39
BULETIN APLINDO N0.51/2017, Maret – April 2017 Asosiasi Industri Pengecoran Logam Indonesia Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A Jl. Gatot Subroto, Senayan, Jakarta 10270 Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328 Email :[email protected] Web Site : www.aplindo.web.id APLINDO

BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

Embed Size (px)

Citation preview

Page 1: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN APLINDO N0.51/2017, Maret – April 2017

Asosiasi Industri Pengecoran Logam Indonesia

Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A

Jl. Gatot Subroto, Senayan, Jakarta 10270

Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328

Email :[email protected] Web Site : www.aplindo.web.id

APLINDO

Page 2: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

1

DAFTAR ISI

No. Uraian Halaman

1. Pengantar Redaksi 2

2. Forum Gas Bumi Nasional 3

3. Indonesia Pension Conference 7

4. Hasil Sensus Ekonomi 2016 (SE2016) 8

5. Menuju Era Industri 4.0 10

6. PT. Buana Centra Swakarsa (BCS) Logistics Layani KA Petikemas 12

7. 49th Census of World Casting Production

Casting Modest Growth in World wide Market

13

8 19 Tips for Additive Manufacturing Design 17

9 The challenges for energy efficient casting processes 20

10 Data Kendaraan Bermotor 1. Data kendaraan bermotor roda 4 di Indonesia & ASEAN

2. Data kendaraan bermotor roda 2 di Indonesia & ASEAN 3. Populasi Kendaraan Bermotor

31 32

33

11 Informasi Umum dan Pameran

1. Website pemerintah yang dapat diakses 2. Website Asosiasi Industri Pengecoran Logam Indonesia

3. Website Himpunan Ahli Pengecoran Logam Indonesia

Pameran dan Seminar

35 35

35

35

Page 3: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

2

Pengantar Redaksi

Pada edisi 51/2017 ini, membahas mengenai pengelolaan energi gas bumi secara

optimal guna memenuhi kebutuhan domestik dengan harga gas yang affordable

sehingga industri dapat berdaya saing.

Saat ini dunia tengah menghadapi revolusi industri 4.0 yang mengintegrasikan dunia

online dengan lini produksi di industri manufaktur dan dalam edisi ini diinformasikan

hasil sensus produksi pengecoran di dunia ke-49 yang menggambarkan pertumbuhan

pasar dunia dimana produksi pengecoran global terus meningkat pada tahun 2014 yang

tumbuh sebesar 2,4 juta metrik ton atau meningkat 2,3% dibandingkan dengan tahun

sebelumnya.

Dalam edisi ini juga memuat artikel-artikel untuk menambah pengetahuan dibidang

pengecoran logam, selanjutnya kami mengharapkan agar buletin ini menjadi media

antar anggota maupun antar industri pengecoran didalam negeri dan diluar negeri.

Harapan kami, seluruh anggota dapat mengisi buletin ini menjadi kenyataan.

Redaksi buletin APLINDO menghimbau anggota APLINDO berpartisipasi dalam mengisi

tulisan/artikel, data maupun informasi lain yang berhubungan dengan industri

pengecoran logam. Naskah tulisan/artikel dapat dikirim ke sekretariat APLINDO, melalui

email ataupun fax, namun hingga saat ini sekretariat belum pernah menerima

tulisan/artikel dari anggota.

Redaksi

Page 4: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

3

Forum Gas Bumi Nasional

Kementerian Energi dan Sumber Daya Mineral mengadakan Forum Gas Bumi Nasional

yang diselenggarakan di Hotel Borobudur pada tanggal 3 Mei 2017. Acara ini dihadiri

kurang lebih 400 peserta yang terdiri dari Kementerian Koordinator bidang

Perekonomian dan bidang Kemaritiman, Kementerian Perinsustrian, Bappenas,

Kementerian Perdagangan, Kementerian BUMN, SKK Migas, BPH Migas, Pemerintah

Daerah, KKKS, BUMN, BUMD, Badan Usaha Gas Bumi, asosiasi terkait hingga akademisi.

Dalam rangkaian acara tersebut juga dilucurkan dua buah buku yaitu :

1. Buku Neraca Gas Bumi 2016 dipakai sebagai acuan rencana pengembangan bisnis

dan penetapan kebijakan serta dalam rangka mendukung program Pemerintah

dalam penyediaan infrastuktur gas dan program 35.000 MW untuk penyediaan

listrik sehingga dapat memberikan kepastian pasokan gas gas bumi mengenai

Rencana Induk Neraca Gas Bumi Indonesia 2016

2. Rencana Induk Jaringan Transmisi dan Distribusi Gas Bumi Nasional Tahun 2016-

2030 sebagai acuan dalam revisi Keputusan Menteri (Kepmen) ESDM 2700

K/11/MEM/2012 yang memberikan informasi mengenai penyediaan infrastruktur

LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan

pipa gas bumi. Buku ini diharapkan dapat digunakan sebagai acuan investasi

pengembangan dan pembangunan jaringan transmisi dan distribusi gas bumi bagi

Badan Usaha.

Ketua Umum FIPGB menerima buku secara simbolis dari Menteri ESDM Ignatius Jonan dan para penerima Buku Neraca Gas Bumi 2016 dan Rencana Induk Jaringan Transmisi dan Distribusi Gas Bumi Nasional

Tahun 2016-2030 di Hotel Borobudur Jakarta

Page 5: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

4

Kedua buku tersebut diserahkan oleh Menteri Energi dan Sumber Daya Mineral (ESDM)

Ignasius Jonan secara simbolis kepada Kepala Dinas ESDM Jawa Timur (Dewi J

Putriatni), Direktur Pertamina Gas (Toton Nugroho), Direktur Utama PT PGN (Hendi Prio

Santoso), Direktur Pengadaan PT PLN (Supangkat Iwan Santoso), Chairman LNG and

Gas Committee IPA (Arifin) dan Ketua Umum Forum Industri Pengguna Gas Bumi

(Achmad Safiun).

Forum Gas Bumi Nasional 2017 dibuka oleh Menteri ESDM Ignatius Jonan, dalam

sambutannya Menteri ESDM menyatakan : ―Eksplorasi gas makin lama makin banyak,

sementara minyak makin turun. Forum gas ini diharapkan jadi forum yang lebih besar

dibanding forum-forum di hulu minyak. Pemerintah sangat mendorong adanya ekplorasi

(gas) yang terus-menurus,"

Jonan juga mengutarakan keheranannya pada

Satuan Kerja Khusus Pelaksana Kegiatan Usaha

Hulu Minyak dan Gas Bumi "Saya itu tidak bisa

mengerti, biaya produksi naik tapi kok output

produksinya menurun. Enggak ngerti saya, sama

sekali."

"Kalau saya kelamaan tidak mengerti, tinggal saya

yang diganti, atau Anda yang saya ganti,"

Migas harus menghasilkan produk bagus dengan

harga yang pantas, yang merupakan suatu

kewajiban yang harus diterapkan seluruh perusahaan serta perlunya kesungguhan

dalam meningkatkan efisiensi biaya produksi dari waktu ke waktu.

Menteri Jonan juga menyampaikan bahwa sesuai arahan Presiden RI Joko Widodo, gas

bumi juga diutamakan sebagai sumber energi primer untuk kelistrikan dimana alokasi

gas-nya akan diputuskan oleh Pemerintah dan akan ditanda tangani oleh menteri. Harga

gas bumi dalam negeri untuk pembangkit listrik sebesar 8 persen dari harga minyak

Indonesia (Indonesian Crude Price/ICP) untuk pembangkit listrik yang berdekatan

dengan sumur gas dan 11,5 persen untuk pembangkit yang jauh dari sumur gas. 11,5

persen dari ICP free on board (FoB), jika lebih besar PLN dapat membeli LNG dari luar

negeri. Dengan catatan harga LNG impor tersebut sudah termasuk regasifikasi pembeli

atau sudah landed price. Jika harga listrik tidak kompetitif, maka seluruh industri juga

tidak kompetitif dan berpengaruh besar terhadap lapangan kerja.

Hingga saat ini, ketergantungan batubara sebagai sumber energi untuk pembangkit

listrik masih sangat besar, yaitu lebih dari 55% dari total kapasitas terpasang sekitar 60

Page 6: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

5

Giga Watt (GW). Menteri ESDM mengharapkan agar bauran energi batubara pada tahun

2025 dapat turun sekitar 40%. "Kalau mau saya di 2025, (dari) minimal 115 GW

penggunaan batubara turun 40 sampai 30 persen‖ Kata Jonan.

Menteri ESDM Ignasius Jonan mengkritik tarif distribusi yang dipungut Pertagas, PGN,

dan badan usaha lainnya yang bergerak di bidang usaha transportasi gas bumi. "Jalan

tol itu kalau sepi tarifnya sama. Tapi Pertagas sama PGN ini beda. Kalau jalan tolnya

(pipa gas) sepi jadi mahal. Kalau begini bukan bisnis," kata Jonan

Tarif distribusi yang dipungut tak masuk akal, sebab semakin sedikit gas yang lewat

maka tarif tol fee pipa gas akan makin mahal, seharusnya tarif tol fee bersifat tetap,

berapa pun gas yang masuk ke pipa tetap sama, tidak jadi mahal ketika yang lewat

sedikit. Pihaknya akan memanggil PGN, Pertagas, dan perusahaan-perusahaan di

midstream gas bumi lainnya untuk membicarakan masalah ini. Jangan ada pelaku usaha

yang mengeruk keuntungan tidak wajar. Biaya distribusi gas akan segera diatur Jonan,

ada batas Internal Rate Return (IRR), margin keuntungan, depresiasi pipa, dan lain-lain.

Menteri ESDM mengingatkan kembali upaya Pemerintah menyediakan harga gas yang

lebih kompetitif, selain untuk pembangkit listrik, juga untuk industri dalam negeri.

"Bapak Presiden selalu berharap harga gas harus affordable dan kompetitif

sehingga industri bisa jalan," kata Jonan.

Berdasarkan Permen ESDM no. 40 tahun 2016 tentang Harga Gas Bumi Untuk Industri

Tertentu, telah mendapatkan penurunan harga gas tiga sektor industri yaitu industri

baja (PT. Krakatau Steel), pupuk (PT Pupuk Kujang, PT Pupuk Iskandar Muda, PT Pupuk

Sriwidjaja, PT Pupuk Kalimantan Timur) dan petrokimia (PT Kaltim Parna Industri, PT

Kaltim Methanol Industri, PT Petrokimia Gresik), namun hingga saaat ini belum

menikmati penurunan harga tersebut, sedangkan untuk industri lainnya akan menyusul

setelah dilakukan pembahasan dengan Kementerian Koordinator bidang Perekonomian.

Khusus untuk wilayah Sumatera Utara, penurunan harga gas telah dilakukan

berdasarkan Keputusan Menteri ESDM No. 434 K/12/MEN/2017 Tentang Harga Gas

Bumi Untuk Industri Di Wilayah Medan Dan Sekitarnya yang berlaku surut 1 Februari

2017. Industri di Sumatera Utara telah menikmati penurunan harga gas setelah Menteri

ESDM meninjau ke Sumatera Utara pada bulan April 2017 dari US$ 13,82 per MMBTU

menjadi US$ 9,95 per MMBTU.

Page 7: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

6

Setelah Menteri memberikan arahan, maka rapat Forum Gas Bumi dibagi dalam 4

kelompok diskusi secara paralel yaitu harga gas bumi, pengembangan infrastruktur,

regulasi dan tata niaga gas bumi dan pemanfaatan gas bumi.

Berikut kesimpulan dari 4 kelompok diskusi tersebut, yaitu :

A. Kelompok I, Harga Gas Bumi :

1. Forum melihat bahwa persoalan di Indonesia bukanlah pasokan gas tetapi harga

gas sehingga bagaimana cara agar membuat harga menjadi lebih layak beli.

Untuk itu diharapkan Perpres 40/2016 dapat segera dilaksanakan.

2. Forum menyatakan bahwa melihat kondisi harga gas hulu yang sangat

regulated, diperlukan pengaturan hilir khususnya penetapan toll fee. untuk itu

urgensi dari revisi Permen 19/2009 Sangat tinggi

B. Kelompok II, Pengembangan Infrastruktur :

1. Rencana induk diintegrasikan dengan rencana pembangunan nasional

2. Tindak lanjut rencana induk yaitu membuat rencana aksi yang terintegrasi dari

setiap stakeholder, mulai dari tata kelola, perencanaan, pendanaan,

pembangunan, pengoperasian dan pemanfaatan.

3. Fasilitasi penyederhanaan perizinan sehingga rencana induk dapat terlaksana

C. Kelompok III, Regulasi dan Tata Niaga Gas Bumi

1. Perlu segera adanya penetapan revisi Permen 19/2009 untuk pengaturan biaya

distribusi, penyimpanan, pengangkutan dan Niaga gas secara terpisah.

2. Diperlukan segera pengaturan terkait izin impor sehingga pelaku usaha dapat

memiliki kepastian terkait sumber pasokan gas serta prosedur pelaksanaan

impor yang jelas mengingat sesuai dengan neraca gas bumi Indonesia 2016-

2035, impor gas bumi dapat terjadi mulai tahun 2019.

D. Kelompok IV, Pemanfaatan Gas Bumi

1. Percepatan pembahasan POD Kasuri dengan Ditjen Migas

2. Diperlukan penetapan alokasi gas dari Tangguh untuk Pupuk Indonesia

3. Diperlukan kepastian lokasi kilang Massela di darat dan alokasi gas bumi untuk

industri petrokimia

4. Diperlukan kepastian pasokan gas untuk pupuk dan listrik setelah berakhirnya

PSC

5. Diperlukan penambahan anggaran untuk mengejar target pengembangan jargas

1 juta sambungan rumah (SR) pertahun

6. Diperlukan pembahasan lebih lanjut terkait kebutuhan gas di 11 Kawasan

Ekonomi Khusus (KEK)

Page 8: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

7

Indonesia Pension Conference: 25 Years of Pension Savings – Way forward for next Quarter Century

Saat ini, pertumbuhan minat masyarakat masih relatif kecil dalam mengikuti program

dana pensiun padahal manfaat dana pensiun tersebut sangat penting dalam memberi

jaminan kesejahteraan baik pada saat aktif bekerja maupun di hari tua. Karena itulah

Otoritas Jasa Keuangan (OJK) dalam upaya meningkatkan pertumbuhan industri dana

pensiun untuk mendorong kenaikan kesejahteraan yang layak bagi pekerja dengan

menyelenggarakan Seminar Internasional Dana Pensiun di Hotel Grand Hyatt, Jakarta

pada tanggal 25 - 26 April 2017, bertepatan dengan memasuki 25 tahun terbitnya

Undang-Undang Dana Pensiun No. 11 tahun 1992.

Sebelum UU No. 11 tahun 1992 diluncurkan, tidak banyak orang Indonesia yang

mengerti manfaat program pensiun yang mencakup masa pensiun mereka, karena

kebanyakan orang menganggap keluarga mereka sebagai dana pensiun mereka dan

saat ini jumlah orang yang bekerja di Indonesia yang mengerti dan sadar akan

kebutuhan untuk memiliki program pensiun masih sangat terbatas. Jumlah peserta dana

pensiun di Indonesia saat ini hingga Februari 2017 adalah 4,47 juta orang atau

mencapai 6,37 persen dari total tenaga kerja di Indonesia dengan pertumbuhan aset

industri dana pensiun meningkat dari 7,06 persen di tahun 2015 menjadi 15,5 persen di

tahun 2016. Sementara itu, jumlah peserta jaminan pensiun BPJS Ketenagakerjaan per

31 Desember 2016 sebesar 9,13 juta orang dengan total aset Rp 13,8 triliun per 28

Februari 2017. Jumlah ini masih sangat kecil bila dibandingkan dengan negara

berkembang lainnya di Asia Tenggara.

Pada tahun 2004 terbit Undang-Undang Jaminan Sosial, yang memperkenalkan program

asuransi pensiun melalui BPJS Employment dalam upaya meningkatkan kesejahteraan

karyawan di Indonesia, baik untuk pekerja lepas maupun pekerja tetap. Namun,

kehadiran pensiun sebagai program wajib bagi karyawan juga menimbulkan beberapa

tantangan, terutama kalangan pengusaha. Banyak perusahaan berasumsi bahwa

program asuransi mereka sendiri sudah mencukupi dan tidak terlalu antusias mengenai

program Ketenagakerjaan BPJS, mengingat kerangka peraturan lain diperkenalkan.

Peringatan 25 tahun UU Dana Pensiun memberi kesempatan bagi semua pemangku

kepentingan terkait untuk mengevaluasi keadaan sistem pensiun saat ini di Indonesia

dan langkah-langkah perbaikan sistem ke depan dengan pertimbangan bagaimana

mensinergikan program pensiun dengan program kesejahteraan lainnya untuk semua

pekerja, sehingga program ini dapat berjalan harmonis dan memberikan dukungan yang

dibutuhkan pekerja saat mereka berusia lanjut. Untuk jelasnya makalah dapat dilihat di

: http://www.ojk.go.id/id/berita-dan-kegiatan/info-terkini

Page 9: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

8

Hasil Sensus Ekonomi 2016 (SE2016)

Dalam rangka Sensus Ekonomi 2016 (SE2016), pada bulan Mei – Juni 2016 telah

dilakukan kegiatan pendaftaran usaha/perusahaan seluruh lapangan usaha, tidak

termasuk lapangan usaha pertanian.

Hasil SE2016 tercatat sebanyak 26,71 juta usaha/perusahaan yang dikelompokkan

dalam 15 kategori lapangan usaha sesuai dengan Klasifikasi Baku Lapangan Usaha

Indonesia (KBLI) 2015. Bila dibedakan menurut skala usaha, 26,26 juta perusahaan

(98,33 persen) berskala UMK dan 0,45 juta perusahaan (1,67 persen) berskala UMB.

Dibandingkan dengan Sensus Ekonomi 2006 (SE06) jumlah usaha/perusahaan

meningkat 17,51 persen dari 22,73 juta menjadi 26,71 juta.

Lapangan Usaha

Hasil SE2016 menunjukkan bahwa distribusi usaha/perusahaan menurut lapangan

usaha, didominasi oleh lapangan usaha perdagangan besar dan eceran sebanyak 12,3

juta usaha/perusahaan atau 46,17 persen dari seluruh usaha/perusahaan yang ada di

Indonesia. Kemudian diikuti oleh lapangan usaha penyediaan akomodasi dan

penyediaan makan minum sebesar 16,72 persen, industri pengolahan sebesar 16,53

persen dan selebihnya 20,58 persen merupakan lapangan usaha lainnya (lihat

Gambar1).

Gambar 1 Jumlah Usaha/Perusahaan

menurut Kategori Lapangan Usaha dan Skala Usaha tahun 2016

Page 10: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

9

Sebaran Usaha

Sementara dilihat dari sebaran usaha berdasarkan letak geografis, BPS mengungkapkan

bahwa Indonesia bagian barat masih mendominasi pusat-pusat ekonomi yang ada (lihat

gambar 2). Sebanyak 79,35 persen usaha berada di Indonesia bagian barat yakni Pulau

Sumatra dan Jawa. Sedangkan bila dirinci lagi, Pulau Jawa sendiri menyumbang 60,74

persen usaha. Artinya, dari 22,73 juta usaha atau perusahaan yang ada di seluruh

Indonesia, 16,2 juta di antaranya berada di Pulau Jawa.

Gambar 2

Jumlah Usaha/Perusahaan menurut Skala Usaha dan Pulau tahun 2016

Tenaga Kerja

Jumlah tenaga kerja menurut lapangan usaha, sejalan dengan jumlah usaha/

perusahaan yaitu didominasi oleh lapangan usaha perdagangan besar dan eceran

sebanyak 22,37 juta tenaga kerja atau 31,81 persen dari tenaga kerja yang ada di

Indonesia.

Kegiatan Lanjutan SE2016

Pada tahun 2017 akan dilaksanakan kegiatan SE2016 lanjutan, berupa pendataan rinci

terhadap UMK dan UMB. Pencacahan terhadap UMK akan dilakukan secara sampel,

sedangkan untuk UMB dilakukan secara lengkap kecuali kategori G (Perdagangan Besar

dan Eceran; Reparasi dan Perawatan Mobil dan Sepeda Motor) sesuai dengan direktori

usaha/perusahaan berskala menengah dan besar. Pencacahan ini dilakukan untuk

memperoleh informasi yang lebih rinci mengenai struktur ketenagakerjaan, stuktur

permodalan, struktur biaya dan produksi, prospek usaha dan lainnya.

Page 11: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

10

Menuju Era Industri 4.0

Ketika perekonomian China sedang mengalami pergeseran, ternyata nyaris tanpa sadar

perekonomian dunia pun sedang menuju sebuah era baru terutama di sektor

perindustrian dan manufaktur. Transformasi yang terjadi saat ini merupakan dampak

dari perkembangan teknologi dinilai berskala besar dan kompleks, bahkan

perkembangan pesat dan sangat mempengaruhi dunia bisnis bahkan kehidupan

manusia. Transformasi ini tak lain adalah revolusi industri keempat atau yang mulai

dikenal dengan istilah Industri 4.0.

Sekarang ini kita hidup dalam dunia yang bergerak cepat dan saling terkoneksi, di mana

perubahan teknologi, politik, demografi, dan ekonomi secara bersamaan mampu

mengguncang dunia nyaris secara instan.

Istilah Industri 4.0 ini pertama kali dikenal di Jerman pada 2011 dan menilik dari

sejarah, revolusi industri pertama terjadi pada abad 18, ketika ditemukan mesin-mesin

bertenaga uap, yang membuat manusia beralih dari mengandalkan tenaga hewan ke

mesin-mesin produksi mekanis. Revolusi industri kedua berlangsung di sekitar tahun

1870 ketika industri dunia beralih ke tenaga listrik yang mampu menciptakan produksi

massal. Revolusi industri ketiga terjadi di era 1960-an saat perangkat elektronik mampu

menghadirkan otomatisasi produksi. Kini, industri dan manufaktur dunia bersiap

menghadapi revolusi industri keempat; Industri 4.0.

Industri 4.0 tak lain mengintegrasikan dunia online dengan mencakup berbagai jenis

teknologi, mulai dari 3D printing hingga robotik, jenis material baru serta sistem

produksi yang terhubung secara digital. Sebagai ilustrasi, sebuah manufaktur yang di

dalamnya mesin-mesin dan robot mampu bekerja menjalankan tugas-tugas rumit,

bertukar informasi, saling memberi dan menerima perintah secara otomatis tanpa

melibatkan manusia. Semua proses produksi tersebut berjalan dengan internet sebagai

penopang utama. Semua obyek dilengkapi perangkat teknologi yang dibantu sensor

mampu berkomunikasi sendiri dengan sistem teknologi informasi.

Langkah menuju Industry 4.0 ini akan memberikan manfaat bagi sektor swasta.

Produsen besar yang terintegrasi akan dapat mengoptimalkan serta menyederhanakan

rantai suplai mereka, Sistem manufaktur yang dioperasikan secara digital juga akan

membuka peluang pasar baru bagi UKM penyedia teknologi seperti sensor, robotik, 3D

printing atau teknologi komunikasi antar mesin.

Page 12: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

11

Industri dunia memang sedang bergerak menuju era Industri 4.0. Suka atau tidak,

model baru pengelolaan bisnis akan muncul. Pasar tenaga kerja dan dunia kerja akan

berubah drastis sebagai dampak digitalisasi kegiatan ekonomi. Di satu sisi, kekhawatiran

meningginya tingkat pengangguran akan terus membayangi perekonomian. Di sisi lain,

Industri 4.0 justru membuka peluang baru bagi kreativitas tenaga kerja sekaligus

menaikkan standardisasi tenaga kerja terampil. Dalam konteks itulah, mungkin tak ada

salahnya mengkaji kembali strategi kebijakan ekonomi domestik, khususnya terkait

perindustrian dan pasar tenaga kerja, demi mengantisipasi dampak tren baru Industri

4.0.

Bagi negara-negara berkembang, Industry 4.0 dapat membantu menyederhanakan

rantai suplai produksi, yang dalam hal ini sangat dibutuhkan guna mengakali biaya

tenaga kerja yang kian meningkat. Sebagai contoh, rencana 10 tahun Cina yang

diumumkan bulan Mei tahun lalu yang berjudul ―Made in China 2025‖

(http://gelookahead.economist.com/future-scope/bruce-mckern/) menargetkan sektor-

sektor inti seperti robotik, teknologi informasi dan energi, dalam upaya mengubah

negara yang kini dikenal sebagai ―raksasa manufaktur‖ menjadi ―penggerak manufaktur

dunia‖ – untuk itu, Cina akan menggempur nilai investasi R&D hingga 1,7% dari jumlah

total pendapatan manufaktur di tahun 2025.

Meski menjanjikan, masih banyak hal yang harus dilakukan untuk mewujudkan Industry

4.0 dalam skala besar. Contohnya, dalam hal regulasi, para perancang kebijakan harus

dapat memastikan arus data, yang merupakan jantung dari Industry 4.0, dapat

bergerak dengan bebas dan aman melalui rantai suplai secara lintas negara. Hal ini akan

memakan waktu yang tidak sedikit.

Revolusi industri ke-empat memang masih berkembang, namun perjalanan untuk

mewujudkannya sudah dimulai.

Ketua APLINDO dalam acara

penandatanganan kerjasama

teknologi Casting Design dan Molding Injection Simulation Software antara Kementerian Perindustrian, KITECH (

Korea Institute of Industrial Technology) dan ITB (Institut Teknologi Bandung) pada hari Selasa tanggal 18 April 2017 di Kementerian

Perindustrian, Jakarta

Page 13: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

12

PT. Buana Centra Swakarsa (BCS) Logistics Layani KA Petikemas

Cikarang Dry Port-Stasiun Benteng Surabaya

Buana Centra Swakarsa (BCS Logistics) mulai beroperasi layanan angkutan kereta api

yang menghubungkan Cikarang Dry Port dan Stasiun Benteng di Surabaya. Mulai Rabu,

22 Maret 2017 kereta pertama telah memberangkat dari Cikarang Dry Port bermuatan

30 petikemas ukuran 20 TEUs (twenty foot equivalent units) dari Cikarang Dry Port.

Layanan reguler akan dimulai dengan frekuensi tiga kali perjalanan seminggu untuk

tahap awal.

Pengembangan layanan kereta angkutan peti kemas sudah digagas sejak lima tahun

lalu dan Ke depannya BCS Logistics berencana menambah relasi dengan target

berikutnya adalah Bandung.

PT Cikarang Inland Port berharap bisa mengerek volume barang di pelabuhan darat

hingga 45,82% pada tahun ini dan target volume naik dari sekitar 60.000 TEUs 70.000

TEUs peti kemas menjadi 100.000 TEUs peti kemas dari daya tampung dan kapasitas

penuh Cikarang Dry Port sebesar 400.000 TEUs per tahun.

Pembangunan pelabuhan cerdas

pada awal kuartal 2 2017 Dry Port Cikarang akan meluncurkan aplikasi mobile dengan

menerapkan delivery order elektronik (e-DO) dari beberapa mitra jalur pelayaran, dan

sistem auto gate untuk gerakan truk sekitar area pelabuhan yang kering .

Versi pertama dari aplikasi mobile kami akan memungkinkan pengguna untuk melacak

kontainer, akses data reefer, memeriksa faktur luar biasa, memesan layanan trucking

pengumpan, juga untuk memeriksa kapal dan melatih jadwal yang akan mempermudah

mengelola pengiriman kapan saja di mana

saja.

Secara keseluruhan pembangunan

pelabuhan cerdas akan membuat proses di

Cikarang Dry Port yang akan dirampingkan,

pertukaran efisien Data elektronik, dan

minimum untuk tidak dokumen fisik

keterlibatan atau sistem paperless. Sistem

kami akan mengelola dan komunikasi

antarmuka antara sistem, seperti sistem adat istiadat, sistem karantina, dan badan-

badan pemerintah lainnya melalui Indonesia National Single Window.

Perkembangan ini akan mengurangi waktu dan biaya untuk meningkatkan logistik dan

kegiatan rantai pasokan untuk industri sekitar Cikarang dan Jakarta

Page 14: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

13

49th Census of World Casting Production

Casting Modest Growth in World wide Market

Global casting production continued its upward trend in 2014, growing by 2.4

million metric tons, a 2.3% increase compared to the previous year’s total.

In 2014, global produc-tion increased to more than 105 million metric tons, an increase

of 2.3% when compared to the previ-ous year, according to this year‘s

MODERNCASTING Census of WorldCasting Production. The total production in 2014

repre-sents an increase of 2.4 mil-lion metric tons compared to 2013. This rate of

growth is a slight decline from 2013‘s 3.4% boost.

This year‘s census includes 37 countries from four continents. Of the 34 nations that

provided data for the past two years, 23 reported expanded production in total ship-

ments when comparing 2014 and 2013. Fourteen countries, meanwhile, saw their

industries contract in the last year.

Countries with developing met-alcasting industries and smaller total outputs, as

expected, had larger fluctuations, with Bosnia & Herzegovina having the largest jump

(40.7%) and Serbia the biggest drop-off (35.9%). China, the world‘s leader in total

production of castings, increased its output by 1.7 million metric tons, a steady overall

increase of 3.8%. The U.S. (1.6%) and India (2.2%), the next largest nations in terms

of overall production, also reported modest growth.

Three of the world‘s mid-tier countries in terms of pro-duction—Ukraine (14.3%),

Turkey (13.4%) and Taiwan (14%)—boasted robust gains in 2014, while the major-ity

of the largest casting producers showed more modest improvements. Brazil, meanwhile,

the world‘s seventh largest metalcasting nation, lost 10.9% of its total production in

2014, erasing the gains made in 2013 when it expanded by 7.4%.

The rest of the top 10 list remained unchanged, with Japan producing 5.54 million

metric tons, Germany 5.25 million and Russia 4.2 million. Behind Brazil, Korea (2.63

million tons), Italy (2.02 million) and France (1.73 mil-lion) round out the list. At first

glance, the total number of metalcasting facilities worldwide ap-pears to have fluctuated

wildly over the course of the last 10 years. At 47,145 for 2014, that total represents an

increase of nearly 13,000 or 38.3% since 2004.

But much of the up-and-down can be pinned to China‘s rate of growth over the past

decade. The world‘s largest producer of castings saw its number of metalcasting

facilities grow exponen-tially, from 12,000 to 30,000 in 2013. But recent consolidation

and slower growth in the Chinese market caused that number to dip slightly in 2014,

settling in at 26,000, which still accounts for 55% of all the world‘s casting operations.

Page 15: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

14

The North American market has continued its slight decrease, with the U.S. dropping

below 2,000 for the first time in the history of the World Census. Other established

metalcasting nations, including much of Europe, also saw their total facilities decline

modestly. Slicing the data another way, instead focusing on 2014‘s total versus that of

five years ago, the global metalcasting industry has held steady in the wake of the

economic recession of 2009.

Table 1.Casting production in the World

Table 2.Casting production in the World per Country

Page 16: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

15

Total production (see the chart on table 1) has exceeded post-recession levels, while

the total number of casting facilities has increased by 1,104 since 2009.

Increases in efficiency means existing operations are producing more tonnage per site

(see chart 1), though the casting industry may continue to contract in total number of

facilities.

Chart 1. Production per Plant

The slight decline in the number of metalcasting facilities coupled with growth in

overall production can only mean one thing: metalcasters are producing more

tonnage per plant. Facilities are able to fulfill demand with available capacity as

underperforming facilities exit the market place. The industry emphasis on efficiency

also helps explain how less are producing more.

Germany remained, far and away, the nation that produces the most castings per

plant, shipping 8,818 metric tons per plant. The U.S., No. 2 in average production

per plant, produced 6,059 metric tons per site, a slight decrease from 2013‘s figure.

China experienced the largest growth in production per plant in 2014, thanks largely

to the contraction of its metalcasting facilities by 15%. Chinese metalcasters

produced an aver-age of 1,777 metric tons, up 294 tons from 2013. China and Italy,

both with relatively different metalcasting industries, produce the smallest casting

volume per facility.

Page 17: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

16

Brazil, due largely to its 10.7% drop in overall casting production, experienced the

biggest decrease in production average (229 tons per site), with its overall number

at 2,043 tons. The U.S. and Brazil were the only two nations in the top 10 to see a

decrease in production per plant.

Table 3. Metal Casting Plants

Page 18: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

17

19 Tips for Additive Manufacturing Design

A Modern Casting

The days of mere conjecture, experimentation and hypothetical theories have segued in

to real world examples and experience for 3-D printing sand molds. No longer merely an

emerging technology, 3-D printing has become a bona fide tool in the manufacturer‘s

workshop. While research and development continues, the library of successful

production case studies grows, and industry experts have begun to learn a few best

practices to share among peers.

Several of these experts dispense advice on what they have learned in designing cast

components for this evolving technology. Here, Modern Casting shares 19 of those

lessons.

1. Perform your design and casting simulations up front, even though it adds time.

Simulate the casting process as soon as possible, make it a priority and get as close

to perfect as you can, given the time limitations of the customer.—David Weiss,

Eck Industries

2. The design phase is the most critical aspect of a component‘s life. Many

manufacturing and performance issues created at this stage have a long term

impact on product cost. An integrated approach using computer based technology

not only reduces lead time, it also improves the design. Technologies that assist

creating samples quickly will help maximize the evaluation time and decisions made

during this critical phase.—Tom Prucha, MetalMorphisis

3. It only takes a few hours to print a mold but engineering and development time are

the most important aspects of producing useable structural castings and that

usually takes more than a few days.—Weiss, Design Nuts and Bolts

4. All the tools normally used to produce premium structural castings can be used

with additive manufacturing techniques: chills, insulated sleeves, different sand

types.

—Weiss

5. In additive manufacturing, casting orientation depends on the build-up direction (z-

axis) vs. the parting plane in conventional sand casting.—Jiten Shah, PDA LLC

6. Additive manufacturing opens unique design freedoms. Fillets and radii are always

possible, machining a relief area can be incorporated easily, no draft requirements

Page 19: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

18

leads to lower weight, and cores can be eliminated where used due to back draft.

—Shah

7. Isolated hot spots can be fed with spot risers.—Shah

8. Bottom gating is possible for uniform filling with the least turbulence. —Shah

9. Designers don‘t have to account for core split lines, flash or veins. There is flexibility

with the placement of feeding aids such as chills, risers, filters, gates, in-gates, and

zircon facing cores. —Shah, Calculating Cost

10. Factor reasonable risk into the price.—Weiss

11. Hybrid approaches can be utilized for time and/or cost savings. This means

conventional patterns used with 3-D printed cores. For 1,000 parts or higher, hybrid

is more cost effective than 3-D sand printing for parts with a complexity factor of

56 or higher. —Brett Connor, Youngstown State University

12. When patternmaking requires expensive tooling, 3-D sand printing is advantageous

for low quantity production of molds and cores, even for low complexity parts. The

cost advantage depends on sand printing production costs. —Connor

13. For some highly complex parts, 3-D sand printing may be cost effective even if

tooling exists already or part quantities are high, especially in situations where

cores can be consolidated. With 20% fabrication cost reduction, sand printing is

effective for parts with a complexity factor of 45 or higher.—Connor, Marrying

Additive to Production

14. Remember that when prototyping for production, there is more freedom in additive

manufacturing than in standard production techniques.—Weiss

15. The design process must account for additive manufacturing all the way from

concept to pouring, including the removal and handling of cores and molds. Cores

greater than 80 lbs. require attachment points for crane removal. Dual purpose all

thread slot allows lifting with straps by crane. Handholds reduce mold weight,

allowing easier removal and allow for easier placement.—Shah

16. It‘s time to unlearn standard flask sizes, common height copes and drags. Don‘t be

a square. 3-D printed molds can be contoured around the shape of the casting,

saving printing time and mold material.—Mark Lamoncha, Humtown Products

17. But still use common sense. You must have a parting line to clean internal cavities.

The entire mold or mold pieces must fit in the printer. Safe handling practices must

be considered.—Lamoncha

18. Printed sand‘s strongest advantage is reduced lead time. There is no need to

manufacture tooling, part development can be at infancy stage, package designs

Page 20: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

19

(partings) are unconstrained, and there is more freedom in gating strategy.—Dave

Rittmeyer, Hoosier Pattern

19. So which process is best? All of them: conventional tooling, printed sand, or

machined sand. In order to optimize printed mold designs, you need to learn how

to apply each option or combination of options for the most cost effective and/or

fastest way to produce your sand casting.

Machined sand might need draft. The tooling will limit fillet sizes. You must be able to

see what needs machined. Normally this method is not suitable for a core. On the plus

side, there is no need for tooling, it‘s fast, any sand with or without additive can be

used, and large molds normally are cheaper than printed sand.

In conventional tooling, draft is needed. The more complexity or tooling needed, the

longer the lead times will be, but any sand—with or without an additive—can be used

and it may be the most economical route depending on complexity, quantity and size.

3-D printed sand carries the need to be able to remove unbound sand, and consumables

are limited. But no draft is needed, you are able to combine multiple cores into a single

core and print complex geometry, and lead times are short.

—Rittmeyer

The tips shared in this article were taken from presentations given at the AFS Additive

Manufacturing for Metal Casting Conference held October 3-6, 2016, in Novi, Michigan.

A functional machined casting for a rear housing in a dual clutch transmission was produced in three weeks using 3-D

printed sand technology. This enabled the customer to evaluate several designs quickly and achieve short time-to-

market.

Page 21: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

20

The challenges for energy efficient casting processes

KonstantinosSalonitis*, BinxuZeng, Hamid Ahmad Mehrabi, Mark Jolly Manufacturing Department, Cranfield University, Cranfield, MK43 0AL, UK

Abstract

Casting is one of the oldest, most challenging and energy intensive manufacturing

processes. A typical modern casting process contains six different stages, which are

classified as melting, alloying, moulding, pouring, solidification and finishing

respectively. At each stage, high level and precision of process control is required. The

energy efficiency of casting process can be improved by using novel alterations, such as

the Constrained Rapid Induction Melting Single Shot Up-casting process. Within the

present study the energy consumption of casting processes is analyzed and areas were

great savings can be achieved are discussed. Lean thinking is used to identify waste and

to analyse the energy saving potential for casting industry.

1. Introduction

Energy saving and reducing emissions are primary goals of all countries around the

world. Increase in world population and scarcity of energy resources and dramatic

increase in pollution have lead towards energy saving by more efficient use of fuels

such as coal, oil, gas and where possible use of renewable energies.

Energy consumption by different sectors has been investigated thoroughly and reported

in numerous reports [1]. Indicatively, manufacturing accounts for 32% of the total

energy consumption [2]. According to the Climate Change Agreement published by UK

Government [3], the foundries sector in the UK needs to attain an energy burden target

of 25.7 GJ/tonne. However, the average energy burden for the UK foundry sector is 55

GJ/tonne. Therefore saving energy in foundries by increasing efficiency in production

line can help to save millions of pounds for manufacturing sector and reduce emission.

Casting is one of the oldest metal forming processes, relying in pouring the melt metal

into a desired shaped mould and wait until it solidifies. It is often used to manufacture

complex parts, which are too expensive or time consuming to produce by other

methods. However, casting probably is one of the mostchallenging manufacturing

process. It is a highly technical engineering process requiring deep scientific

understanding. A typical modern casting process contains six different stages, namely

melting, alloying, moulding, pouring, solidification and finishing respectively. At each

stage, high level and precision of process control is required. Casting process also is one

of the most energy intensive manufacturing processes. The metal melting consumes

over half of the energy in a casting process. Therefore, the expenses on the casting

process has been a significant concern due to the rising of the energy prices.

© 2016 The Authors. Published by ElsevierB..V. This is an open access article under the CC BY-NC-ND license (Peerhttp://creativecommons-reviewunderresponsibi.org/licenses/bytyoftheInter-nc-nd/4ational.0/). Scientific Committee of the 13th Global Conference on Sustainable Manufacturing. Peer-review under responsibility of the International Scientific Committee of the 13th Global Conference on Sustainable

Manufacturing Keywords: Energy efficiency; casting; Value Stream Mapping

Page 22: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

21

2. Potentials for energy savings

The energy intensity of a process has a positive relation with the share of the energy

cost in the total variable costs and of the value of the product [4]. The more energy

intense a process is, the greater the cost of the process. As a result of these pressures,

industrial energy saving is becoming increasingly important from the aspect of the

economy. A number of research studies have been carried out for identifying

opportunities for energy saving. Generally, energy saving can be achieved through

several techniques and methods. In a number of studies, the authors have employed

energy audits for coming up with suggestions for energy savings. Energy audits have

been usedin a number of different sectors, indicatively Klugman et al. performed an

energy audit at a chemical wood pulp mill in Sweden [5] and came up with suggestions

such as updating existing equipment to reduce energy consumption by 50%. Salonitis

proposed an energy audit strategy for identifying the energy consumption of the various

components of a manufacturing process [6].

However, audit methods only provide theoretical figures about energy saving and often

simply suggest major equipment updates. This kind of energy efficiency management

often requires significant capital investment on new equipment. Comparing energy

saving and capital investment, Anderson pointed out that plants are 40% more

responsive to initial cost rather than annual saving [7]. With regards to new equipment

and the adoption of new technology for long-term savings, organisations prefer projects

with shorter payback times, lowercosts and greater annual saving. Therefore, it is not

surprising that Thollander‘s research indicates that about half of thefoundries in Sweden

lack a long-term energy strategy and only about 25% may be categorised as having a

successful energy management practice [8].

There are several barriers that prevent a company from becoming energy efficient

[2],[8]. The main barriers identified are technical risks, such as the

risk/cost/hassle/inconvenience of production disruptions, inappropriate technology for

the operation, lack of time and priorities, lack of access to capital and slim organisation.

In particular, for SME foundries, the lack of time, proper personnel and insufficient

resources are the largest barriers to energy efficiency [9].

Instead of direct energy saving through big investments in new technology and

equipment, a lean philosophy can be introduced to eliminate waste, improve quality and

eventually, achieve the goal of energy saving. The concept behind lean manufacturing is

simple; it is to spot and eliminate waste in aproduction process rather than inspect and

repair afterwards. In the lean philosophy, the word ‗waste‘ can be rathercomplicated. It

can represent a machine breakdown, product defects and physical waste during the

production process. Most importantly, it represents those resources or processes that do

not create products or services directly. By implementing lean tools such as Just in Time

(JIT), cellular manufacturing, value stream mapping (VSM), waste caused by machine

breakdowns, product defects, physical waste and non-value added processes could be

reduced or eliminated. The consequence of such an implementation reduces the

production resource requirements, costs and lead-time, while increasing the product

quality, customer responsiveness and boosting competitiveness. However, lean tools are

implemented less in continuous manufacturing sectors such as the foundry sector. This

is because of the large stocks of input raw materials and the long setup times that are

required and the general difficulty in producing small batches [10], [11], Abdulmalek

Page 23: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

22

and Rajgopal undertook research on the steel foundry and investigated which lean tools

could be implemented [10]. The summary of his work is shown in Table 1.

Table 1.Assessment of applicability of lean tools in the steel industry

Lean tool Applicability

Cellular manufacturing

5S Setup reduction Value stream mapping (VSM) Just in Time

Production leveling Total productive maintenance Visual system

Probably inapplicable

Partially applicable Universally applicable Universally applicable Partially applicable

Partially applicable Partially applicable Universally applicable

Few studies have been reported on the use of lean techniques for foundries.

Indicatively, Girishi et al. utilized VSM for the entire production flow of the casting

process and identified the waste during each operational step [12]. It was discovered

that with minimum interventions, the foundry could reduce waste by 23%, which

corresponds to significant energy savings. Kukla proved that the implementation of Total

Productive Maintenance in a casting industry will allow for efficient management of

machinery and increase its effectiveness, resulting in improved production flow and

lower production costs [13]. However, even fewer studies attempt to link the elimination

of waste with the practice of energy saving in casting industry. Therefore, this work

uses lean thinking to identify waste and to analyse the energy saving potential for

casting industry.

3. Methods for saving energy

By adopting concepts such as VSM, the entire operation of the casting process can be

investigated. Energy savings can be achieved in two ways: direct savings through lower

fuel consumption and indirect savings through lower material consumption. Therefore,

for energy savings in the foundry; less fuel and less material should be used for

producing a certain quantity of sound products. To accomplish this, an understanding of

the flows of energy and materials in the casting process is required. Figure 1 presents

the process flow for conventional casting. This can be divided into six sub-processes:

melting, refining, holding, fettling, machining and inspection. The melting, refining and

holding activities consume most of the energy involved in casting (at least 60%); thus,

the direct energy savings should be achieved in this step. Fettling, machining, and scrap

contain at least 70% metal by weight of the total melting [14]; thus, the indirect saving

should come from these three processes.

4. Quantifying potential savings: direct savings

4.1. Savings through preheating the metal and loading

The first step of the melting process is the preheating of the metal. There are several

advantages related to preheating: it can remove moisture and other organics, which

helps preventing explosion in the furnace; it can increase the melting capacity of the

furnace; and it can reduce the energy required for melting. Especially for aluminium

alloy, preheating can inhibit slag formation when the hot aluminium comes into contact

with moisture [15].

Nowadays, foundries often use hot flue gases from the melting furnace to preheat the

metal. Mefferta investigated how much energy could be saved by preheating in the iron

Page 24: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

23

foundry sector [16]. Using recovered exhaust gases should be seen as the primary

method of reheating. However, loading or transferring the preheated metal may cause

the loss of vast amounts of heat through convection and radiation.

Fig. 1. Material and energy flow chart of a conventional sand casting process

Therefore, reducing the energy lost during transportation can retain significant amounts

of energy and reduce the energy required by melting. To achieve this efficiently, the

pre-heating and melting operations should be close to each other and a lean tool such

as 5S could be employed (tidy up work floor to reduce the time of movement).

4.2. Savings through melting

The melting of the metal phase consumes 30% of the energy of the casting process.

Thus, saving energy through the melting operation logically becomes a primary consideration. When considering energy saving via the melting operation, the efficiency

of the furnace is of paramountimportance. If the efficiency of the furnace increases, the energy consumed per unit mass of metal reduces.

Table 2 presents several popular furnace types used in the aluminium foundry industry.

Clearly, the induction furnace is the most efficient melting method compared with the

other two furnace types. However, 60% of the energy currently used in melting is

provided by natural gas and only 27% of the melting is provided by electricity [17].

Table 2.Capacity, fuel type and energy efficiency of different furnaces [17].

Melt capacity

Fuel Type Efficiency

Crucible Furnace

Several kg to tone

Natural gas/coal/oil

7 - 19%

Reverberatory Furnace

1 t to 75,000 t

Natural gas/coal/oil

20 – 25%

Induction Furnace

Severalkg to 30 t

Induction 85 – 97%

Page 25: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

24

Therefore, this raises another debate between energy saving and cost saving. Using a

gas-fired furnace can save money but the quality of the melt is poor. The quality of the

melting influences the subsequent sub-processes. Hydrogen content is normally higher

in gas-fired furnaces owing to the moisture-rich exhaust gases. Removing hydrogen is

essential because it causes serious damage later on. Therefore, compared with material

melted by using electrical means, using gas requires additional treatment in degassing.

Therefore, although less money are spend during the melting, the process requires

additional expense during degassing.

Irrespective of the purpose for cost or energy savings, some recommendations are

introduced for the improvement of energy efficiency.

1. Improving the air compressor that controls the fuel-fired furnace [16]. Oxygen

enrichment can lead to higher heat transfer rates and thus, reduce melting times. In

turn, this would reduce the overall fuel consumption [17].

2. Reducing the frequency of metal charging [18]. This can reduce the metal loss and

the radiation heat loss. Metal loss refers to losses through oxidation when in contact

with air. Radiation loss refers to heat losses when the furnace lid or door is opened

[17].

3. When considering lean manufacturing, it is recommended to use high-quality raw

material. Using high-quality raw material may increase the initial cost. However, in

return, it can reduce overall metal losses through oxidation and drossing. Lowering

the metal loss requires less energy and metal to compensate.

4. Providing training for the furnace operators. It has already

been shown that operator performance can influence energy usage by as much as

10%.

Further to increasing energy efficiency, there is also an alternative ways for engineering

energy savings. For example other strands of lean manufacturing can be used such as

the use of correctly sized equipment to produce the desired amount of products. For the

aluminium sector, it is recommended to use the correct size and a rapid-melting coreless

induction furnace for the melting. The advantages of such a furnace can be summarized

into:

1. High-efficiency furnace saves energy during melting 2. Cleaner energy leads to cleaner metal, lower hydrogen content and less need for

other treatments

3. The correct size furnace can ensure no waste during casting; it can smooth the casting process and no residual liquid needs to be held

Fast melting reduces the chance of oxidation; thus, reducing the need for additional

metal to compensate the metal loss

4.3. Savings through treating and refining molten metal

Following the melting operation, the molten metal usually includes impurities, such as oxides and slag and undesired gas content such as hydrogen. As a result, degassing and

flotation are necessary requirements. Normally, the hydrogen in aluminium comes from the decomposition of water vapour. Following the reaction, hydrogen gas dissociates

Page 26: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

25

and forms hydrogen atoms, which diffuse into the melt 0. As thealuminium solidifies, the

dissolved hydrogen escapes from the melt to form undesirable porosity, unfurl DOFs, or even form cracks.Therefore, reducing the hydrogen content is essential during the degassing operation. Nowadays, the technology used for degassing is purging with an

inert gas via a rapidly rotating nozzle 0. This technology is based on the equilibrium relationship between the hydrogen in the melt and the hydrogen in the atmosphere. By

injecting the inert gas, the molten metal is put under an inert atmosphere. To maintain the balance, hydrogen needs to transfer into the inert gas bubble and diffuse to the surface of the melt. As the purging of the melt by the inert gas continues, the hydrogen

content gradually drops to the required level. According to literature [14], the metal loss during the treating and refining operations can be as high as 5% in terms of mass.

Assuming a melt of 1 tonne of aluminium uses 2.2 GJ of energy. The loss of 5% of the metal requires an additional 0.11 GJ of energy to melt. Energy is also consumed by the degassing unit; the rotating motor, the inert gassing and the flux pumping all require

energy. A mid-range degassing unit is usually powered by a 3.5 KW motor for period of 15 minutes. Therefore, the energy consumed is 3.15 MJ. Furthermore, the embedded energy required to compress the inert gas into the container also needs to be

considered. Assuming the purging rate of the inert gas is 20 L†min-1, which gives 300 L of gas in total, the embedded energy of the inert gas would be about 0.5 MJ [14].

Combined with the consumption by the motor, the total energy consumption could be 3.65 MJ.

In order to save energy through refining and treating, the quality of the raw metal is

very important. It not only reduces metal loss during refining but also reduces the

frequency of refining. In addition, there are the corresponding savings of inert gas and

electricity to be considered as well.

4.4. Savings through holding

Holding is another significant consumer of energy in the casting process, demanding

another 30% of the energy of the casting production. The purpose of holding is to

maintain a continuous supply of liquid for casting with constant composition and quality

[17].

Owing to its characteristics, the holding furnace can operate as long as a working shift

(8 hours). In most non-ferrous foundries, the holding process requires more energy

than the melting process does. Reducing the holding time is one of the most efficient

ways for energy saving. To achieve this, a smooth and continuous production plan is

essential. Lean tools, such as TPM, VSM, productionlevelling and planning can be used

to assess the holding time reduction.

5. Quantifying potential savings: indirect savings

5.1. Savings through operational material efficiency improvement

Operational material efficiency (OME) is the ratio between the good casting shipped to

customer and the total metal melted [14]. Improving the true yield is probably the

simplest way in which foundries can save energy, because this method focuses on

increasing good casting production and reducing the totalmetal melted. It deals mainly

with the production process itself, seeking opportunities to save material. It has less

relation with the performance of the production equipment. To be able to understand

the true yield of the casting process, the entire casting operation needs to be analysed.

Page 27: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

26

Using a traditional sand casting as an example, the casting process is analysed briefly in

the following.

Aluminium is a highly reactive material. In particular, when it is liquefied at high

temperature, it can react with air, moisture, the furnace lining and other metals. The

metal loss during the melting process is due mainly to this characteristic. As discussed

before, a casting process can be divided into seven sub-processes: melting, holding,

refining, pouring, fettling, machining and inspection. Apart from pouring, six out of

seven have a direct relation with metal loss, table 3.

Table 3.General metal loss during each operation. Data based on general /

automotive sand casting production [14].

Melti

ng

Hold

ing

Refi

ning

Fett

ling

Machin

ing

Inspec

tion

Metal

loss

2% 2% 5% 50

%

25% 20%

Figure 2 presents the metal flow during conventional sand casting process. By

assuming 1 kg of metal is melted, then after the different stages of the operation, the

final casting dispatched to customer only weighs about 0.27 kg. Therefore, the

operational material efficiency of this casting process is about 27%. For conventional

casting, 1 Kg of good casting requires 3.7 Kg of raw materials. Therefore, if the true

yield of the casting can be improved, less metal will be required to produce the casting

and the energy consumption for the melting could be reduced.

Fig. 2.Metal flow in the foundry.

Opportunities to improve the true yield require that the metal loss during each

operation must be reduced. Starting with the melting operation, 2% of the metal loss is

mainly due to the oxidation of the aluminium at the surface of the melt. Thus, keeping

the melt away from contact with air can reduce the level of oxidation. Normally, this

can be done by keeping the lid of the furnace shut and reducing the metal charge time.

Secondly, the holding process also contributes 2% of the loss, which can also be

attributed to oxidation (long term exposure). Therefore, reducing the holding time can

reduce the metal loss. Thirdly, the refining / cleaning operation contributes 5% of the

metal loss. The loss at this stage of the operation is due mainly to oxidation, hydrogen

degassing and impurities. The rate of the loss depends on the cleanliness of the raw

material. Thus, good quality raw material is essential.

Page 28: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

27

After pouring, solidification and shakeout, the casting system is sent to the fettling

operation. Fettling is used to separate the casting and its running system. Generally,

the casting itself is only about 50% by weight of the entire casting system. Therefore

atleast half of the metal is chopped off and scrapped. This is the principal cause of

metal loss during the casting process.

For foundries producing aerospace castings, the metal loss during fettling can be as high

as 90% owing to the strict quality regulations [14]. Thus, reducing the weight of the

running systemcan reduce the metal loss in fettling. The concept of a good casting

running system will be introduced later.

The fifth cause of losses relates to machining. This process transforms the casting into

its final shape. It involves grinding, drilling, boring, turning, polishing and any other

necessary operations. The metal loss during this stage of the operation is mainly in the

form of fine scrap. If the casting can be produced closer to net shape, then the need for

machining operations can be reduced. The final type of loss is that of castings that fail

the inspection process. Defects such as a poor tolerance, poor surface finish, inclusions

and porosity lead to rejection during the inspection. To reduce the level of rejections,

the processes of melting, alloying and refining and the design of the running system are

very important.

The losses in first three steps are permanent losses, which cannot be easily recovered

or reused. They can only be reduced by the methods mentioned. The last three types of

loss are assigned as internal scrap. Energy has been used to make and melt this metal

and because these losses can contribute up to 90% of the metal loss in the casting

process, energy savings must be achieved by reducing such losses during the casting

process.

5.2. Savings through using numerical simulation

Starting from the product design, the behaviour of the fluid inside the casting running

system and the performance of the feeder during solidification can be predicted by

using a numerical simulation package. This allows foundry engineers to develop sound

products without doing physical experiments of trial and error. This can help at both

initial production and during long runs when an energy saving method is being sought.

5.3. Savings through plant management

A typical foundry consumes 14% of its energy on air compression, which costs even

more money than melting or holding (Figure 3). There are many reasons for using

compressed air in a foundry; the most important is for combustion. Generally,

compressed air can provide more oxygen for combustion. Efficient burning of fuels can

provide a hotter flame temperature, which gives a higher heat transfer rate and reduces

the time required for melting [17]. Furthermore, it not only reduces the heat loss during

combustion but also reduces the environmental impact. Again, there are always two

sides to everything. Compressedair helps reducing the fuel consumption during

combustion but it consumes significant quantities of electricity. Therefore, ensuring that

there is no excess air in the burner will help greatly in reducing the need for compressed

air. Furthermore, using the correct size of compressor and routine maintenance can also

save energy. Ultimately, using an induction furnacewill eliminate the requirement for

compressed air and lean tool such as TPM can be extremely helpful for this purpose.

Page 29: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

28

Tool Heating,

3%Misc, 8%

Air compression, 14 %

Plant actuation

15%Holding

30%

Melting, 30%

Tool Heating

1%

Misc6%

Air compressi

on26%

Plant actustion

27%

Holding22%

Melting18%

Fig. 3. (a) Typical energy use and (b) typical energy cost in a foundry.

6. Saving energy through CRIMPSON process

Constrained Rapid Induction Melting Single Shot Up-casting (CRIMSON), was developed

recently [14] for improving the energy efficiency of a casting process. The process uses

a rapid induction furnace to melt just enough metal for one single casting; then transfer

the molten charge to a computer controlled counter gravity casting platform. The highly

controlled metal flow is pushed into the mould to finish the pouring and solidification.

Such process reduces the defect generation and energy consumption by rapid melting,

minimum holding and smooth filling of the mould.

Table 4. Summary of energy loss and opportunities for energy saving during each operation

Energy loss reason Saving method Saving type

Melting 1. Inefficient melting 2. Permanent metal loss

1. Correct stze of furnace 2. Rapid melting 3. Keep melk away from air

Direct/ Indirect

Refining Permanent metal loss 1. Using high quality charging metal

2. Clearing melting

Indirect

Holding 1. Long term holding 2. Permanent metal loss

Reducing the holding time Direct/ Indirect

Fettling Low casting yield Increasing the casting yield Indirect Machining Rough shape of casting Making net shape casting Indirect Inspection Defects such as inclusion, poor

surface finish, porosity 1. High quality melting 2. Good running system

Indirect

Direct and indirect methods of saving energy during the casting process have been

introduced. At the starting point of the casting process, using the correct size of rapid

induction furnace with matched billet size for high subsection not only saves energy

during melting but can also reduce metal loss as well; both direct and indirect savings

can be achieved. Refining is the second step in the casting process and savings during

this stage rely mainly on loss reductions. This requires good quality charging materials

and clean melting. Savings during the holding process can be achieved both directly and

indirectly. Reducing the time of the holding can reduce energy consumption and metal

loss. Savings achieved during the fettling, machining and inspection stages of the

process are all indirect savings. All of these processes achieve savings by increasing the

casting yield. Simulation methods can be used to achieve casting yield improvements.

Therefore, a good runningsystem with high casting yield not only guarantees the quality

of the casting but also saves energy.

Based on these concepts, the CRIMSON casting process combines direct and indirect

saving methods; thus, achieving energy savings in a more efficient way. The energy and

material flow diagram of the CRIMSON process is shown in figure 4.

Page 30: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

29

Fig. 4. Material and energy flow chart of the CRIMSON casting process

Instead of using cheap bulk metal, the CRIMSON process uses pre-alloyed high-quality

metal for the casting process. Moreover, the CRIMSON casting process uses a rapid

induction furnace to melt just enough metal for a single casting. The time for melting is

normally under 10 minutes, which reduces significantly the chance of the oxidation and

hydrogen absorption. Therefore, the refining stage of the operation is no longer

necessary. Because of the single melting, the melt can be transfer to the pouring

operation immediately; thus, the holding operation can be also removed from the

casting process. Considering that the holding process can consume up to 30% of the

casting energy, eliminating this stage can plug a significant drain of energy

consumption. Owing to the new filling feature of the CRIMSON process, the liquid metal

is pushed into the casting system through a bottom gate. This up-casting method

redefines the casting running system and the pouring basin and down-sprue are no

longer required. Because of the new running system, less metal is fed into the running

system and thus, the casting yield increases.

With regard to quality, the up-casting process provides a turbulence-free filling, which

means that defects, such as air entrapment and DOF formation can be minimised. The

quality of the casting can be improved to a new level and fewer rejections reduce the

energy consumed by re-working.

7. Conclusions

In the present paper the challenges for optimizing the casting processes with regards

their energy efficiency were discussed. CRIMSON process as an alternative was

presented, and shown that it has advantages compared to conventional sand

castingprocess. It can result in better casting quality due to great filling rate control; it

saves energy through holding free casting production and high OME; under the

CRIMSON capacity, it has higher productivity compared with the conventional sand

Page 31: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

30

casting process; most importantly, it costs less to produce same casting products

compared with the conventional sand casting process. The next steps of the present

work will be on melting various ferrous and non-ferrous alloys by CRIMSON, to be able

to use this method for mass production.

Acknowledgements

The authors would like to acknowledge the UK EPSRC Small is Beautiful (EP/M013863/1)

project for the support of this work. All data is provided in full in this paper.

References

[1] IEA 2007. Tracking Industrial Energy Efficiency and CO2 emission.

[2] Salonitis K, Ball P. Energy Efficient Manufacturing from Machine Toolsto Manufacturing Systems. Procedia CIRP 2013;7:634-639

[3] Department of Energy & Climate Change, 2011

[4] Subrahmanya MHB. Energy intensity and economic performance insmall scale bricks and foundry clusters in India: does energy intensitymatter? Energy Policy 2006;34/4:489-497

[5] Klugman S, Karlsson M, Moshfegh B. A Scandinavian chemical woodpulp mill. Part 1.

Energy audit aiming at efficiency measures. AppliedEnergy 2007;84/3:326-339 [6] Salonitis K. Energy efficiency assessment of grinding strategy. Int JEnergy Sect Manage

2015;9:20-37

[7] Anderson ST, Newell RG. Information programs for technologyadoption: the case of energy-efficiency audits. Resource and EnergyEconomics 2004;26:27-50.

[8] Thollander P, Ottosson M. Energy management practices in Swedishenergy- intensive industries. Journal of Cleaner Production 2010;18/12:1125-1133.

[9] Trianni A, Cagno E, Thollander P, Backlund S. Barriers to industrial

energy efficiency in foundries: a European comparison. Journal ofCleaner Production 2013; 40:161–176

[10] Abdulmalek FA, Rajgopal J. Analyzing the benefits of leanmanufacturing and value stream

mapping via simulation: A processsector case study. International Journal of Production Economics 2007;107/1:223-236.

[11] Besta P, Stoch M, Haverland J. Lean manufacturing concept in metallurgical industry,

Metal 2011 [12] Girish CP, Naik GR, Naik PG. Application Of Process Activity Mapping For Waste Reduction

A Case Study In Foundry Industry. International Journal of Modern Engineering Research

2012;2/5:3482-3496.

[13] Kukla S. Maintenance system improvement in cast iron foundry. Archives of Foundry

Engineering 2011; 11/3:185-188.

[14] Zeng B, Jolly M, Salonitis K. Manufacturing cost modelling of castingsproduced with

CRIMSON process. TMS Annual Meeting 2014, pp.201-208

[15] Dalquist S, Gutowski T. Life cycle analysis of conventionalmanufacturing techniques: sand

casting. ASME InternationalMechanical Engineering Congress and RD&D Exposition,

Anaheim, California, USA, 2004

[16] Meffert WA. Energy Assessments in Iron Foundries. EnergyEngineering 1999;96/4:6-

18.BCS Incorporated (2005), Advance Melting Technologies: Energy Saving concepts and

Opportunities for the Metal Casting Industry, Office of Energy Efficiency & Renewable

Energy

[17] Smithells CJ. Smithells Metals Reference Book, 5th ed, Butterworth– Heinemann, London

and Boston, 1976

[18] Chan DY, Yang K, Hsu C, Chien M, Hong G. Current situation of energy conservation in

high energy consuming industries in Taiwan. Energy Policy 2007;35/1:202-209.

Page 32: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

31

Data Kendaraan Bermotor

1. Data Kendaran Roda 4

a. Penjualan Kendaraan roda 4 (unit) tahun 2012-2017 di Indonesia

No. Bulan Penjualan (Unit)

2013 2014 2015 2016 2017

1 Januari 96.718 103.609 94.194 85.002 86.253

2 Februari 103.278 111.824 88.740 88.208 94.791

3 Maret 95.996 113.067 99.410 94.092

4 April 102.257 106.124 81.600 84.770

5 Mei 99.697 96.872 79.375 88.567

6 Juni 104.268 110.614 82.172 91.488

7 Juli 112.178 91.334 55.615 61.891

8 Agustus 77.964 96.652 90.537 96.282

9 September 115.974 102.572 93.038 92.541

10 Oktober 112.039 105.222 88.408 92.106

11 Nopember 111841 91.327 86.937 100.215

12 Desember 97.691 78.802 73.264 86.573

Total 1.229.901 1.208.019 1.013.290 1.061.735 Sumber :Gaikindo

b. Produksi Kendaraan roda 4 (unit) tahun 2012-2017 di Indonesia

No. Bulan Produksi (Unit)

2013 2014 2015 2016 2017

1 Januari 97.793 104.728 99.102 91.068 99.877

2 Februari 100.491 112.501 93.113 91.535 108.009

3 Maret 89.073 123.007 108.066 102.507

4 April 101.805 121.114 97.676 104.412

5 Mei 99.661 94.353 89.579 105.957

6 Juni 97.939 117.309 91.807 106.012

7 Juli 106.519 93.613 59.225 68.357

8 Agustus 77.354 105.259 103.567 105.580

9 September 116.974 119.346 104.702 101.371

10 Oktober 115.533 116.654 95.731 104.130

11 Nopember 110.570 102.423 88.493 107.719

12 Desember 94.499 88.216 67.719 88.741

Total 1.208.211 1.298.523 1.098.780 1.177.389

Page 33: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

32

a. Penjualan Kendaraan roda 4 (unit) tahun 2012-2017 di ASEAN

No. Bulan

Penjualan (Unit)

2013

2014

2015

2016

Jan-Feb 2017

1 Brunai 18.642 18.114 14.406 13.248 1,802

2 Indonesia 1.229.901 1.208.019 1.013.291 1.061.735 181,044

3 Malaysia 655.793 666.465 666.674 580.124 87,122

4 Philipina 181.738 234.747 288.609 359.572 57,465

5 Singapura 34.111 47.443 78.609 110.455 16,386

6 Thailand 1.330.672 881.832 799.632 768.788 125,689

7 Vietnam 98.649 133.588 209.267 270.820 36,769

Total 3.549.506 3.190.208 3.070.488 3.164.742 506,277

sumber :AAF

b. Produksi Kendaraan roda 4 (unit) tahun 2012-2017 di ASEAN

No. Bulan

Produksi (Unit)

2013

2014

2015

2016

Jan-Feb 2017

1 Indonesia 1.208.211 1.298.523 1.098.780 1.177.389 207,886

2 Malaysia 601.407 596.418 614.664 545.253 88,659

3 Philipina 79.169 88.845 98.768 116.868 22,651

4 Thailand 2.457.057 1.880.007 1.913.002 1.944.417 306,757

5 Vietnam 93.630 121.084 171.753 236.161 27,802

Total 4.439.474 3.984.877 3.896.967 4.020.088 653,755

sumber :AAF

2. Data Kendaraan Roda 2 / Sepeda Motor

a. Penjualan sepeda motor 2012-2017 Di Indonesia

No. Bulan Penjualan (Unit)

2013 2014 2015 2016 2017

1 Januari 649.983 580.288 513.816 443.449 473.879 2 Februari 653.357 681.267 570.524 551.930 453.763 3 Maret 657.483 728.820 562.185 583.339 4 April 660.505 729.279 538.746 501.564 5 Mei 647.215 734.030 482.691 485.170 6 Juni 661.282 753.789 588.675 541.428 7 Juli 704.019 539.171 439.245 326.390 8 Agustus 490.824 599.250 645.997 550.287 9 September 678.139 706.938 632.227 579.454

10 Oktober 717.272 675.962 626.725 594.887 11 Nopember 688.527 592.635 565.066 570.923

12 Desember 552.408 556.586 542.487 486.529

Total 7.771.014 7.908.914 6.708.384 6.215.350 927.642

sumber : AISI Diolah

Page 34: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

33

b. Penjualan sepeda motor 2012-2016 di ASEAN

No. Bulan Penjualan (Unit)

2013

2014

2015

2016

Jan-Feb 2017

1 Indonesia 7.141.586 7.771.014 7.908.014 6.215.350 927.642

2 Malaysia 537.753 546.719 442.749 396.343 71.291

3 Philipina 702.599 752.835 790.245 1.140.338 187.382

4 Singapura 9.923 11.650 8.145 8.336 1.403

5 Thailand 2.130.067 2.004.498 1.701.535 1.738.231 297.749

Total 10.521.928 11.086.716 10.851.615 9.498.598 1.485.467

sumber :AAF

c. Produksi sepeda motor 2012-2016 Di ASEAN

No. Bulan

Produksi (Unit)

2013

2014

2015

2016

Jan-Feb 2017

1 Indonesia 7.926.104 5.698.637 5.698.637 - -

2 Malaysia 439.907 382.218 382.218 395.938 70.708

3 Philipina 755.184 795.840 795.840 1.040.626 200.997

4 Thailand 1.842.708 1.807.325 1.807.325 1.820.358 326.922

Total 10.963.903 8.684.020 8.684.020 3.256.922 598.627

sumber :AAF

3. Populasi kendaraan tahun 2012 - 2016

No Keterangan Tahun

2012 2013 2014 2015 2016

1

Mobil

Penumpang 9,656,773 10,540,936 11,561,123 12,420,802 13,167,639

2 Mobil Barang 4,419,330 5,156,362 5,570,987 5,909,127 6,218,438

3 Mobil Bus 967,325 1,962,921 1,979,877 1,998,127 2,016,572

4

Kendaraan

Khusus 177,762 297,656 307,228 323,590 603,721

Sub Total 15,221,190 17,957,875 19,419,186 19,428,603 22,006,370

5 Sepeda Motor 79,452,877 86,253,257 94,243,031 100,502,049 105,753,372

Page 35: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

34

4. Populasi Kendaraan Bermotor Per Provinsi Di Indonesia 2016

No Polda

Kendaraan Bermotor

Mobil

Penumpang

Mobil

Bus

Mobil

Barang

Kendaraan

Khusus Jumlah

Sepeda

Motor

1 Aceh 161,022 22,993 69,773 1,061 254,849 2,090,378

2 Sumut 515,113 76,517 287,544 1,390 880,564 5,320,861

3 Sumbar 209,943 7,693 113,269 1,042 331,947 1,843,909

4 Riau 675,388 108,419 185,289 993 970,089 4,887,398

5 Kepri 145,597 3,081 48,216 597 197,491 1,204,701

6 Sumsel 1,003,462 42,768 535,640 1,374 1,583,244 7,096,445

7 Babel 54,722 8,692 708,287 526 772,227 856,259

8 Jambi 262,866 978,437 203,411 722 1,445,436 2,847,293

9 Bengkulu 102,726 2,378 60,280 354 165,738 956,420

10 Lampung 185,553 4,565 141,590 717 332,425 2,748,186

11 Metro Jaya 3,659,323 347,959 749,737 160,117 4,917,136 14,565,706

12 Jabar 1,349,093 163,675 562,161 1,840 2,076,769 8,614,462

13 Banten 161,295 3,956 59,885 837 225,973 2,469,845

14 Jateng 1,079,348 95,996 720,287 275,731 2,171,362 13,471,295

15 Diy 255,790 12,201 68,164 691 336,846 2,045,984

16 Jatim 1,294,824 22,619 513,428 131,490 1,962,361 13,345,336

17 Bali 139,355 9,903 144,656 612 294,526 3,253,526

18 Ntb 73,856 6,619 45,125 552 126,152 1,458,239

19 Ntt 21,527 2,507 22,720 324 47,078 449,489

20 Kaltim 180,768 14,865 175,873 1,836 373,342 2,179,897

21 Kalbar 85,963 4,811 65,649 1,437 157,860 2,099,761

22 Kalsel 126,554 1,331 72,799 946 201,630 1,654,774

23 Kalteng 489,579 1,957 162,827 13,690 668,053 2,690,784

24 Sulsel 330,588 25,953 158,850 1,456 516,847 3,104,091

25 Sultra 49,545 402 30,461 298 80,706 665,445

26 Sulut 320,313 14,513 163,347 967 499,140 1,587,499

27 Gorontalo 19,266 657 17,042 254 37,219 277,988

28 Sulteng 32,822 4,683 20,513 290 58,308 599,799

29 Maluku 34,292 21,105 32,011 344 87,752 291,914

30 Malut 4,236 110 3,433 39 7,818 107,009

31 Papua 132,427 5,083 68,414 1,132 207,056 883,105

32 Papua Barat 9,108 110 7,616 62 16,896 85,574

33

Sulawesi

Barat 1,375 14 141 - 1,530 -

13,167,639 2,016,572 6,218,438 603,721 22,006,370 105,753,372

Page 36: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

35

Informasi Umum &Pameran

A. Web site Pemerintah yang dapat diakses :

1. www.setneg.go.id (Sekretariat Negara)

2. www.kemenperin.go.id (Kementerian Perindustrian)

3. www.kemenkeu.go.id (Kementerian Keuangan)

4. www.kemendag.go.id (Kementerian Perdagangan)

5. www.beacukai.go.id (Direktorat Bea & Cukai, Kementerian Keuangan)

6. www.esdm.go.id (Kementerian ESDM)

7. www.bkpm.go.id (Badan Koordinasi Penanaman Modal)

8. www.bps.go.id (Biro Pusat Statistik)

B. Web site Asosiasi Industri Pengecoran Logam Indonesia (APLINDO)

Kini APLINDO telahtersedia Web site sendiri:

www.aplindo.web.id, mohondukunganpartisipasiaktifBapak-

bapaksekaliandandiharapkan saran, masukan, permasalahandanperkembangan

yang terjadi di industripengecoranlogam di Indonesia. Saran

[email protected]

C. Web site Himpunan Ahli Pengecoran Logam Indonesia

Kini HAPLI telahtersedia Web-site sendiri:

http://hapli.wordpress.com/, mohondukunganpartisipasiaktifBapak-

bapaksekaliandandiharapkan saran sertamasukanandaberupaartikelsesuai page

yang tersediadalam format *.doc kealamaterwidodo@polman-

bandung.ac.iduntukdiupload, ataupunkomentarlangsungandapada Blog.

D. Pameran dan Seminar

1. IFEX 2017

3 February - 5 February

Venue: Eco Park, New Town, Rajarhat, Kolkata, West Bengal, India

13th international exhibition for foundry technology, equipment, supplies and services

www.ifexindia.com

2. 65th International Foundry Congress

Page 37: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

36

3 February - 5 February

Venue: Eco Park, New Town, Rajarhat, Kolkata, West Bengal, India

Annual conference and technical sessions

www.ifcindia.net

3. 6th International Foundry Conference and Exhibition

15 February - 16 February

Venue: Pearl Continental Hotel, Lahore, Pakistan

www.pfa.org.pk/info

4. WFO Technical Forum

14 March - 17 March

Venue: Gauteng, South Africa

Technical conference, exhibition and social events.

www.metalcastingconference.co.za

5. 20th Global Foundry Sourcing Conference 2017

21 March - 22 March

Venue: Shanghai Everbright International Hotel, China

Global sourcing conference including the 3rd China Casting Exporting and Technology

Conference 2017

www.foundry-suppliers.com

www. castings.foundry.cn

6. 121st Metalcasting Congress

25 April - 27 April

Venue: Wisconsin Center, Milwaukee, USA

American conference for all sectors of the cast metals industry.

www.afsinc.org

7. World Magnesium Conference

21 May - 23 May

Venue: Shangri-La Hotel, Singapore

International conference for the magnesium industry

www.intlmag.org

8. Metal + Metallurgy China 2017

13 June - 16 June

Page 38: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

37

Venue: Shanghai, China

15th China International Foundry Expo, the 17th China International Metallurgical

Industry Expo and the 15th China International Industrial Furnaces Exhibition will all be

staged under the banner ''Metal + Metallurgy Chna at Shanghai New International

Expo Center.

www.mm-china.com/en/

9. Rapid Tech

20 June - 22 June

Venue: Exhibition Centre Erfurt, Germany International trade fair and conference for additive manufacturing www.rapidtech.de

10. Foundeq/Metef Show 2017

21 June - 24 June

Venue: Veronafiere Fairground, Verona, Italy

Metef - International aluminium exhibition. Foundeq - International foundry equipment

exhibition.

www.metef.com

11. Machine Tool Technology Indonesia 2017

8-11 Agustus 2017

Venue : JIExpo Kemayoran Jakarta

Accelerating industry development in Indonesia MTTI is an international event that focuses on advanced technologies in machine tools and metalworking, designed.

t: +(62) 21 7590 6812 / 7590 2647

f: +(62) 21 7590 1572

e: [email protected]

12. 57th International Foundry Forum

13 September - 15 September

Venue: Portoroz, Slovenia

International conference, table-top exhibition and social functions.

email: [email protected]

13. EMO Hannover 2017

18 September - 23 September

Venue: Hannover Exhibition Centre, Germany

International metalworking trade fair will focus on Industry 4.0 in 2017

Page 39: BULETIN - APLINDOaplindo.web.id/wp-content/uploads/2018/04/BULETIN-APLINDO-51FIX.pdf · LNG, CNG, LPG dan fasilitas Pengisian Bahan Bakar Gas yang terintegrasi dengan pipa gas bumi

BULETIN - APLINDO No.51/2017

38

www.emo-hannover.de

14. 17th ABIFA Foundry Congress and CONAF 2017

26 September - 29 September

Venue: Expo Center Norte, Sao Paulo, Brazil

Brazilian foundry congress with exhibition and conference. Theme - ''Innovations and

trends of the foundry industry in Brazil and the world''.

www.abifa.org.br

15. Deburring Expo

10 October - 12 October

Venue: Exhibition Centre Karlsruhe, Rheinstetten, Germany

Trade fair for debarring technology and precision surfaces

www.deburring-expo.de/en

16. PaintExpo Eurasia

12 October - 14 October

Venue: ifm Istanbul Expo Center, Istanbul, Turkey

Trade fair for industrial coating technology

www.paintexpo.com

17. parts2clean

24 October - 26 October

Venue: Exhibition Center Stuttgart, Germany

International trade fair for industrial parts and surface cleaning

www.parts2clean.com

18. Manufacturing Indonesia Series 2017 6-9 Desember 2017

JIExpoKemayoran Jakarta