14
Changhee Lee, SNU, Korea 전자물리특강 2007. 2학기 Organic Semiconductor Lab Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. [email protected] Changhee Lee, SNU, Korea 전자물리특강 2007. 2학기 Organic Semiconductor Lab Electron mobility of Si Carrier mobility of Si and Organic Materials Electron mobility of Perylene 370 nm thick perylene crystal 8.7 um thick unordered layer of MPMP ( sublimed). Electron mobility of MPMP

Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Changhee LeeSchool of Electrical Engineering and Computer Science

Seoul National Univ. [email protected]

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Electron mobility of Si

Carrier mobility of Si and Organic Materials

Electron mobility of Perylene

370 nm thick perylene crystal 8.7 um thick unordered layer ofMPMP ( sublimed).

Electron mobility of MPMP

Page 2: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Conduction in most organic semiconductors

• Van der Walls forces hold molecules together• Charge hopping, the major factor limiting mobility, takes place from

molecule to molecule• Phonons help electrons hop, therefore increasing mobility• Mobility increases with temperature because of phonons

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

1) Polaron formation 2) Disorder (energetic and structural disorder)

x

V(x)

Transport State

Before hopping

After hopping

Why Localized States?

1) Polaron• Charge carrier lowers its energy by lattice distortion• Strong electron-lattice (phonon) interaction leads to self-localisation• The rate of charge transfer is limited by the reorganiztionof the molecules.

⎥⎦

⎤⎢⎣

⎡ −−⋅=

TkAk

BET λ

λ4

)t2(exp

k rate, (hopping)transfer -electron2

ET

Page 3: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

• Potential Wells for Crystalline LatticeEnergy band

x

V(x)

DOS

E

Random potential

Gaussian DOS ofLocalized states

DOS

E

Periodic potential Bloch wavefunctions

2) Disorder

• Sufficient disorder produces localized states (P. W. Anderson)

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

• The transition rates for phonon-assisted tunneling (Miller and Abrahams):

α = inverse localization length, Rij = distance between the localized states, εi = energy at the state i.

• Since the hopping rates are strongly dependent on both the positions and the energies of the localized states, hopping transport is extremely sensitive to structural as well as energetic disorder.

Ref. A. Miller, E. Abrahams, Phys. Rev. 120 (1960) 745.

B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin, 1984.

Hopping = phonon-assisted tunneling

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

>

>−

−−=ji

jiji

ijphij kTRvWεε

εεεε

α ,1

),exp()2exp( εi

εj

• Carriers tunnel directly from one localized state to another when the electronic wave functions of the defect states have sufficient overlap.

• The carrier can overcome the energy differences between the defect states by absorbing and emitting phonons.

Ref. E.M. Conwell, Phys. Rev. 103 (1956) 51.

N.F. Mott, Can. J. Phys. 34 (1956) 1356; N.F. Mott, E.A. Davis, Electronic Processes in NoncrystallineMaterials, Clarendon Press, Oxford, 1971.

Page 4: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

J. M. Shaw, P. F. Seidler, IBM J. Res. & Dev., 45, 3 (2001)

Correlation between morphology and mobility

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

1. Organic molecules are ‘extended objects’ and thus have internal degrees of freedom (vibrational, conformational, and orientational). This is probably the most fundamental difference between growth of atomic and growth of organic systems.

2. The size of the molecules and the associated unit cells are greater than that of typical (inorganic) substrates.

3. 3. The interaction potential (molecule-molecule and molecule-substrate) is generally different from the case of atomic adsorbates, and van-der-Waals interactions are more important.

Important aspects for organic thin film growth

F. Schreiber, phys. stat. sol. (a) 201, No. 6, 1037–1054 (2004)

Page 5: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Real-time Growth Studies of Pentacene Thin Films

S. Kowarik, A. Gerlach, W. Leitenberger, J. Hu, G. Witte, C. Wöll, U. Pietsch, and F. Schreiber, Thin Solid Films (2007).

Pentacene growth exhibits a marked transition from layer-bylayer growth to strong roughening after a thickness of about four pentacene (mono-) layers.

Development of the pentacene layer-by-layer contrast during deposition on Si(001) during growth at a rate of 10-2 monolayers per minute (one monolayer (ML) ~15 Å ). One layer; two layers; three layers

F.-J. M. z. Heringdorf, M. C. Reuter and R. M. Tromp, Nature 412, 517-520 (2001)

Growth on a SiO2/Si wafer at 50 °C

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Purification and Crystal Growth

Schematic overview of crystal growth system.

(a) Result after first regrowth of as-purchased organic material.. (b) At the end of the second regrowth no dark residue is present at the position of the source material, which demonstrate the purifying effect of the growth process.

The angular dependence of the mobility for a rubrene crystal, measured at room temperature.

R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, phys. stat. sol. (a) 201, No. 6, 1302–1331 (2004).

Page 6: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

TOFMobility in the bulk

d = 0.5~5 μm

FETMobility in a thin layer

d ~ 50 nm

τμ

Vd 2

=∴

Vdμ

τ2

=

Mobility Measurement Techniques

10 2−

)/( 2 Vscmμ 10 4− 10 6− 10 8− 100 102

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Organic TFT

T. N. Jackson, Penn State U.

Page 7: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Transient EL30

25

20

15

10

5

0

Ligh

t (x

10-3

arb

.uni

t)

500450400350300250200150100500

Time (x10-9 s)

57V

19V27V

39V

42V

46V52V

240

220

200

180

160

140

120

100

Tim

e Del

ay (n

s)

605040302010

1/V (x10-3 V-1)

Mobility from the delay time

τ=d2/ μV

Hole mobility

in the vacuum-deposited PPP:ITO/PPP/Al: μ=4.5x10-6 cm2/Vs

ITO glass

Al

PMT

PPP

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Light (hν)τ

μVd 2

=

t =0

hυ------

++++++

------

++

+++

+

0 < t < τ------

+++++

+

t =τ

t =0 t =τ0 < t < τ Time

Phot

ocur

rent

TOF-PC

Time-of-flight photoconductivity

Oscilloscope

N2 laser

VacuumCryostat

B/S

Sample

Si-PD

Bias VPC

Trigger

TOF Signal

RL

Page 8: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

TOF-PC Signals of TPD

Field and Temperature dependence

-20

0

20

Phot

ocur

rent

(arb

. uni

ts)

1086420

Time (μs)

Hole

Electron

1 0-5

1 0-4

1 0-3

1 0-2

Phot

ocur

rent

(arb

. uni

ts)

1 0 -7 1 0-6 1 0 -5 1 0 -4

T im e (s )

H o le

Elec tro n

60

40

20

0

Phot

ocur

rent

(arb

. uni

ts)

1086420

Time (μs)

0.4 MV/cm

0.3 MV/cm0.2 MV/cm

10-4

10-3

10-2

Phot

ocur

rent

(arb

. uni

ts)

10-7 10-6 10-5

Time (s)

293 K

200 K

150 K

1.6

1.2

0.8

0.4

0.0

Abs

orpt

ivity

(arb

. uni

ts)

600500400300

Wavelength (nm)

NN

CH3H3CGaussian transport of holes

Severe trapping of electrons

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Transport of charge carriers in organic materials

60

40

20

0

Phot

ocur

rent

(arb

. uni

ts)

1.00.80.60.40.20.0

Time (μs)

0.20

0.15

0.10

0.05

0.00

Phot

ocur

rent

(arb

. uni

ts)

806040200

Time (μs)

Dispersive transportGaussian transport

Distance

Car

rier

Den

sity

Trappingand release

Band States

Localized states

Hopping

Deep trap

a-NPD Alq3

Gaussian transport Dispersive transport Fast

Slow

Ref.) Harvey Scher, Michael F. Shlesinger and John T. Bendler, Physics today, Jan. p.26 (1991)

Page 9: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Poole-Frenkel effect

⎟⎟⎠

⎞⎜⎜⎝

⎛ −Δ−=

TkFEμF,T

B

PFPF exp)( βμ

0

3

PF πεεβ q

=

Electron energy

Conduction bandedge at F

Conduction bandedge at F=0

Tunneling

PFEΔ

Carrier Transport Models(1) Poole-Frenkel Model

W. D. Gill, J. Appl. Phys. 43, 5033 (1972).

⎟⎟⎠

⎞⎜⎜⎝

⎛−+

Δ−= F

kTkTkTETE

oPFPF )11(exp),( βμμ

Carrier mobility shows:

(i) field-independent activated mobility at low fields, characterized by an activation energy

(ii) field-dependent mobility of the stretched exponential form exp(γE 1/2 ) at high fields

(iii) change of sign of the coefficient γ above a certain emperature.

P.W.M. Blom, M.C.J.M. Vissenberg / Materials Science and Engineering 27 (2000) 53-94

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Temperature Dependence of the hole mobility in TPD

10-6

10-5

10-4

10-3

Mob

ility

μ (c

m2 /V

s)

1000800600400200

Electric field E1/2 (V/cm)1/2

293 K 270 K 250 K 220 K 200 K 180 K 150 K 120 K 100 K

10-5

10-4

10-3

10-2

Phot

ocur

rent

(arb

. uni

ts)

10-7 10-5 10-3 10-1

Time (s)

290 K 200 K 150 K 100 K

⎟⎟⎠

⎞⎜⎜⎝

⎛−+

Δ−= F

kTkTkTETE

oPFPF )11(exp),( βμμ

Page 10: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

(2) Bassler’s gaussian disorder model• The energy of each site is distributed in accordance with the Gaussian distribution• Energies of adjacent sites uncorrelated• Motion between sites is Markovian (no phase memory)

H. Bässler, Phys. Status Solidi B 175, 15 (1993).

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡Σ−⎟⎟

⎞⎜⎜⎝

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−= ∞ F

TkC

TkμF,T 2

2

B

2

B

exp32exp)( σσμ

Density of state

Ener

gy le

vel

Ε0

σ

: Energetic disorder

: Positional disorder

: specific parameter

: High temperature limit of

the mobility

σ

C

Σ

∞μ

Carrier Transport Models

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Temperature dependence of the mobility

M. Pope and C. E. Swenberg. Electronic Processes in Organic Crystals, (Oxford, New York, 1999), p. 977

Mobility of DEH in polycarbonate

Poole-Frenkel Model Disorder Model

Page 11: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

P.W.M. Blom, M.C.J.M. Vissenberg, Materials Science and Engineering 27, 53-94 (2000)

Temperature dependence of the hole mobility of PPVs

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

⎩⎨⎧

><

=+−

−−

ττ

α

α

tttt

, ,

(t)J )1(

)1(

ph

(3) Scher-Montroll dispersive transport model

Time

Trappingand release

Band States

Localized statesDeep trap

α−≈Ψ tt)(

oTT

Disappearance of plateau

t =0 t =τ Time

Phot

ocur

rent

Slope = -(1+α)

Slope = -(1-α)

log t

log

i ph

t =0 t =τ

Carrier Transport Models

Continuous time random walk (CTRW)

ατ1

)(EL

Scher and Montroll, Phys. Rev. B 12, 2455 (1975)

Page 12: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor LabH. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975)

ατ1

)(EL

Scher-Montroll model of dispersive transport

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor LabG. Pfister, Phys. Rev. Lett. 36, 271 (1976)

Dispersive Transport in a-Selenium

Page 13: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Doping reduces carrier mobilityand affects I-V-EL characteristics.

Ref. H.H. Fong et al. Chem. Phys. Lett. 353 (2002) 407

Mobility – Doping Relation

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

20 100 30010-3

10-2

10-1

100

101

102

increasing N t

μ tf

Temperature (K)

Mob

ility

(cm

2 /Vs)

Influence of traps on the carrier mobility

Exponential Decrease of µEt ~ 40 - 50 meV

Dependence on Trap Density NtNt ~ 1016 - 1018 cm-3

Trap-Free Limit : Power Law T-n

n ~ 1.6 - 2.3phonon scattering

J. H. Schön et al. Phys. Rev. B 63, 245201 (2001)

Page 14: Changhee Lee School of Electrical Engineering and Computer ...ocw.snu.ac.kr/sites/default/files/NOTE/8898.pdf · exponential form exp(γE 1/2) at high fields (iii) change of sign

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Electron and hole mobilities of anthracene

Influence of impurity on the carrier mobility