://en.wikipedia.org/wiki/HRAShttps://en.wikipedia.org/wiki/C-Rafhttps://en.wikipedia.org/wiki/AKT1https://en.wikipedia.org/wiki/Protein-protein_interactionhttps://en.wikipedia.org/wiki/LGX818https://en.wikipedia.org/wiki/Dabrafenibhttps://en.wikipedia.org/wiki/Sorafenibhttps://en.wikipedia.org/wiki/PLX-4720https://en.wikipedia.org/wiki/PLX-4720https://en.wikipedia.org/wiki/GDC-0879https://en.wikipedia.org/wiki/Raf_inhibitorhttps://en.wikipedia.org/wiki/Food_and_Drug_Administrationhttps://en.wikipedia.org/wiki/Vemurafenibhttps://en.wikipedia.org/wiki/Anticarcinogenhttps://en.wikipedia.org/wiki/Proteasome_inhibitionhttps://en.wikipedia.org/wiki/Carfilzomibhttps://en.wikipedia.org/wiki/PLX4720https://en.wikipedia.org/wiki/Proteasome_inhibitorhttps://en.wikipedia.org/wiki/Proteasome_inhibitorhttps://en.wikipedia.org/wiki/Proteasomehttps://en.wikipedia.org/wiki/Extracellular_signal-regulated_kinaseshttps://en.wikipedia.org/wiki/Kinasehttps://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase_kinasehttps://en.wikipedia.org/wiki/Craniopharyngiomahttps://en.wikipedia.org/wiki/Hairy_cell_leukaemiahttps://en.wikipedia.org/wiki/Hairy_cell_leukaemiahttps://en.wikipedia.org/wiki/Non-small-cell_lung_cancerhttps://en.wikipedia.org/wiki/Papillary_thyroid_carcinomahttps://en.wikipedia.org/wiki/Papillary_thyroid_carcinomahttps://en.wikipedia.org/wiki/Colorectal_cancerhttps://en.wikipedia.org/wiki/Tumorhttps://en.wikipedia.org/wiki/Nevushttps://en.wikipedia.org/wiki/Melanomahttps://en.wikipedia.org/wiki/MLH1https://en.wikipedia.org/wiki/Lynch_syndromehttp://www.ncbi.nlm.nih.gov/pubmed/22246856https://en.wikipedia.org/wiki/Hairy_cell_leukemia

  • 8/9/2019 BRAF (gene)

    6/10

    6   6 REFERENCES 

    tivation of the RAF-ERK signaling pathway by onco-

    genic mutations of B-RAF”.   Cell   116   (6): 855–67.

    doi:10.1016/S0092-8674(04)00215-6. PMID 15035987.

    [2] Sithanandam G, Kolch W, Duh FM, Rapp UR (Decem-

    ber 1990). “Complete coding sequence of a human B-raf

    cDNA and detection of B-raf protein kinase with isozyme

    specific antibodies”.   Oncogene  5  (12): 1775–80.   PMID

    2284096.

    [3] Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G,

    Huebner K, Rapp UR (April 1992). “B-raf and a B-raf

    pseudogene are located on 7q in man”.   Oncogene  7  (4):

    795–9. PMID 1565476.

    [4] Davies H, Bignell GR, CoxC, StephensP, Edkins S, Clegg

    S, Teague J, Woffendin H, Garnett MJ, Bottomley W,

    Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S,

    Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C,

    Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jay-

    atilake H, Gusterson BA, Cooper C, Shipley J, Hargrave

    D, Pritchard-Jones K, Maitland N, Chenevix-Trench G,Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan

    A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL,

    Seigler HF, Darrow TL, Paterson H, Marais R, Marshall

    CJ, Wooster R, Stratton MR, Futreal PA (June 2002).

    “Mutations of the BRAF gene in human cancer”.   Nature

    417   (6892): 949–54.   doi:10.1038/nature00766.   PMID

    12068308.

    [5]   “FDA Approves Zelboraf (Vemurafenib) and Compan-

    ion Diagnostic for BRAF Mutation-Positive Metastatic

    Melanoma, a Deadly Form of Skin Cancer” (Press re-

    lease). Genentech. Retrieved 2011-08-17.

    [6]  “Entrez Gene: BRAF”.

    [7] Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J,

    Rapp UR (November 1994). “The ins and outs of Raf

    kinases”.   Trends in Biochem. Sci.   19   (11): 474–80.

    doi:10.1016/0968-0004(94)90133-3. PMID 7855890.

    [8] Cutler RE Jr, Stephens RM, Saracino MR, Mor-

    rison DK (August 1998).   “Autoregulation of the

    Raf-1 serine/threonine kinase”.   PNAS    95   (16):

    9214–9219.   Bibcode:1998PNAS...95.9214C.

    doi:10.1073/pnas.95.16.9214.   PMC 21318.   PMID

    9689060.

    [9] Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, NolopK, Hirth P (November 2012). “Vemurafenib: the first

    drug approved for BRAF-mutant cancer”. Nature Reviews 

    Drug Discovery 11 (11): 873–886. doi:10.1038/nrd3847.

    PMID 23060265.

    [10]   “Serine/threonine protein kinase B-rAF”. Retrieved 4

    Mar 2013.

    [11] Morrison DK, Cutler RE (April 1997). “The complex-

    ity of Raf-1 regulation”.   Curr. Opin. Cell Biol.   9  (2):

    174–179.   doi:10.1016/S0955-0674(97)80060-9.   PMID

    9069260.

    [12] Hanks SK, Hunter T (May1995).  “Protein kinases 6. The

    eukaryotic protein kinase superfamily: kinase (catalytic)domain structure and classification”.  FASEB J. 9 (8): 576–

    96. PMID 7768349.

    [13] Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz

    D, Good VM, Jones CM, Marshall CJ, Springer CJ, Bar-

    ford D, Marais R; Cancer Genome Project (March 2004).

    “Mechanism of activation of the RAF-ERK signaling

    pathway by oncogenic mutations of B-RAF”.  Cell 116 (6):

    855–67.   doi:10.1016/S0092-8674(04)00215-6.   PMID

    15035987.

    [14] Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bre-

    mer R, Gillette S, Kong J, Haass NK, Sproesser K, Li

    L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen

    H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C,

    Settachatgul C, Shellooe R, Cantwell J, Kim SH, Sch-

    lessinger J, Zhang KY, West BL, Powell B, Habets G,

    Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bol-

    lag G (February 2008). “Discovery of a selective inhibitor

    of oncogenic B-Raf kinase with potent antimelanoma ac-

    tivity”.   Proc. Natl. Acad. Sci. U.S.A. 105  (8): 3041–6.

    doi:10.1073/pnas.0711741105.   PMC 2268581.   PMID

    18287029.

    [15] Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho

    H, Spevak W, Zhang C, Zhang Y, Habets G, Burton

    EA, Wong B, Tsang G, West BL, Powell B, Shellooe R,

    Marimuthu A, Nguyen H, Zhang KY, Artis DR, Sch-

    lessinger J, Su F, Higgins B, Iyer R, D'Andrea K, Koehler

    A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim

    KB, Ribas A, McArthur GA, Sosman JA, Chapman PB,

    Flaherty KT, Xu X, Nathanson KL, Nolop K (Septem-

    ber 2010).   “Clinical efficacy of a RAF inhibitor needs

    broad target blockade in BRAF-mutant melanoma”.   Na-

    ture   467   (7315): 596–599.   doi:10.1038/nature09454.

    PMC 2948082.  PMID 20823850.

    [16] Hanks SK, Quinn AM, and Hunter T (July 1988). “Theprotein kinase family: conserved features and deduced

    phylogeny of the catalytic domains”.  Science 241  (4861):

    42–52. doi:10.1126/science.3291115. PMID 3291115.

    [17] Hanks SK (June 1991). “Eukaryotic protein kinases”.

    Curr. Opin. Struct. Biol.   1   (3): 369–383.

    doi:10.1016/0959-440X(91)90035-R.

    [18] Hanks SK, Quinn AM (1991). “Protein kinase catalytic

    domain sequence database: Identification of conserved

    features of primary structure and classification of family

    members”.   Methods Enzymol . Methods in Enzymology

    200: 38–62. doi:10.1016/0076-6879(91)00126-H. ISBN

    9780121821012. PMID 1956325.

    [19] Mason CS, Springer CJ, Cooper RG, Superti-Furga G,

    Marshall CJ, Marais R (April 1999).   “Serine and ty-

    rosine phosphorylations cooperate in Raf-1, but not

    B-Raf activation”.   EMBO J.   18   (8): 2137–2148.

    doi:10.1093/emboj/18.8.2137.   PMC 1171298.   PMID

    10205168.

    [20] Roberts A, Allanson J, Jadico SK, Kavamura MI, Noonan

    J, Opitz JM, Young T, Neri G (November 2006).   “The

    cardiofaciocutaneous syndrome”.  J. Med. Genet.  43 (11):

    833–42. doi:10.1136/jmg.2006.042796. PMC 2563180.

    PMID 16825433.

    [21] Palomaki GE, McClain MR, Melillo S, Hampel HL,Thibodeau SN (January 2009).   “EGAPP supple-

    mentary evidence review: DNA testing strategies

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743613https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743613https://www.ncbi.nlm.nih.gov/pubmed/16825433https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563180https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1136%252Fjmg.2006.042796https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563180https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563180https://www.ncbi.nlm.nih.gov/pubmed/10205168https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171298https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1093%252Femboj%252F18.8.2137https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171298https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171298https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171298https://www.ncbi.nlm.nih.gov/pubmed/1956325https://en.wikipedia.org/wiki/PubMed_Identifierhttps://en.wikipedia.org/wiki/Special:BookSources/9780121821012https://en.wikipedia.org/wiki/International_Standard_Book_Numberhttps://dx.doi.org/10.1016%252F0076-6879%252891%252900126-Hhttps://en.wikipedia.org/wiki/Digital_object_identifierhttps://dx.doi.org/10.1016%252F0959-440X%252891%252990035-Rhttps://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/3291115https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1126%252Fscience.3291115https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/20823850https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948082https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1038%252Fnature09454https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948082https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948082https://www.ncbi.nlm.nih.gov/pubmed/18287029https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268581https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1073%252Fpnas.0711741105https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268581https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268581https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268581https://www.ncbi.nlm.nih.gov/pubmed/15035987https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1016%252FS0092-8674%252804%252900215-6https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/7768349https://en.wikipedia.org/wiki/PubMed_Identifierhttp://www.fasebj.org/cgi/pmidlookup?view=long&pmid=7768349http://www.fasebj.org/cgi/pmidlookup?view=long&pmid=7768349http://www.fasebj.org/cgi/pmidlookup?view=long&pmid=7768349https://www.ncbi.nlm.nih.gov/pubmed/9069260https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1016%252FS0955-0674%252897%252980060-9https://en.wikipedia.org/wiki/Digital_object_identifierhttp://www.uniprot.org/uniprot/P15056https://www.ncbi.nlm.nih.gov/pubmed/23060265https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1038%252Fnrd3847https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/9689060https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC21318https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1073%252Fpnas.95.16.9214https://en.wikipedia.org/wiki/Digital_object_identifierhttp://adsabs.harvard.edu/abs/1998PNAS...95.9214Chttps://en.wikipedia.org/wiki/Bibcodehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC21318https://www.ncbi.nlm.nih.gov/pmc/articles/PMC21318https://www.ncbi.nlm.nih.gov/pubmed/7855890https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1016%252F0968-0004%252894%252990133-3https://en.wikipedia.org/wiki/Digital_object_identifierhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=673http://www.gene.com/gene/news/press-releases/display.do?method=detail&id=13567http://www.gene.com/gene/news/press-releases/display.do?method=detail&id=13567http://www.gene.com/gene/news/press-releases/display.do?method=detail&id=13567https://www.ncbi.nlm.nih.gov/pubmed/12068308https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1038%252Fnature00766https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/1565476https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pubmed/2284096https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pubmed/15035987https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1016%252FS0092-8674%252804%252900215-6https://en.wikipedia.org/wiki/Digital_object_identifier

  • 8/9/2019 BRAF (gene)

    7/10

    7

    aimed at reducing morbidity and mortality from

    Lynch syndrome”.   Genet. Med.   11   (1): 42–65.

    doi:10.1097/GIM.0b013e31818fa2db.   PMC 2743613.

    PMID 19125127.

    [22] Namba H, Nakashima M, Hayashi T, Hayashida N,

    Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA,

    Kanematsu T, Yamashita S (September 2003). “Clini-

    cal implication of hot spot BRAF mutation, V599E, in

    papillary thyroid cancers”.   J. Clin. Endocrinol. Metab.

    88   (9): 4393–7.   doi:10.1210/jc.2003-030305.   PMID

    12970315.

    [23] Tan YH, Liu Y, Eu KW, Ang PW, Li WQ, Salto-Tellez

    M, Iacopetta B, Soong R (April 2008). “Detection of

    BRAF V600E mutation by pyrosequencing”.   Pathol-

    ogy   40   (3): 295–8.   doi:10.1080/00313020801911512.

    PMID 18428050.

    [24] Li WQ, Kawakami K, Ruszkiewicz A, Bennett G, Moore

    J, Iacopetta B (2006).   “BRAF mutations are associ-

    ated with distinctive clinical, pathological and molecu-lar features of colorectal cancer independently of mi-

    crosatellite instability status”.   Mol. Cancer   5   (1): 2.

    doi:10.1186/1476-4598-5-2.   PMC 1360090.   PMID

    16403224.

    [25] Benlloch S, Payá A, Alenda C, Bessa X, Andreu M, Jover

    R, Castells A, Llor X, Aranda FI, Massutí B (November

    2006). “Detection of BRAF V600E mutation in colorec-

    tal cancer: comparison of automatic sequencing and real-

    time chemistry methodology”.  J Mol Diagn  8   (5): 540–

    3.   doi:10.2353/jmoldx.2006.060070.   PMC 1876165.

    PMID 17065421.

    [26] Deng G, Bell I, Crawley S, Gum J, Terdiman JP, AllenBA, Truta B, Sleisenger MH, Kim YS (January 2004).

    “BRAF mutation is frequently present in sporadic colorec-

    tal cancer with methylated hMLH1, but not in hereditary

    nonpolyposis colorectal cancer”.   Clin. Cancer Res.   10

    (1 Pt 1): 191–5.   doi:10.1158/1078-0432.CCR-1118-3.

    PMID 14734469.

    [27] Gear H, Williams H, Kemp EG, Roberts F (August

    2004). “BRAF mutations in conjunctival melanoma”.

    Invest. Ophthalmol. Vis. Sci.   45   (8): 2484–8.

    doi:10.1167/iovs.04-0093. PMID 15277467.

    [28] Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K,

    Kageshita T, Ono T, Albertson DG, Pinkel D, Bastian BC

    (December 2003). “Determinants of BRAF mutations

    in primary melanomas”.   J. Natl. Cancer Inst.   95  (24):

    1878–90. doi:10.1093/jnci/djg123 . PMID 14679157.

    [29] Puxeddu E, Moretti S, Elisei R, Romei C, Pascucci R,

    Martinelli M, Marino C, Avenia N, Rossi ED, Fadda

    G, Cavaliere A, Ribacchi R, Falorni A, Pontecorvi

    A, Pacini F, Pinchera A, Santeusanio F (May 2004).

    “BRAF(V599E) mutation is the leading genetic event in

    adult sporadic papillary thyroid carcinomas”. J. Clin. En-

    docrinol. Metab.  89  (5): 2414–20.   doi:10.1210/jc.2003-

    031425. PMID 15126572.

    [30] Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Gian-

    nini R, Romei C, Miccoli P, Pinchera A, Basolo F (Octo-ber 2008). “BRAF(V600E) mutation and outcome of pa-

    tients with papillary thyroid carcinoma: a 15-year median

    follow-up study”.   J. Clin. Endocrinol. Metab.   93  (10):

    3943–9. doi:10.1210/jc.2008-0607. PMID 18682506.

    [31] Badalian-Very G, Vergilio JA, Degar BA, Rodriguez-

    Galindo C, Rollins BJ (January 2012). “Recent advances

    in the understanding of Langerhans cell histiocytosis”.

    Br. J. Haematol.   156 (2): 163–72.   doi:10.1111/j.1365-

    2141.2011.08915.x.  PMID 22017623.

    [32] Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W,

    Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells

    VA, Sportoletti P, Pettirossi V, Mannucci R, Elliott O,

    Liso A, Ambrosetti A, Pulsoni A, Forconi F, Trentin L,

    Semenzato G, Inghirami G, Capponi M, Di Raimondo

    F, Patti C, Arcaini L, Musto P, Pileri S, Haferlach C,

    Schnittger S, Pizzolo G, Foà R, Farinelli L, Haferlach T,

    Pasqualucci L, Rabadan R, Falini B (June 2011). “BRAF

    mutations in hairy-cell leukemia”.  N. Engl. J. Med.   364

    (24): 2305–15.   doi:10.1056/NEJMoa1014209.   PMC

    3689585. PMID 21663470. Lay summary –  Science Up-

    date blog: Cancer Research UK .

    [33] Kurppa KJ, Catón J, Morgan PR, Ristimäki A, Ruhin B,

    Kellokoski J, Elenius K, Heikinheimo K (2014). “High

    frequency of BRAF V600E mutations in ameloblastoma”.

    J. Pathol. 232 (5): 492–8. doi:10.1002/path.4317. PMID

    24374844.

    [34] Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT,

    Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez

    FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford

    N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M,

    Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND,

    Scott RM, Dunn IF, Laws ER, Stewart C, Ligon KL,

    Hoang MP, Van Hummelen P, Hahn WC, Louis DN,

    Resnick AC, Kieran MW, Getz G, Santagata S (2014).

    “Exome sequencing identifies BRAF mutations in papil-

    lary craniopharyngiomas”.   Nat. Genet.   46   (2): 161–5.

    doi:10.1038/ng.2868.  PMID 24413733.  Lay summary –

    Broad Institute.

    [35] Zecchin D, Boscaro V, Medico E, Barault L, Mar-

    tini M, Arena S, Cancelliere C, Bartolini A, Crow-

    ley EH, Bardelli A, Gallicchio M, Di Nicolantonio F

    (2013). “BRAF V600E is a determinant of sensitiv-

    ity to proteasome inhibitors”.   Mol. Cancer Ther.   12

    (12): 2950–61.   doi:10.1158/1535-7163.MCT-13-0243.

    PMID 24107445.

    [36] King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT,Zhang SY, Kumar R, Rusnak DW, Takle AK, Wilson

    DM, Hugger E, Wang L, Karreth F, Lougheed JC, Lee

    J, Chau D, Stout TJ, May EW, Rominger CM, Schaber

    MD, Luo L, Lakdawala AS, Adams JL, Contractor RG,

    Smalley KS, Herlyn M, Morrissey MM, Tuveson DA,

    Huang PS (December 2006). “Demonstration of a genetic

    therapeutic index for tumors expressing oncogenic BRAF

    by the kinase inhibitor SB-590885”.   Cancer Res.   66

    (23): 11100–5.   doi:10.1158/0008-5472.CAN-06-2554.

    PMID 17145850.

    [37] Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick

    AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ,

    Flaherty KT, Hersey P, Kefford R, Lawrence D, PuzanovI, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence

    HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas

    https://www.ncbi.nlm.nih.gov/pubmed/17145850https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1158%252F0008-5472.CAN-06-2554https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/24107445https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1158%252F1535-7163.MCT-13-0243https://en.wikipedia.org/wiki/Digital_object_identifierhttp://www.broadinstitute.org/blog/single-driver-mutation-found-rare-brain-tumorhttps://www.ncbi.nlm.nih.gov/pubmed/24413733https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1038%252Fng.2868https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/24374844https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1002%252Fpath.4317https://en.wikipedia.org/wiki/Digital_object_identifierhttp://scienceblog.cancerresearchuk.org/2011/06/11/research-on-hairy-cell-leukaemia-shows-the-promise-of-new-dna-scanning-technologies/https://www.ncbi.nlm.nih.gov/pubmed/21663470https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689585https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1056%252FNEJMoa1014209https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689585https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689585https://www.ncbi.nlm.nih.gov/pubmed/22017623https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1111%252Fj.1365-2141.2011.08915.xhttps://dx.doi.org/10.1111%252Fj.1365-2141.2011.08915.xhttps://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/18682506https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1210%252Fjc.2008-0607https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/15126572https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1210%252Fjc.2003-031425https://dx.doi.org/10.1210%252Fjc.2003-031425https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/14679157https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1093%252Fjnci%252Fdjg123https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/15277467https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1167%252Fiovs.04-0093https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/14734469https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1158%252F1078-0432.CCR-1118-3https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/17065421https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876165https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.2353%252Fjmoldx.2006.060070https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876165https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876165https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876165https://www.ncbi.nlm.nih.gov/pubmed/16403224https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360090https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1186%252F1476-4598-5-2https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360090https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360090https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360090https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360090https://www.ncbi.nlm.nih.gov/pubmed/18428050https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1080%252F00313020801911512https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/12970315https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1210%252Fjc.2003-030305https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/19125127https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743613https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1097%252FGIM.0b013e31818fa2dbhttps://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743613https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743613

  • 8/9/2019 BRAF (gene)

    8/10

    8   8 EXTERNAL LINKS 

    A (February 2012). “Survival in BRAF V600-mutant ad-

    vanced melanoma treated with vemurafenib”.   N Engl J 

    Med.   366  (8): 707–714.   doi:10.1056/NEJMoa1112302.

    PMC 3724515. PMID 22356324.

    [38] Chapman PB, Hauschild A, Robert C, Haanen JB,

    Ascierto P, Larkin J, Dummer R, Garbe C, Testori

    A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T,

    Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirk-

    wood JM, Eggermont AM, Dreno B, Nolop K, Li J,

    Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA;

    BRIM-3 Study Group (June 2011).   “Improved sur-

    vival with vemurafenib in melanoma with BRAF V600E

    mutation”.   N Engl J Med.   364   (26): 2507–16.

    doi:10.1056/NEJMoa1103782.   PMC 3549296.   PMID

    21639808.

    [39] Das Thakur M, Salangsang F, Landman AS, Sellers

    WR, Pryer NK, Levesque MP, Dummer R, McMa-

    hon M, Stuart DD (February 2013). “Modelling ve-

    murafenib resistance in melanoma reveals a strategy to

    forestall drug resistance”.   Nature  494  (7436): 251–256.

    doi:10.1038/nature11814. PMID 23302800.

    [40] Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H,

    Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson

    SF, McArthur G, Sosman JA, Ribas A, Lo RS (December

    2010). “Melanomas acquire resistance to B-RAF(V600E)

    inhibition by RTK or N-RAS upregulation”.   Nature

    468 (7326): 973–977.   doi:10.1038/nature09626.   PMC

    3143360. PMID 21107323.

    [41] Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J,

    Barber TD, Vojtek AB (September 2000). “Nega-

    tive regulation of the serine/threonine kinase B-Raf

    by Akt”.   J. Biol. Chem.   275   (35): 27354–9.

    doi:10.1074/jbc.M004371200. PMID 10869359.

    [42] Weber CK, Slupsky JR, Kalmes HA, Rapp UR (May

    2001). “Active Ras induces heterodimerization of cRaf

    and BRaf”.   Cancer Res.   61   (9): 3595–8.   PMID

    11325826.

    [43] Stang S, Bottorff D, Stone JC (June 1997).   “Interaction

    of activated Ras with Raf-1 alone may be sufficient for

    transformation of rat2 cells”.   Mol. Cell. Biol.   17   (6):

    3047–55. PMC 232157. PMID 9154803.

    [44] Reuter CW, Catling AD, Jelinek T, Weber MJ (March

    1995). “Biochemical analysis of MEK activation inNIH3T3 fibroblasts. Identification of B-Raf and other

    activators”.   J. Biol. Chem.   270   (13): 7644–55.

    doi:10.1074/jbc.270.13.7644. PMID 7706312.

    [45] Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie

    S, McBroom-Cerajewski L, Robinson MD, O'Connor

    L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A,

    Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier

    M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP,

    Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K,

    Gladwish K, Muskat B, Kinach R, Adams SL, Moran

    MF, Morin GB, Topaloglou T, Figeys D (2007).  “Large-

    scale mapping of human protein-protein interactions

    by mass spectrometry”.   Mol. Syst. Biol.   3   (1):89.   doi:10.1038/msb4100134.   PMC 1847948.   PMID

    17353931.

    [46] Qiu W, Zhuang S, von Lintig FC, Boss GR, Pilz RB (Oc-

    tober 2000). “Cell type-specific regulation of B-Raf ki-

    nase by cAMP and 14-3-3 proteins”.   J. Biol. Chem.   275

    (41): 31921–9.   doi:10.1074/jbc.M003327200.   PMID

    10931830.

    7 Further reading

    •   Garnett MJ, Marais R (2004). “Guilty as charged:

    B-Raf is a human oncogene”.   Cancer Cell   6   (4):

    313–9.   doi:10.1016/j.ccr.2004.09.022.   PMID

    15488754.

    •  Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X

    (2005). “Evidence that one subset of anaplastic thy-

    roid carcinomas are derived from papillary carci-

    nomas due to BRAF and p53 mutations”.   Cancer 

    103 (11): 2261–8.  doi:10.1002/cncr.21073. PMID

    15880523.

    •   Karbowniczek M, Henske EP (2006). “The role

    of tuberin in cellular differentiation: are B-Raf

    and MAPK involved?".   Ann N Y Acad Sci  1059

    (1): 168–73.   doi:10.1196/annals.1339.045.   PMID

    16382052.

    •   Ciampi R, Nikiforov YE (2007). “RET/PTC re-

    arrangements and BRAF mutations in thyroid tu-

    morigenesis”.   Endocrinology   148   (3): 936–41.

    doi:10.1210/en.2006-0921. PMID 16946010.

    •   Espinosa AV, Porchia L, Ringel MD(2007).   “Targeting BRAF in thyroid can-

    cer”.   British Journal of Cancer   96   (1): 16–20.

    doi:10.1038/sj.bjc.6603520.   PMC 2360215.

    PMID 17179987.

    8 External links

    •  Allanson, Judith E; Roberts, Amy E (2011-08-04).

    Noonan Syndrome. NBK1124. In Pagon RA, Bird

    TD, Dolan CR et al., eds. (1993–).   GeneReviews™ 

    [Internet]. Seattle WA: University of Washington,Seattle. Check date values in: |date= (help)

    •   Rauen, Katherine A (2012-09-06).

    Cardiofaciocutaneous Syndrome. NBK1186.

    In GeneReviews

    •   Gelb, Bruce D; Tartaglia, Marco (2010-11-16).

    LEOPARD Syndrome. NBK1383. In GeneReviews

    •   “BRAF gene”. NCI Dictionary of Cancer Terms.

    Retrieved 2007-11-25.

    •   Finding faults in BRAF   — Cancer Research UKblog post about the discovery of cancer-causing

    BRAF mutations (incl video)

    http://scienceblog.cancerresearchuk.org/2009/08/24/high-impact-science-%25E2%2580%2593-finding-faults-in-braf/http://www.cancer.gov/dictionary?CdrID=561325https://en.wikipedia.org/wiki/BRAF_(gene)#CITEREFGeneReviewshttp://www.ncbi.nlm.nih.gov/books/NBK1383/https://en.wikipedia.org/wiki/BRAF_(gene)#CITEREFGeneReviewshttp://www.ncbi.nlm.nih.gov/books/NBK1186/https://en.wikipedia.org/wiki/Help:CS1_errors#bad_datehttp://www.ncbi.nlm.nih.gov/books/n/gene/TOC/http://www.ncbi.nlm.nih.gov/books/n/gene/TOC/http://www.ncbi.nlm.nih.gov/books/NBK1124/https://www.ncbi.nlm.nih.gov/pubmed/17179987https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360215https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1038%252Fsj.bjc.6603520https://en.wikipedia.org/wiki/Digital_object_identifierhttps://en.wikipedia.org/wiki/British_Journal_of_Cancerhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360215https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360215https://www.ncbi.nlm.nih.gov/pubmed/16946010https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1210%252Fen.2006-0921https://en.wikipedia.org/wiki/Digital_object_identifierhttps://en.wikipedia.org/wiki/Endocrinology_(journal)https://www.ncbi.nlm.nih.gov/pubmed/16382052https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1196%252Fannals.1339.045https://en.wikipedia.org/wiki/Digital_object_identifierhttps://en.wikipedia.org/wiki/Ann_N_Y_Acad_Scihttps://www.ncbi.nlm.nih.gov/pubmed/15880523https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1002%252Fcncr.21073https://en.wikipedia.org/wiki/Digital_object_identifierhttps://en.wikipedia.org/wiki/Cancer_(journal)https://www.ncbi.nlm.nih.gov/pubmed/15488754https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1016%252Fj.ccr.2004.09.022https://en.wikipedia.org/wiki/Digital_object_identifierhttps://en.wikipedia.org/wiki/Cancer_Cellhttps://www.ncbi.nlm.nih.gov/pubmed/10931830https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1074%252Fjbc.M003327200https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/17353931https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1038%252Fmsb4100134https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847948https://www.ncbi.nlm.nih.gov/pubmed/7706312https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1074%252Fjbc.270.13.7644https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/9154803https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC232157https://en.wikipedia.org/wiki/PubMed_Centralhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC232157https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232157https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232157https://www.ncbi.nlm.nih.gov/pubmed/11325826https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pubmed/10869359https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1074%252Fjbc.M004371200https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/21107323https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143360https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1038%252Fnature09626https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143360https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143360https://www.ncbi.nlm.nih.gov/pubmed/23302800https://en.wikipedia.org/wiki/PubMed_Identifierhttps://dx.doi.org/10.1038%252Fnature11814https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pubmed/21639808https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549296https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1056%252FNEJMoa1103782https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549296https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549296https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549296https://www.ncbi.nlm.nih.gov/pubmed/22356324https://en.wikipedia.org/wiki/PubMed_Identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724515https://en.wikipedia.org/wiki/PubMed_Centralhttps://dx.doi.org/10.1056%252FNEJMoa1112302https://en.wikipedia.org/wiki/Digital_object_identifierhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724515https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724515

  • 8/9/2019 BRAF (gene)

    9/10

    9

    This article incorporates public domain material from the

    U.S. National Cancer Institute document “Dictionary of

    Cancer Terms”.   This article incorporates text from the

    United States National Library of Medicine , which is in

    the public domain.

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/United_States_National_Library_of_Medicinehttp://www.cancer.gov/dictionaryhttp://www.cancer.gov/dictionaryhttps://en.wikipedia.org/wiki/National_Cancer_Institutehttps://en.wikipedia.org/wiki/Copyright_status_of_work_by_the_U.S._government

  • 8/9/2019 BRAF (gene)

    10/10

    10   9 TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES 

    9 Text and image sources, contributors, and licenses

    9.1 Text

    •   BRAF (gene)  Source:  http://en.wikipedia.org/wiki/BRAF_(gene)?oldid=659842841  Contributors:  The Anome, Ronz, Nurg, Rich Farm-

    brough, Arcadian, Rjwilmsi, Ground Zero, RussBot, RDBrown, Niels Olson, Eastlaw, Patho~enwiki, Agathman, Alaibot, Hb2019, Nono64,

    Nbauman, Boghog, Rod57, Andrew Su, ProteinBoxBot, LeadSongDog, Fratrep, ClueBot, Poptop43, Vini 175, Lihmwiki, Ts4079, Dthom-

    sen8, Addbot, DOI bot, Quercus solaris, Anypodetos, Kmcital, Citation bot, Arcendet, Citation bot 1, Yeast2Hybrid, Inferior Olive, Duu-

    uuudeHaha, Amkilpatrick, DarthTrevis, Ahaduzzamanmunna, H3llBot, Nhevitt, Earnur~enwiki, HenryScow, BG19bot, BattyBot, Chris-

    Gualtieri, Intronic2, PC-XT, Liz, Anrnusna, Monkbot, Hheikinh and Anonymous: 29

    9.2 Images

    •   File:B-Raf_Phosphorylation_Mechanism.png   Source:    http://upload.wikimedia.org/wikipedia/commons/2/2e/B-Raf_

    Phosphorylation_Mechanism.png  License:  CC BY-SA 3.0  Contributors:  Own work Original artist:  Nhevitt

    •  File:BRAF_Kinase_Inactive.png   Source:  http://upload.wikimedia.org/wikipedia/commons/5/5a/BRAF_Kinase_Inactive.png License: 

    CC BY-SA 3.0  Contributors:  Own work Original artist:  Nhevitt

    •   File:PDB_1uwh_EBI.jpg   Source:  http://upload.wikimedia.org/wikipedia/commons/b/b7/PDB_1uwh_EBI.jpg License:   Public domain

    Contributors:    http://www.ebi.ac.uk/pdbe-srv/view/images/entry/1uwh600.png, displayed on   http://www.ebi.ac.uk/pdbe-srv/view/entry/

    1uwh/summary  Original artist:  Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute

    •   File:PDB_1uwj_EBI.jpg   Source:  http://upload.wikimedia.org/wikipedia/commons/5/58/PDB_1uwj_EBI.jpg License:   Public domainContributors:    http://www.ebi.ac.uk/pdbe-srv/view/images/entry/1uwj600.png, displayed on   http://www.ebi.ac.uk/pdbe-srv/view/entry/

    1uwj/summary  Original artist:  Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute

    •  File:PDB_2fb8_EBI.png   Source:  http://upload.wikimedia.org/wikipedia/commons/a/a6/PDB_2fb8_EBI.png License:   Public domain

    Contributors:    http://www.ebi.ac.uk/pdbe-srv/view/images/entry/2fb8600.png, displayed on   http://www.ebi.ac.uk/pdbe-srv/view/entry/

    2fb8/summary  Original artist:  Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute

    •   File:Protein_BRAF_PDB_1uwh.png   Source:  http://upload.wikimedia.org/wikipedia/commons/a/af/Protein_BRAF_PDB_1uwh.png

    License:  CC BY-SA 3.0 Contributors:  Own work Original artist:  Emw

    •   File:Signal_transduction_pathways.svg   Source:    http://upload.wikimedia.org/wikipedia/commons/b/b0/Signal_transduction_

    pathways.svg   License:    CC BY-SA 3.0   Contributors:    http://en.wikipedia.org/wiki/File:Signal_transduction_v1.png   Original artist: 

    cybertory

    •   File:Sorafenib_BRAF_Labeled.png Source:  http://upload.wikimedia.org/wikipedia/commons/7/7c/Sorafenib_BRAF_Labeled.png Li-

    cense:  CC BY-SA 3.0 Contributors:  Own work Original artist:  Nhevitt

    •   File:Vemurafenib.png   Source:  http://upload.wikimedia.org/wikipedia/commons/0/0e/Vemurafenib.png License:   CC BY-SA 3.0  Con-

    tributors:  Own work Original artist:  Nhevitt

    9.3 Content license

    •   Creative Commons Attribution-Share Alike 3.0

    http://creativecommons.org/licenses/by-sa/3.0/http://localhost/var/www/apps/conversion/tmp/scratch_6//commons.wikimedia.org/w/index.php?title=User:Nhevitt&action=edit&redlink=1http://upload.wikimedia.org/wikipedia/commons/0/0e/Vemurafenib.pnghttp://localhost/var/www/apps/conversion/tmp/scratch_6//commons.wikimedia.org/w/index.php?title=User:Nhevitt&action=edit&redlink=1http://upload.wikimedia.org/wikipedia/commons/7/7c/Sorafenib_BRAF_Labeled.pnghttp://en.wikipedia.org/wiki/File:Signal_transduction_v1.pnghttp://upload.wikimedia.org/wikipedia/commons/b/b0/Signal_transduction_pathways.svghttp://upload.wikimedia.org/wikipedia/commons/b/b0/Signal_transduction_pathways.svghttp://localhost/var/www/apps/conversion/tmp/scratch_6//commons.wikimedia.org/wiki/User:Emwhttp://upload.wikimedia.org/wikipedia/commons/a/af/Protein_BRAF_PDB_1uwh.pnghttp://localhost/var/www/apps/conversion/tmp/scratch_6//en.wikipedia.org/wiki/en:European_Bioinformatics_Institutehttp://www.ebi.ac.uk/pdbe-srv/view/entry/2fb8/summaryhttp://www.ebi.ac.uk/pdbe-srv/view/entry/2fb8/summaryhttp://www.ebi.ac.uk/pdbe-srv/view/images/entry/2fb8600.pnghttp://upload.wikimedia.org/wikipedia/commons/a/a6/PDB_2fb8_EBI.pnghttp://localhost/var/www/apps/conversion/tmp/scratch_6//en.wikipedia.org/wiki/en:European_Bioinformatics_Institutehttp://www.ebi.ac.uk/pdbe-srv/view/entry/1uwj/summaryhttp://www.ebi.ac.uk/pdbe-srv/view/entry/1uwj/summaryhttp://www.ebi.ac.uk/pdbe-srv/view/images/entry/1uwj600.pnghttp://upload.wikimedia.org/wikipedia/commons/5/58/PDB_1uwj_EBI.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_6//en.wikipedia.org/wiki/en:European_Bioinformatics_Institutehttp://www.ebi.ac.uk/pdbe-srv/view/entry/1uwh/summaryhttp://www.ebi.ac.uk/pdbe-srv/view/entry/1uwh/summaryhttp://www.ebi.ac.uk/pdbe-srv/view/images/entry/1uwh600.pnghttp://upload.wikimedia.org/wikipedia/commons/b/b7/PDB_1uwh_EBI.jpghttp://localhost/var/www/apps/conversion/tmp/scratch_6//commons.wikimedia.org/w/index.php?title=User:Nhevitt&action=edit&redlink=1http://upload.wikimedia.org/wikipedia/commons/5/5a/BRAF_Kinase_Inactive.pnghttp://localhost/var/www/apps/conversion/tmp/scratch_6//commons.wikimedia.org/w/index.php?title=User:Nhevitt&action=edit&redlink=1http://upload.wikimedia.org/wikipedia/commons/2/2e/B-Raf_Phosphorylation_Mechanism.pnghttp://upload.wikimedia.org/wikipedia/commons/2/2e/B-Raf_Phosphorylation_Mechanism.pnghttp://en.wikipedia.org/wiki/BRAF_(gene)?oldid=659842841