77
2. TRANSMISSION LINES

Chap2 Trans Lines

Embed Size (px)

Citation preview

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 1/77

2. TRANSMISSION LINES

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 2/77

Transmission Lines

A transmission line connects a generator to a load

Transmission lines include:•  Two parallel wires•

 

Coaxial cable•  Microstrip line•  Optical fiber•  Waveguide•  etc.

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 3/77

Transmission Line Effects

Delayed by l/c

At t  = 0, and for f  = 1 kHz , if:

(1) l = 5 cm: (2) But if l = 20 km:

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 4/77

Dispersion and Attenuation

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 5/77

Types of Transmission Modes

TEM (TransverseElectromagnetic):Electric andmagnetic fields

are orthogonal toone another, andboth areorthogonal todirection ofpropagation

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 6/77

Example of TEM Mode

Electric Field E is radialMagnetic Field H is azimuthal

Propagation is into the page

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 7/77

Transmission Line Model

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 8/77

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 9/77

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 10/77

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 11/77

Transmission-Line Equations

Kirchhoff Voltage Law:

Vin-Vout – VR – VL=0

Kirchhoff Current Law:

Iin – Iout – Ic – IG=0

Note:

VL=L . di/dtIc=C . dv/dt

Remember:

22||;tan

1||

|)(|)(]Im[)sin(

]Re[)cos(

)sin()cos(

 B AC  A

 B jB AC 

e

e z  E  z  E  Ae A

 Ae A

 Aj A Ae

 j

 j

 j

 j

 j

 z 

+==!+=

=

=

=

=

+=

" " 

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 12/77

Transmission-Line Equations

ac signals: use phasors

TransmissionLine Equation

in Phasor

Form

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 13/77

Derivation of Wave Equations

Combining the two equations leads to:

Second-order differential equation

complex propagationconstant

attenuationconstant

Phase constant

Transmission Line EquationFirst Order Coupled Equations!

WE WANT UNCOUPLED FORM!

Pay Attention to UNITS!

Wave Equations for Transmission Line

Impedance and Shunt Admittance of the line

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 14/77

Solution of Wave Equations (cont.)

Proposed form of solution:

Using:

It followsthat:

Characteristic Impedance of the Line (ohm)

So What does V+ and V- Represent?

Pay att. ToDirection

Make sure youknow how we

got this!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 15/77

Solution of Wave Equations (cont.)

In general (each component has

Magnitude and Phase):

wave along + z because coefficients of t  and z have opposite signs

wave along –  z because coefficients of t  and z havethe same sign

So, V(z) and I(z) have two parts:But what are Vo+ and Vo- ?

! We are interested in SinusoidalSteady-state Condition

Refer toNotes

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 16/77

Solution of Wave Equations (cont.)

 Applet for standing wave:http://www.physics.smu.edu/~olness/www/05fall1320/applet/pipe-waves.html

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 17/77

Example

Verify the solution to the wave equation for voltagein phasor form:

Note:

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 18/77

Assume the following waves:

Assume having perfect dielectric

insolator and the wire haveperfect conductivity with no loss

Example 2-1: Air Line

Draw the transmission line model andFind C and L 

)520107002cos(2.0),(

)520107002cos(10),(

6

6

+!""=

+!""=

 z t  z  I 

 z t  z V 

#  

#  

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 19/77

Section 2

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 20/77

Transmission Line Characteristics

Line characterization

!  Propagation Constant (function of frequency)

Impedance (function of frequency)

Lossy or Losless

If lossless (low ohmic losses)

Very high conductivity for the insulator

Negligible conductivity for the dielectric

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 21/77

Lossless Transmission Line

If 

Then:

Non-dispersive line:All frequency components have the same speed!

What is Zo?

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 22/77

Example

Assume Lossless TL;

Relative permittivity is 4

C=10 pF/m

!  Find phase velocity

!  Find L 

!  Find Zo

Notes-1

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 23/77

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 24/77

The Big Idea….

Zin

ZL

ZoV+o

What is the voltage/current magnitude at different points of theline in the presence of load??

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 25/77

Voltage Reflection CoefficientConsider looking from the Load point of view 

At the load ( z = 0):

Reflection

coefficient

Normalized load

impedance

The smallerthe better!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 26/77

Expressing wave in phasor form:

Remember:

If lossless!  no attenuation constant

All of these wave representations

are along theTransmission Line

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 27/77

Special Line Conditions (Lossless)

Matching line

!  ZL=Zo$!=0; Vref=0 

Open Circuit

ZL=INF$!=1; Vref=Vinc

Short Circuit

!  ZL=0$!=-1; Vref=-Vinc 

Notes

Remember:Everything is with respect

to the load so far!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 28/77

Voltage Reflection Coefficient

Normalized load

impedance

Payattention!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 29/77

Example

Example

Example

Notes

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 30/77

Standing WavesFinding Voltage Magnitude 

Note: When there is no REFLECTION Coef. Of Ref. =0$ No standing wave!

Remember: Standing wave is created

due to interference between thetraveling waves (incident & reflected)

When lossless!

We are interested to know whathappens to the magnitude of

the |V| as such interference iscreated!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 31/77

Standing Wavehttp://www.falstad.com/circuit/e-tlstand.html 

Due to standing wave the received wave at the load is now different

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 32/77

Standing WavesFinding Voltage Magnitude 

voltage magnitude

Conjugate!

is the magnitude at the load?What Z=-d

This is standing wave!

Each position has a different value!

voltage magnitude due to interference

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 33/77

Standing WavesFinding Voltage Magnitude 

voltage magnitude at z= -d

current magnitude at the source

Lets see how the magnitude looks like at different zvalues!

Remember max current occurs

where minimum voltage occurs!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 34/77

Standing Wave Patterns for 3 Types of Loads(Matched, Open, Short) 

"  Matching line

ZL=Zo$!

=0; Vref=0 

"  Short Circuit

!  ZL=0$!=-1; Vref=-Vinc (angle –/+") 

"  Open Circuit

!  ZL=INF$!=1; Vref=Vinc (angle is 0) 

Remember max current occurswhere minimum voltage occurs!

Notes

No reflection, No standing wave

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 35/77

Standing Wave Patterns for 3 Types of Loads(Matched, Open, Short) 

"  Matching line

ZL=Zo$!

=0; Vref=0 

"  Short Circuit

!  ZL=0$!=-1; Vref=-Vinc (angle –/+") 

"  Open Circuit

!  ZL=INF$!=1; Vref=Vinc (angle is 0) 

Remember max current occurswhere minimum voltage occurs!

Notes

No reflection, No standing wave

BUT WHEN DO

MAX & MINVoltages Occur?

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 36/77

Standing WavePattern

For Voltage:

!  Max occurs when cos( ) = 1$ 

In this case n=0,1,2,…

!  NOTE that the FIRST & SECONDdmax are/2 apart

!  Thus, First MIN happens/4 afterfirst dmax

!  And so on….

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 37/77

Finding Maxima & MinimaOf Voltage Magnitude

S = Voltage Standing Wave Ratio

(VSWR)

For a matched load: S = 1

For a short, open, or purely reactive load:S(open)=S(short) = INF where | |=1;

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 38/77

What is the Reflection Coefficient (d) at any pointaway from the load? (assume lossless line)

At a distance d  from the load:

Wave impedance

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 39/77

Examplehttp://www.bessernet.com/Ereflecto/tutorialFrameset.htm 

Notes

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 40/77

Example

Notes

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 41/77

Input Impedance

At input, d  = l:

Zd

Wave Impedance

What is input voltage?

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 42/77

Short-Circuited Line

For the short-circuited line:

At its input, the line appears likean inductor or a capacitor

depending on the sign of 

ZL=0

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 43/77

Input ImpedanceSpecial Cases - Lossless

What is Zin when matched?

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 44/77

Short-Circuit/Open-Circuit Method

For a line of known length l, measurements of itsinput impedance, one when terminated in a short

and another when terminated in an open, can be

used to find its characteristic impedance Z0 and 

electrical length

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 45/77

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 46/77

Example

Check your notes!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 47/77

Power Flow

How much power is flowing and reflected?

!  Instantaneous P(d,t) = v(d,t).i(d,t)

Incident

Reflected

Average power: Pav = Pavi + Pavr

Time-domain Approach

Phasor-domain Approach (z and t independent)

! Re{I*

(z) . V(z)}

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 48/77

Instantaneous Power Flow

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 49/77

Average Power(Phasor Approach) 

Fraction of power reflected!

 Avg Power: ! Re{I(z) * V_(z)}

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 50/77

Example

Assume Zo=50 ohm, ZL=100+i50 ohm; Whatfraction of power is reflected?

20 percent! This is |!|^2

Notes

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 51/77

The Smith Chart

Developed in 1939 by P. W.Smith as a graphical tool to

analyze and design

transmission-line circuits"

 

Today, it is used to

characterize theperformance of microwave

circuits

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 52/77

Complex Plane

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 53/77

Smith Chart Parametric Equations

Equation for a circle

For a given Coef. Of Reflection

various load combinations can be considered.These combinations can be represented by

different circuits!

Smith Chart help us see these variations!

Parameteric Equation!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 54/77

Smith Chart Parametric Equations

rL circles

 xL circlesImag. Part of ZL

rL circles are contained inside the unit circle

Only parts of the xL circles are containedwithin the unit circle

Each node on the chart will tell usabout the load characteristics and

coef. of ref. of the line!

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 55/77

Complete Smith Chart

rL Circles

Positive xL Circles

Negative xL Circles

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 56/77

Basic Rules

"  Given ZL find the coefficient of reflection (COR)

!  Find ZL on the chart (Pt. P) [1] – Normalized Load

!  Extend it and find the angle of COR [3]

!  Use ruler to measure find OP/OR ; OR is simply unity circle - This will be the magnitude of COR

"  Find dmin and dmax

!  From the extended OP to

"  Find VSWR (or S)

!  Draw a circle with radius of ZL (OP)

!  Find Pmin and Pmax=S along the circle (where |Vmin| and |Vmax| are)

"  Input impedance Zd=Zin

!  Find S on the chart (OP)

Extend ZL all the way to hit a point on the outer circle

Then move away in the direction of WL TOWARD GENERATOR by d=x#

!  Draw a line toward the center of the circle

The intersection of the S circle and this line will be the input load (Zin)

Notes

ZL/ZoCOR

dmin/dmaxSWR

zin & Zinyin & Yin

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 57/77

Basic Rules

"  Input impedance Yd=Yin (admittance)

!  Once zin (normalized 

Notes

ZL/ZoCOR

dmin/dmaxSWR

zin & Zinyin & Yin

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 58/77

Reflection coefficient at the load

Example 1

12

3

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 59/77

Input Impedance

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 60/77

Maxima and Minima

Where Vmax is

Where Vmin is

WTG Scale

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 61/77

Impedance to Admittance Transformation

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 62/77

 

(c)

(d)

(a)

(b)

The generator is at (0.135+0.3)#=  .435#  –this is pt. D

$Zin normalized is the intersection of D and S

(3.3)#$(0.3)#

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 63/77

Example 3

Normalized input admittance yin is 0.25l away fromZin (normalized)$ Point E; Yin=yin*Yo=yin/Zo

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 64/77

Given:S = 3

Z0 = 50 ! first voltage min @ 5 cm from load

Distance between adjacent minima = 20 cm

Determine: ZL

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 65/77

Matching Networks

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 66/77

Examples of Matching Networks

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 67/77

Lumped-Element MatchingChoose d and Ys to achieve a match at MM 

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 68/77

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 69/77

Example 4

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 70/77

Cont.

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 71/77

Single-Stub Matching

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 72/77

 

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 73/77

Transients

Rectangular pulse is equivalent to the sum of twostep functions

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 74/77

Transient Response

Initial current and voltage

Reflection at the load

Second transient

Load reflection coefficient

Generator reflection coefficient

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 75/77

 

T = l/up is the time it takes the wave totravel the full length of the line

Voltage Wave

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 76/77

Steady State Response

8/17/2019 Chap2 Trans Lines

http://slidepdf.com/reader/full/chap2-trans-lines 77/77

 Bounce Diagrams