21
Changhee Lee, SNU, Korea 전자물리특강 2007. 2학기 Organic Semiconductor Lab Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. [email protected] Changhee Lee, SNU, Korea 전자물리특강 2007. 2학기 Organic Semiconductor Lab • 500,000 years ago – fire, 1st torch • 70,000 years ago – 1st lamp (wick) • 1,000 BC – 1st candle • 1772 gas lighting • 1879 T. A. Edison, incandescent filament lamp: Dawn of electric lighting. • 1907 H. J. Round, 1st LED (SiC), Electrical World 49, 309 (1907) • 1910 P. Claude, discharge lamps filled with inert gases • 1938 GE and Westinghouse Electric Co. white fluorescent lamps. • 1962 N. Holonyak Jr. and Bevaqua, GaAsP (visible light – red) 1987 C. W. Tang, OLED (Alq 3 , Green) • 1995 S. Nakamura et al, GaInN LED (blue & Green) Brief history of Lighting History of Lighting (http://lighting.sandia.gov/) pyroluminescence More Efficient, Convenient

전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Changhee LeeSchool of Electrical Engineering and Computer Science

Seoul National Univ. [email protected]

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

• 500,000 years ago – fire, 1st torch• 70,000 years ago – 1st lamp (wick)• 1,000 BC – 1st candle• 1772 gas lighting • 1879 T. A. Edison, incandescent filament lamp: Dawn of electric lighting.• 1907 H. J. Round, 1st LED (SiC), Electrical World 49, 309 (1907)• 1910 P. Claude, discharge lamps filled with inert gases• 1938 GE and Westinghouse Electric Co. white fluorescent lamps.• 1962 N. Holonyak Jr. and Bevaqua, GaAsP (visible light – red)• 1987 C. W. Tang, OLED (Alq3, Green)• 1995 S. Nakamura et al, GaInN LED (blue & Green)

Brief history of Lighting

History of Lighting(http://lighting.sandia.gov/)

pyroluminescence

More Efficient, Convenient

Page 2: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Incandescent Lamp

Edison’s US. Patent No. 444,530 (issued Jan 13, 1891)

Now, Lifetime ~ 2000 hEfficiency ~ 17 lm/W

300 500 1000 3000

Wavelength (nm)R

elat

ive

Inte

nsity

black body (dot) and tungsten radiator (solid line) at 3000 K

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

레인콤MP3 Player

‘CLIX’

SEC40” WXGA

a-Si AMOLED

Mass production of AMOLED

Samsung SDI

Updated the data in J. R. Sheats et al., Science 273, 884 (1996).

Evolution of OLED Performance

Page 3: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Performance of RGB OLED Devices

Color CIE (x,y) Efficiency (cd/A) Half-Life (hr)

저분자

형광

Red 0.65, 0.35 5.5 >80,000 @ 1000 cd/m2

Green 0.32, 0.62 19 40,000 @ 1000 cd/m2

Light blue 0.17, 0.30 12 21,000 @ 1000 cd/m2

Blue 0.15, 0.15 5.9 7,000 @ 1000 cd/m2

White 0.30, 0.34 12 23,000 @ 1000 cd/m2

인광

Red 0.65, 0.35 15 >22,000 @ 500 cd/m2

Orange 0.61, 0.38 22 15,000 @ 300 cd/m2

Green 0.31, 0.64 27 25,000 @ 600 cd/m2

Light blue 0.14, 0.23 8 -White 0.39, 0.39 38 -

고분자

형광

Red 0.68, 0.32 1.7 1790 @ 1000 cd/m2

Orange 0.58, 0.42 0.9 8138 @ 1000 nitYellow 0.50, 0.49 2.1 2420 @ 4000 cd/m2

Green 0.43, 0.55 7.7 2912 @ 2000 cd/m2

Blue 0.16, 0.22 6.9 >1147 @ 800 cd/m2

White 0.30, 0.33 3.8 235 @ 800 cd/m2

인광

Red 0.67, 0.28 1.3 >8350 @ 100 cd/m2

Green 0.36, 0.59 22.8 2649 @ 400 cd/m2

0.0

0.20

0.40

0.60

0.80

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y

x

520 nm

550 nm

575 nm

600 nm

770

625

500 nm

475

1000 K2000 K

3000 K5000 K

10 000 K

20 000 K

5000 K

3000 KNTSC OLED

Black body

OLED의색좌표

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

EfficiencyEfficiency(lm/W)(lm/W)

FlickersCannot be dimmedLosses in ballastNoisy

0

20

40

60

80

100

Incandescent Halogen Fluorescent White LED(2000)

White LED(2010)

Solid State Lighting

Ref. A. Zukauskas, M. S. Shur, R. Caska, Introduction to Soild-State Lighting

Luminous Efficiency (lm/W)OLED 10 + LCD screen 1.5CRT, PDP 1Incandescent lamp 17Fluorescent lamp 80

Page 4: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

White Organic Light-Emitting Devices• Full-Color Display• Backlight of TFT-LCD • Lighting – Light signs, decorative lighting, glowing wall paper, ceilling lights, etc.

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Advantages of using LEDs over conventional light sources such as CCFL: • long life• ruggedness • high frequency dynamical operation • Hg-free light source• Better color gamut

Wiep Folkerts (Lumileds Lighting), SID 04 Digest, p. 1226

LED backlighting

Page 5: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

• Improve efficiency of light generation• Improve efficiency of light extraction• Improve quality of light • Reduce cost

Issues of Solid State Lighting

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Methods of Making White LEDs• Wavelength Conversion

1. Blue LED with phosphors2. UV LED with several phosphors

• Color Mixing3. Two or more emitting layers of different colors.

- white light with a high color rendering index (CRI).- relatively easy to change the hue for different applications.

R+G+B=W

R + C = W; G + M = W; B + Y = W

OLED NET

Page 6: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

백색 LED 소자

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Energy transfer & Carrier trapping

-electron

hole +

-+Exciton

host dopant

Energy transfer

HOMO

LUMO

Energy transfer-

+

-+Exciton

host dopant

HOMO

LUMO -

+

Direct trappingelectron

hole

Host

Dopant

1.2

1.0

0.8

0.6

0.4

0.2

0.0

EL

800700600500400300Wavelength (nm)

1.2

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

Wavelength (nm)

PL

1.2

1.0

0.8

0.6

0.4

0.2

0.0800700600500400300

Wavelength (nm)

ELNO

NON

OAl

Alq3

N

O

NCCN

CH3

DCM2

Page 7: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab 13

Doping in OLEDs• Doping fluorescent dyes

C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989)• Doping phosphorescent dyes

M. A. Baldo, et al, Nature 395, 151 (1998)• Effects of doping:1. Color tuning.2. Increase the device quantum efficiency 3. In general, the doped layer is more thermally stable than the undoped layer (increase of entropy).4. Proper dopants can increase the operational lifetime of the device.

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Exciton formation

M. Baldo and M. Segal, phys. stat. sol. (a) 201, 1205 (2004)

Caution for this simple method:(1) It is necessary to correct for the differing photoluminescent efficiencies of the fluorescent and phosphorescent guest molecules.(2) The efficiency of energy transfer to both guest materials must be determined to ensure that radiative emission accurately reflects the number of excitons formed within the device. (3) The impact of quenching phenomena must be calculated for both singlet and triplet excitons. (4) When applied to polymeric systems, it is especially important to ensure that excitons are formed on the polymeric host and not on the small molecularweight phosphorescent guest.

Page 8: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab 15

Fluorescent Dye doping

C. W. Tang and S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 65, 3610 (1989)

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Excitonic interaction and excitation transfer

Donor (D) Acceptor (A)

D* A

Excitation

Excitation and energy transfer

D* A

electron transfer

D* A

hole transfer

excitation transfer 1

D* A

excitation transfer 2

D* A

D+A- D-A+

DA* DA*

Förster: overlap of spectra, dipole interactionDexter: overlap of wavefunctions

Page 9: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Energy Transfer Processes

( ) ( ) νν

ννε ~~

~~ :integral Overlap 4 dFJ DA∫

⋅=

64

282 mol1088nsferenergy traForster

rτn .J K k

oAD

→×

= )2(exp2

nsferenergy traDexter

2 r/L- J Pπ

h kET ∝

The Förster eq. is often written in the following form:

60 ⎟⎠⎞

⎜⎝⎛=

RRkW D

rDA( ) ( ) νν

ννεκ ~~

~~108.8 44

2176

0 dFn

R DA∫⋅

⋅⋅⋅=

For photosynthetic systems R is typically 1 nm, R0 is typically 8 nm,17105 −⋅≈ sk D

r11310 −≈→ sWDA

D* A

D A*

D* A

Dexter excitation transfer (electron exchange excitation

transfer)

Förster excitation transfer (Dipole-Dipole Excitation

Transfer)

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Förster radiusExcitation dynamics of dye doped tris(8-hydroxy quinoline) aluminum filmsK. Read, H. S. Karlsson, M. M. Murnane and H. C. Kapteyn, R. Haight, J. Appl. Phys. 90, 294 (2001)

κ=donor/acceptor orientation factor; κ2 = 2/3 for a randomly deposited filmNA is Avogadro’s numbern=1.7 for Alq3 Ro = 31 Å

( ) ( ) νν

ννεκ ~~

~~5291.044

260 dF

NnR DA

A∫

⋅⋅=

Page 10: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

T.A. Beierlein, B. Ruhstaller, D.J. Gundlach, H. Riel, S. Karg, C. Rost, W. Rieß, Synth. Met. 138, 213 (2003)

Location and extent of the recombination and emission zone

Schematic energy level diagram of delta-doped devices having a 25 Å Alq3/DCJTB (1%) sensing layer at various positions (d) in the Alq3 layer. The device structure is Ni/CuPc (150 Å)/NPB (500 Å)/Alq3 (500

Å)/Ca (200 Å).

J=20 mA/cm2

Exciton diffusion length ~ 120 Å

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

M. A. Baldo and S. R. Forrest, Phys. Rev. B 62, 10958–10966 (2000).

Triplet energy of R & G phosphors

Page 11: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab 21

Organic Electrophosphorescence devices

Princeton group

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Single emitting layer

Kido, APL (2005)

Page 12: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

1. The confinement of charge carriers in light-emitting quantum wells can enhance the forming probability of excitons and the light-emitting efficiencies of the devices.

2. Compared with multi-layer white OLEDs, the influence of band gap matching can be negligible, and the positions of different color light-emitting quantum wells can be exchangeable.

3. Easy turning of Commission International de I’Eclairange (CIE) chromaticity

Multi-Quantum Well Structure

NO

Be

NO

BePP2

RubreneZ. Y. Xie (Jilin U), Appl. Phys. Lett., 74, 1999, 641

0.41 lm/W, (0.32, 0.38) at 9V

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Complementary Color Stack

ITONPD

NPD:DCM2BCPAlq3

Hole-blocking layer

Interlayer sequential energy transfer (ISET):NPD Alq3 DCM2

0.35 lm/W, (0.33, 0.33) , and 100 cd/ m2 at 11..5 V

R. S. Deshpande (Princeton U.), Appl. Phys. Lett., 75, 1999, 888

Page 13: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Complementary Color Stack

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

NN

N

Et p-EtTAZ

N

ONEt

EtO

Nile Redp-EtTAZ

ITO anodeGlass substrate

G

Alq3

Alq3:NileRed

Alq3

Metal cathode

R

B

G

+

-

TPD

Multilayer RGB StacksJ. Kido (Yamagata U), Science, 267, 1995, 1332. 0.5 Im/W, ~ 300cd/ m2, and (0.335, 0.415)

at 12 V; 20h at 100cd/ m2

R. H. Jordan (AT&T), Appl. Phys. Lett., 68, 1996, 1192.

0.5 lm/ W, ηext=0.7 %,CIE (0.31, 0.41), and 105 cd/ m2 at 12 V

ITO/ TAD (600 Å)/ NAPOXA (150 Å)/Alq3 (300 Å)/ Alq3(200 Å)+ DCM1 (0.3 %)/ Alq3(200 Å)/ Al (2000 Å)

Page 14: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

S. R. Forrest et al., Adv. Mater. 14, 1035 (2002)

RGB white OLEDs: Phosphorescence

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

38 cd/A, 18.4 lm/W and 16% EQE with CIE of (0.39, 0.39) at 1000 cd/m2

White Phosphorescent OLEDs

Yeh-Jiun Tung et al. (Universal Display Corporation), SID 04 Digest 48

Page 15: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Philips Lighting/Novaled25 lm/W @ 1000 cd/m2

General Electric15 lm/W (2 ft. x 2 ft.) @ 1200 lumen

UDC20 lm/W @ 800 cd/m2

High efficiency white OLEDs

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Nature 440, 908 (2006)

23.8 lm/W @ 500 cd/m2

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

High resolution but very difficult process (fabrication of electrodes)

Full-Color Method – Stacked OLED

Page 16: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab 31

High-efficiency tandem OLEDL. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 84, 167 (2004)

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

White OLEDs with multilayer stack structure

NPB

ITO

4.7 eV Al

3.1 eV

4.2 eV

5.7 eV

Alq3DPVBi

2.3 eV

5.4 eV

PEDOT:PSS

5.2 eV

2.8 eV

5.9 eV

LiF

NPB

Al

3.1 eV

4.2 eV

5.7 eV

Alq3

2.3 eV

5.4 eV

LiF

3.1 eV

5.7 eV

Alq3Alq3:DCM2

OLED with Blue-Red Stack

Blue

Red

Al (3 nm)

ITO

Al

4 ~ 200 mA/cm28

6

4

2

0

Ligh

t (ar

b. u

nits

)

800700600500400

Wavelength (nm)

Page 17: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

White OLED + CF

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

RGB vs RGBW

Page 18: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

RGB vs RGBW

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

• Chromaticity coordinates• Color temperature• Color rendering index (CRI)

CIE 1931 Color Matching Functions (2 deg. Observer)

CIE 1931 Color Matching Functions

1.5

1.0

0.5

0.0

Ligh

t (ar

b. u

nit)

700600500400

Wavelength (nm)

xz

y

Page 19: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Chromaticity Coordinates & Color Temperature

λλ dxSKX ∫=780

380)(

λλ dySKY ∫=780

380)(

λλ dySKZ ∫=780

380)(

ZYXXx++

=ZYX

Yy++

=

K = 683 lm/W

1=++ zyx• A black body radiator (Planckian Source) glows with a color that is solely dependent on its temperature (in K).

• Standard sourceD65 (daylight, 6500 K)

(x,y) = (0.312, 0.329)E = Equal Energy point: (0.333, 0.333)

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Correlated color temperatureCorrelated colour temperature (CCT)= Temperature of a Planckian radiator having the chromaticity nearest the chromaticity associated with the given spectral distribution on a CIE 1931 chromaticity diagram.

- Only applicable for sources close to the black body curve (white light).

- Standard source:D65 (daylight, 6500 K) (x,y) = (0.312, 0.329)E = Equal Energy point: (0.333, 0.333)

McCamy΄s approximate formulaTCCT=437n3+3601n2+6861n+5517where n=(x-0.3320)/(0.1858-y), and x, y are the CIE 1931 chromaticity coordinates.Ref. McCamy, Color Res. Appl. 18, 150 (1993).

Page 20: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Color Rendering Index (CRI)• Color Rendering Index (CRI): a numerical system that rates the "color rendering"

ability of the light source in comparison with natural daylight (CRI=100, the highest possible CRI.).

• CRI is a relative measure of the colorimetric shift of an object when lit by a particular light source, compared with how the object would appear under a reference light source of similar color temperature.

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

1. Select a reference illuminant (Planck blackbody radiation below 6000K)

2. Measure the spectrum of the test source.

3. Determine the reflected spectra from each of the eight test samples

Calculation Method of CRI

)(y(λxS rrzyx

r λλ ), )( , , ⎯⎯ →⎯

)(y(λxS kkzyx

k λλ ), )( , , ⎯⎯ →⎯

)( )()( )( )()(

kikiik

ririir

, yxS, yxS

→→

λρλλρλ

λλ dxSKX ∫=780

380)( λλ dySKY ∫=

780

380)(

λλ dySKZ ∫=780

380)(

ZYXYy

ZYXXx

++=

++= ,

0.0

0.4

0.8

Light grayish red

0.0

0.4

0.8

Dark grayish yellow

0.0

0.4

0.8

Strong yellow-green

400 500 600 7000.0

0.4

0.8

Moderateyellowish green

Wavelength (nm)

Light bluish green

Light blue

Light violet

400 500 600 700

Light reddish purple

Reflectivity spectra of eight test samples (CIE 1964 )

Page 21: 전자물리특강-OLED-White OLED - Seoul National Universityocw.snu.ac.kr/sites/default/files/NOTE/8902.pdf · 2018. 1. 30. · NTSC OLED Black body OLED의색좌표 Changhee Lee,

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Calculation Method of CRI4. Transform the colorimetric data from the CIE 1931 values (X, Y, Z, x, y) to the (u, v)

coordinates of the CIE 1960 uniform chromaticity scale (UCS) diagram by means of the following:

5. To account for the adaptive color shift due to the different state of chromatic adaptation under the lamp to be tested and under the reference illuminant use the following formula:

31226

3156

31224

3154

++−=

++=

++−=

++=

yxy

ZYXYv

yxx

ZYXXu

u)/v. - .v + .d = (vvuc 481140407081 ,/)104( −−=

kkirkkir

kkirkkirki dddccc

dddcccu//481.1518.16/4/404.0872.10

−+−+

=′

kkirkkirki dddccc

v//481.1518.16

520.5−+

=′

Changhee Lee, SNU, Korea

전자물리특강2007. 2학기

Organic Semiconductor Lab

Calculation Method of CRI

1724 3/1 −= YW

5. Calculate lightness indices for all reflected spectra:

6. Calculate the special color rendering indices for each test-color sample.

7. Calculate the general color rendering index.

2/122

222

})]()'([13

)]()([13]{[6.4100

rririrkiki

rririrkikirikii

vvWvvW

uuWuuWWWR

−−−+

−−−′+−−=

∑=

=8

181 : value

iia RRCRI