43
Chapter 16-2. Membrane Bioreactor (MBR) Membrane Bioreactor (MBR)

Chapter 16-2. MembraneBioreactor(MBR)Membrane …wemt.snu.ac.kr/lecture 2012-2/ENV/MBR/MBR 2 2012-2학기 [호환... · 13 USA AZ Scottsdale 22,710 1998 ADVANCED ES USA Koch HYFLUX

Embed Size (px)

Citation preview

Chapter 16-2.p

Membrane Bioreactor (MBR)Membrane Bioreactor (MBR)

Wastewater Reclamation & Reuse PlantsWastewater Reclamation & Reuse Plants

ROReclamationReuse

MFWastewater Disinfections

Reuse

Country Location Capacity Operation Plant Membrane (m3/d) Year Supplier Supplier

i l ibi1 Kuwait Sulaibiya 300,000 2003 IONICS Toray2 USA CA Fountain Val 264,950 2004 PROJECT 3 Singapore Ulu Pandan 140,000 20044 India Chennai 135 000 1999 CAMP DRESSER4 India Chennai 135,000 1999 CAMP DRESSER 5 USA CA San Diego 75,0006 Spain Almeria 42,000 2001 PRIDESA/INIMA PERMETEC ES7 Singapore Kranji 40,000 2003 HydranauticsVEOLIA 8 Singapore Bedok 32,000 2003 Hydranautics9 Saudi Arabia Jeddah 30,000 1990 BIWATER GB DuPont 10 Korea 26,182 1996 IONICS US Dow/Filmtec 11 Singapore Seletar 24 000 2003 Tora

HYFLUX

HYFLUX

(Nov 2003 :Based on IDA Inventory Report 2002)

11 Singapore Seletar 24,000 2003 Toray12 Japan 22,984 1983 KURITA JP Toray13 USA AZ Scottsdale 22,710 1998 ADVANCED ES USA Koch

HYFLUX

Toray less-fouling RO was selected at the world’s largest RO plantToray less-fouling RO was selected at the world’s largest RO plant

(Nov. 2003 :Based on IDA Inventory Report 2002)

공학한림원 선정 미래유망 기술 25선정근거 : 산업의 규모 전략적 측면 사회적 영향

구 분 내 용 구 분 내 용∙ 지능형 텔레매틱스 ∙ 환경기계기술

선정근거 : 산업의 규모, 전략적 측면, 사회적 영향

전기전자정보공학 기계공학

∙ 지능형로봇 ∙ 초미세 부품 장비∙ 차세대 반도체 ∙ 신․재생에너지 (풍력발전, 연료전지)∙ IPTV ∙ 로봇기술∙ 광대역 유․무선 통합 통신망 기술 ∙ 하이브리드 자동차▶ 분리막 생물반응조 공정

(MBR : Membrane ∙ 차세대 디스플레이용 (고분자)소재

건 설환경공

(M R MembraneBioreactor)

화 학생명공학

∙ 신에너지(석탄액화․가스화, 연료전지, 수소에너지)∙ 고성능콘크리트

∙ U-건설현장 관리 제어 시스템 ∙ 소재혁명, 나노 기술학 U 건설현장 관리 제어 시스템 소재혁명, 나노 기술∙ 실시간 버스통행거리 및 환승횟수 판단 기술 ∙ 차세대 전지용(고분자)소개

∙ 지속가능 건축시스템 기술 ∙ 재생에너지

재 료

∙ 고질소 오스테나이트계 스테인리스강∙ 염료 감응형 유기 태양전지∙ 초내식성 지르코늄핵연료 피복관 개발

출처 한국공학한림원, “미래기술전략 보고서”, 2006

자원공학 ∙ 화염분무열분해법(FSP)을 이용한나노분말 제조기술

∙ 반도체 조명 기술

2006.12

Growth of MBR Market

CAGR, Compound Annual Growth Rate

Membrane Market for Water Treatment

Water treatment Wastewater treatment

160 M$ → 330 M$(2010) (2016)

460 M$ → 900 M$(2010) (2016)

분리막Membrane

Seawater Desalination Water Reuse450 M$ → 800 M$ 120 M$ → 390 M$

(2010) (2016) 120 M$ 390 M$(2010) (2016)

시장규모: 100 200 % 증가시장규모: 100~200 % 증가(2010~2016)

Global European MBR market

65 new refs/year

Total Municipal in EuropeAbout 2 millions e.p (0.5% population)

45 new refs/year

30 new refs/year

European New-Comers ?

40 40

Distribution of MBR plants per capacity (m3/d) and supplier – All applications

25

30

35

40KubotaGEOther (EU)Toray

52005

25

30

35

402008

Mitsubishi

10

15

20

10

15

20

0

5

[100-500[ [500-2 000[ [2 000-10 000[ [10 000-50 000[

0

5

[100-500[ [500-2 000[ [2 000-10 000[ [10 000-50 000[

• A3 Water Solutions• Berghof• Huber

•Microdyn Nadir• Norit – X-Flow• Novasep• Huber

• Koch-Puron• Martin Systems

• Novasep• SFCU• Weisse WSMartin Systems Weisse WS• Wehrle Umwelt

정수처리용정수처리용

분리막분리막

(중수도)

하폐수 유입 MBR 여과수여과수

(음용수)

분리막분리막

하폐수처리용하폐수처리용

분리막분리막

한강 원수

분리막분리막

미생물

분리막 생물반응조분리막 생물반응조(MBR, membrane bioreactor)

현재 MBR 시스템의 단점 및 핵심장애물 (생물막 형성)

(중수도)

하폐수 유입 MBR 여과수

RO 여과수

(음용수)

역삼투막(RO)

RO 공정정밀여과막(MF)

/ 한외여과막(UF)“생물막(Biofilm)”

RO 공정

MBRMBR 시스템의시스템의 핵심핵심 장애물장애물활성슬러지 반응조

MBR 분리막 표면투수도(Water flux) 감소

MBR MBR 시스템의시스템의 핵심핵심 장애물장애물

여과수 (Permeate)

낮은낮은 투수도투수도 : 10~20 L/m: 10~20 L/m22⋅⋅hh짧은짧은 막막 수명수명 : 3: 3 55 년년 높은 설치비 및짧은짧은 막막 수명수명 : 3: 3--5 5 년년높은높은 에너지에너지 소모소모 : 0.3~0.6 kWh/m: 0.3~0.6 kWh/m33

높은 설치비 및운전비

Used membrane modules just before chemical cleaning

11

Scanning electron micrographs (SEMs) of individual cells and microcolonies growing on the permeate (product water) surfaces of polyester Texlon fibers of cellulose acetate (CA) reverse osmosis (RO) membranes. The membranes were fed with a pretreated municipal wastewater at Water Factory 21 in Orange County, California. Note the copius production of extracellular polymeric substances (EPS) by the attached bacteria,especially those cells associated with the larger microcolonies. Such EPS mediates early cell attachment and physically stabilizes and protects the biofilm.

Membrane Fouling & TMP Rise-up in submerged MBR

At constant flux (J) TMP

Chemical Recovery Cleaning60kPa

ChemicalC e caBackwashing

Physical Backwashing

30kPa

Step 1Step 1gradual increase in ΔP

Step 2Step 2rapid increase in ΔP

Operating time

Analysis of MBR Operating Cost

Membrane 15%

8%

Chemicals

Membranereplacement

15%

√√

Equipment

Energy40%√gy

37%√

√ ; Directly Related to Biofilm

Factors Affecting MBR Performance

Biofiouling Control methods over last 20 years

BiofoulingBiofoulingBiofoulingBiofouling

Engineering Material Chemical Biologicalg gapproaches

• Critical flux

approaches

• New material

approaches

• Chemical additives

approaches

• Analysis of biofilm• Module design

• Hydrodynamics• Membrane modification

Chemical additives

• Activated carbon

Analysis of biofilm

• SRT, DO

Biological aspects of MBRs :

L t’ th i bi l bl k bLet’s open the microbial black box

출처 Yun et.al. Wat. Res (2006)Biofouling in lab. Scale MBR

((높은높은 투수도투수도))((낮은낮은 투수도투수도))

MembraneMembrane

270270 μm

MembraneMembraneMembraneMembrane

270 270 μm

70 70 μm

CLSMCLSM ––CLSM CLSM Image AnalysisImage Analysis

Textural parameters Volumetric parameters

Porosity TexturalEntropy

Biovolume(×105μm3)

AXRL(μm)

AYRL(μm)

AZRL(μm)

High DO 0.78(±0.07)

7.24(±0.30)

3.3 (±0.9)

1.34(±0.30)

1.31(±0.30)

6.85(±2.67)

Low DO 0.63(±0.04)

8.08(±0.60)

2.1(±1.6)

1.52(±0.38)

1.49(±0.37)

3.33(±1.23)

Does microbial physiology affect membrane biofouling in MBR ?

Membrane Unit

Activated SludgeReactor

Permeate(Effluent)Influent

Retentate

Microbial Physiology vs. MBR Performance

Morphology of microbial flocs in MBR

• Pin point floc (left)• Pin point floc (left)• Bulking sludge (right)• Normal activated sludge (center)• Normal activated sludge (center)

Effect of floc morphology on biofouling

100

Side stream MBR

80

90

100

Normal Sludge

Pi i Sl d

60

70

w(%

)

Pin point Sludge

Bulking Sludge

40

50

J/Ji

w

10

20

30

0

10

1 2 3 4 5Concentration Factor

Fig. 3b Flux declines according to floc structures during ultrafiltration of activated sludge with PM30 membrane

Effect of Growth Phase of activated sludge on biofouling

Side stream MBR

Effect of foaming activated sludge on biofouling

Side stream MBR

YM30 Membranes

Side stream MBR

8090

100

Non-FoamingFoaming1

506070

Foaming1Foaming2

20304050

01020

1 2 3 4 5

Concentration Factor

25

In-Soung Chang and Chung-Hak Lee“Effect of physiological states of activated sludge on membrane fouling”

Desalination, (1998) 120, 221-233

bers

4545Citation no. since 1998: 249

Num

b

30

35

40 35 34

29 30

ation

15

20

25

30

1721 20

Cit

0

5

10

15

1

63

8

0

Yamamoto K et al (1989) Water science and technology 21 43-54Yamamoto K, et al. (1989), Water science and technology, 21, 43 54Citation no. since 1989: 276

Analysis & Control of Biofouling in MBR

Microbiological Biofilm formation mechanism(Quorum sensing etc )

Analysis & Control of Biofouling in MBR

Approach (Quorum sensing, etc.)Cell physiology& morphologyMicroorganism population dynamics (FISH, etc.)

Membrane Fouling

dynamics (FISH, etc.)

Membrane Fouling

PhysicochemicalApproach

HydrodynamicApproach

Membrane materialsMembrane surface modificationHybrid system

Flow regime: (side stream vs. submerged )Module type:y y

Chemical additivesSurface chemistry

(tubular, plate,holow fiber)Critical flux

Control of biofoulingg

Options available for submerged systems:Options available for submerged systems:1) Reduce flux (J)2) Increase membrane aeration2) Increase membrane aeration3) Employ physical or chemical cleaning

backflushing (HF only)– backflushing (HF only)– relaxation (ceasing permeation whilst continuing aeration)– in situ clean (chemically enhanced backwash)– in-situ clean (chemically enhanced backwash)– ex-situ clean (soak)

4) Patterned membrane5) Qurorum Quenching5) Qurorum Quenching

Results of Membrane Results of Membrane BiofoulingBiofouling (MBP) Assay(MBP) Assay* Fouling : Deterioration of membrane performance caused by stains

Bad Surface(Orange County water district: Dr.Ridgway)

0.12

0.14

疎水性微生物( )

(High attachment) 600nm

ROra

tio)

Cross section

Mycobacteria(h d h bi ll f )

0.08

0.10

Ratio

(Mycobacteria)

親水性微生物(Flavobacteria)

men

t (B

/F r

Surface

(hydrophobic cell surface)Flavobacteria(hydrophilic cell surface)

0.04

0.06

B/F

 

600nm

L f li ROeria

l Atta

chm

Cross section

0.00

0.02Standard level(Cellulose Acetate Membrane)

Low-fouling RO

Good(Low attachment)

Bac

te

0.00RO Low-fouling RO

(Cellulose Acetate Membrane)(Low attachment)

Toray less-fouling RO membrane has extremely low bacteria attachment

Toray less-fouling RO membrane has extremely low bacteria attachment

Hierarchically Wrinkled Coatings for Marine Antifouling

Applied Materials & Interfaces, 2009

Challenge to the current membrane technology

Desired Membrane Technology

1) Hi h fl1) High flux2) High selectivity3) Long life span4) Less fouling) g5) Low energy

Conventional thinking

Creative imaginationthinking imagination

1) FoulingCurrentmembrane Technology

1) Fouling2) High energy3) Tortuous pores4) Wide range of pore sizes

Possible mechanisms for the TMP rise

“Factors affecting the membrane performance in submerged membrane bioreactor”“Factors affecting the membrane performance in submerged membrane bioreactor”Factors affecting the membrane performance in submerged membrane bioreactorFactors affecting the membrane performance in submerged membrane bioreactorJournal of membrane science, Vol 284. 54-66

Zhang, Fane, et.al. (2006)

Quorum Sensing ?

G b h iMi bi l it

Symbiosis

Group behaviorsMicrobial community

Symbiosis

Virulence

C tCompetence

Conjugation

Antibiotic production

MotilityMotility

Sporulation

Biofilm formation

: Signal molecules (autoinducer)

: Bacteria

Creative discovery occurs at the intersection !

“ Mr. Suzuki, The theory of relativity occurred to me by intuition, and Mr. Suzuki, The theory of relativity occurred to me by intuition, and music is the driving force behind this intuition. My parents had me study the violoin from the time I was six. My new discovery is the result of musical perception ” – Albert Einstein-of musical perception. – Albert Einstein-

Ph i ArtPhysics Art (music )

Theory of Relativity

Shinichi Suzuki (1898-1998)Albert Einstein (1879-1955)Relativity

Dual Phases in TMP rise up in MBR: Slow and then Rapid rise up

TM

PTM

P

Step 1Step 1

gradual increase in ΔP--------------------TT

Step 2Step 2

TimeTime

Rapid increase in ΔP

Quorum Sensing

We can not avoid the 2We can not avoid the 2ndnd phase TMP risephase TMP rise--up even under the critical fluxup even under the critical flux

Quorum quenching based biofouling control in MBR

• Low flux• High energy• Short life-span

BiofilmMembrane

p

Membrane

XX • High flux• Low energy• Long life-spanLong life span

Molecular level(Destruction of autoinducer)

Micro-scale(membrane-biofilm)

Engineering system(Uproot of Biofouling)

K.M. Yeon, C.H.Lee et al., Environmental Science and Technology, 43 ,380-385, 2009

The Little David defeated the Giant Goliath !from the Old Testament- from the Old Testament -

• Low flux• High energy

BiofilmM b

High energy• Short life-span

Membrane

XX • High flux• Low energy• Long life-span

Nano size molecules 100.000 ton /day MBR PlantNano size molecules 100.000 ton /day MBR Plant

First Announcement and Call for PostersFinal MBR-Network Workshop

“Salient outcomes of the European R&D j t MBR t h l “

Organised By:

projects on MBR technology“

Sponsored By:

www.MBR-Network.eu

ed

nce

Berlin Germany31 March – 1 April 2009

Hosted By: Spe

cial

isC

onfe

ren

Berlin, Germany

Abstract submission: [email protected]: 30 September 2008

Hosted by Trade Fair « Wasser Berlin 2009 »Hosted By: S C

EU Projects for the next generation membrane technology(2005~ 2009)(2005 2009)

- Green Lead Markets in Asia as well as in Europe

i) MEDINA (Desalination, )

ii)ii) EUROMBRA EUROMBRA ((MBRMBR, 10 , 10 countries )countries )

iii)iii) AMEDEUS AMEDEUS ((MBRMBR, 6 , 6 countries )countries )

iv)iv) MBRMBR--TRAIN TRAIN ((MBRMBR, 7 , 7 countries )countries )

) PURATRET) PURATRET 1010v) PURATRET v) PURATRET ((MBRMBR, 10 , 10 countries )countries )

- Japan restarts MBR Project

Paper Publication

1) Environmental Science and Technology, Vol. 43 (No.2), 380–385, 2009.

2) E i t l S i d T h l V l 43(N 19) 7403 7409 20092) Environmental Science and Technology, Vol.43(No.19), 7403-7409, 2009

3) Environmental Science and Technology, Vol.45, 1601-1607, 2011.

4) Environmental Science and Technology, Vol. 46, 4877-4884, 2012.

5) J. of Membrane Science, Vol. 411-412, 130-136, 2012.

6) Applied Microbiology and Biotechnology in press, 2012.) pp gy gy p ,

Patent

1) Korean Patent: 10-0981519, (Sept. 3, 2010)) , ( p , )

2) US Patent: 07867392, 2011-1-11 )

3) PCT Application/KR2009/006608, (Nov. 11, 2009)

4) Korean Patent Application 10-2010-0101114 (Oct.15, 2010)

5) Korean Patent Application 10-2011-0053850 (Jun.3, 2010)

It has been said that every novel idea in sciencesIt has been said that every novel idea in sciences passes through three stages.

First, people say it isn’t true; , p p y ;then, they say it’s true but not important; fi ll th it’ t d i t tfinally, they say it’s true and important,

but not new. ”