237
– 676 – TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN Chapter 5 Mooring Facilities 1 General Ministerial Ordinance General Provisions Article 25 Mooring facilities shall be installed in appropriate locations in light of geotechnical characteristics, meteorological characteristics, sea states, and other environmental conditions, as well as ship navigation and other usage conditions of the water area around the facilities concerned for the purpose of securing the safe and smooth usage by ships. Ministerial Ordinance Necessary Items concerning Mooring Facilities Article 34 The items necessary for the performance requirements of mooring facilities as specified in this Chapter by the Minister of Land, Infrastructure, Transport and Tourism and other requirements shall be provided by the Public Notice. Public Notice Mooring Facilities Article 47 The items to be specified by the Public Notice under Article 34 of the Ministerial Ordinance concerning the performance requirements of mooring facilities shall be as provided in the subsequent article through Article 73. [Technical Note] 1.1 General (1) Mooring facilities include quay walls, piers, lighter’s wharfs, floating piers, docks, mooring buoys, mooring piles, dolphins, detached piers, air cushion craft landing facilities, etc. Among quaywalls, piers, and lighter’s wharfs, facilities which are particularly important from the viewpoint of earthquake preparedness and require strengthening of seismic-resistant performance are termed high earthquake-resistance facilities, and are classified as high earthquake-resistance facilities (specially designated (emergency supply transport)), high earthquake- resistance facilities (specially designated (trunk line cargo transport)), and high earthquake-resistance facilities (standard (emergency supply transport)), corresponding to the functions required in the objective facilities after action of ground motion. (2) Examples of the standard performance verification procedure for Level 1 earthquake ground motion and Level 2 earthquake ground motion of mooring facilities are shown in Fig. 1.1.1 and Fig. 1.1.2, respectively. For details, the descriptions of the respective structural types may be referenced.

Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

  • Upload
    vudien

  • View
    227

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–676–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Chapter 5 Mooring Facilities

1 General Ministerial OrdinanceGeneral Provisions

Article 25 Mooring facilities shall be installed in appropriate locations in light of geotechnical characteristics,meteorologicalcharacteristics,seastates,andotherenvironmentalconditions,aswellasshipnavigationandotherusageconditionsofthewaterareaaroundthefacilitiesconcernedforthepurposeofsecuringthesafeandsmoothusagebyships.

Ministerial OrdinanceNecessary Items concerning Mooring Facilities

Article 34 TheitemsnecessaryfortheperformancerequirementsofmooringfacilitiesasspecifiedinthisChapterbytheMinisterofLand,Infrastructure,TransportandTourismandotherrequirementsshallbeprovidedbythePublicNotice.

Public NoticeMooring Facilities

Article 47 TheitemstobespecifiedbythePublicNoticeunderArticle34oftheMinisterialOrdinanceconcerningtheperformancerequirementsofmooringfacilitiesshallbeasprovidedinthesubsequentarticlethroughArticle73.

[Technical Note]

1.1 General

(1)Mooring facilities include quaywalls, piers, lighter’s wharfs, floating piers, docks,mooring buoys,mooringpiles,dolphins,detachedpiers,aircushioncraft landingfacilities,etc. Amongquaywalls,piers,and lighter’swharfs,facilitieswhichareparticularlyimportantfromtheviewpointofearthquakepreparednessandrequirestrengtheningofseismic-resistantperformancearetermedhighearthquake-resistancefacilities,andareclassifiedas high earthquake-resistance facilities (specially designated (emergency supply transport)), high earthquake-resistancefacilities(speciallydesignated(trunklinecargotransport)),andhighearthquake-resistancefacilities(standard(emergencysupplytransport)),correspondingtothefunctionsrequiredintheobjectivefacilitiesafteractionofgroundmotion.

(2)ExamplesofthestandardperformanceverificationprocedureforLevel1earthquakegroundmotionandLevel2earthquakegroundmotionofmooringfacilitiesareshowninFig. 1.1.1andFig. 1.1.2,respectively.Fordetails,thedescriptionsoftherespectivestructuraltypesmaybereferenced.

Page 2: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–677–

Acceleration time history of engineering ground

1-dimensional seismicresponse calculation

Acceleration time history at 1/β ground level Acceleration time history at ground surface

Response spectrum calculation

Response acceleration αr correspondingto natural period of pier

kh= α r /g

Pier type Gravity type Sheet pile type

Study of deformation, etc. by dynamic analysis(nonlinear finite element analysis enabling consideration of dynamic interaction of ground and structure)

Judgment ofliquefaction

Study ofcounter measures

No liquefaction

Liquefaction

Stress on piles: StressStress ≤Yield stressAxial direction force on pile:Axial direction force ≤ allowable arial bearing capacity of pile

Sliding, overturning, and bearing capacity of ground: Effect of action ≤Strength

Sheet pile, tie rod, anchor piles: Stress≤Yield stress

Maximum value of acceleration αf obtained fromacceleration time history after filter processing

(Filter will differ depending on the structural type.)

Maximum value of acceleration αc consideringthe effect of duration

(Compensation method will differ dependingon structural type.)

k h=(αc, Da)f ( ) ( f ( ) will differ in each structural type.)

Partial factor design methodPartial factor design method

Gravity type Sheet pile typeGravity type Sheet pile typePier tipePier tipe

Fig. 1.1.1 Example of Performance Verification Procedure for Level 1 earthquake ground motion

Acceleration time history of engineering ground

Non-linear finite element analysis of effective stressenabling consideration of dynamic interaction ofground and structure

Verification by appropriate technique(response displacement method, nonlineareffective stress analysis, etc.), consideringthe structural type, importance, accuracyof analytical method, etc.

Deformation≤Allowable deformation

Pier Gravity type Sheet pile type

Gravity type/Sheet pile typeGravity type/Sheet pile type

Deformation≤Allowable deformation Sectional force≤Sectional strength

Gravity typeGravity type Sheet pile typeSheet pile type

Damage of structural members≤Allowable damageDeformation≤Allowable deformation

Pier ttypePier ttype

Fig. 1.1.2 Example of Performance Verification Procedure for Level 2 earthquake ground motion

Page 3: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–678–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

1.2 Dimensions and Layout of Mooring Facilities

(1) The dimensions of mooring facilities are preferably determined based on an understanding of the actualcircumstances,includingthenumberandtypeofcargoesandpassengersutilizingtheport,thetypeofpacking,marineandlandtransportation,andotherrelevantfactors,withdueconsiderationgiventofuturetrendsincargoandpassengervolumes,increasedsizeofvessels,changesintransportationsystems,andthelike.

(2)Thelayoutofmooringfacilitiesispreferablydeterminedsothatshipberthingandunberthingareeasy,givingdueconsiderationtoseaconditions,topography,andsubsoilconditions,andconsideringalsothelandtransportnetworkandlandutilizationinthehinterland.Inparticular,thelocationsofthefollowingfacilitiesshouldbeselectedasfollows.

①Mooring facilities used by passenger ships should be isolated from the areaswhere hazardous cargoes arehandled,andasufficientareaoflandshouldbesecuredinthevicinityofthefacilitiesforwaitingroomsandparkinglots.

②Mooring facilitiesusedbyvessels loadedwithhazardouscargoes shouldbe located inaccordancewith thefollowingconditions:

a)Mooringfacilitiesareisolatedfromsuchfacilitiesashousing,schools,andhospitals.b)Therequiredsafetydistancefromothermooringfacilitiesandsailingvesselsissecured.c)Countermeasuresagainstspillsofhazardousmaterialsareeasilymobilized.

③Mooringfacilitieswhereaconsiderableamountofnoisemaybegeneratedbyvesselsorcargohandlingequipmentshouldbeisolatedfromsuchfacilitiesashousing,schools,andhospitalstopreserveagoodenvironmentfordailyliving.

④ Mooringfacilitieswhereconspicuousdustandoffensiveodorsmaybegeneratedduringcargohandlingworkshouldbeisolatedfromsuchfacilitiesashousing,schools,andhospitalstopreserveagoodenvironmentfordailyliving.

⑤Offshoremooringfacilitiesshouldnothinderthenavigationoranchorageofvessels.

⑥ Whenever possible, high earthquake-resistance facilities and large-scale mooring facilities are preferablyarrangedinareaswithgoodgroundconditions,aslargeinvestmentmayberequiredforgroundimprovement,etc.,dependingonthegroundconditions.

⑦ Regardingfacilitieswhichmayhavealargeeffectonlife,property,andsocialandeconomicactivities. Ifthosefacilitiesaredamagedandhighearthquake-resistancefacilities,incaseswheresuchfacilitiesarelocatednearthehypocenterofaninlandactivefault,theobjectivefacilitiesarepreferablyconstructedinsuchawaythatthefacelineisorthogonaltothedirectionoftheseismogenicfault.Thisisrecommendedbecauseparticularlystronggroundmotionmayoccurinthedirectionorthogonaltotheinlandactivefaultnearthefaulthypocenter,andanarrangementinwhichthefacelineofthefacilitiesisorthogonaltotheseismogenicfaultisstructurallyadvantageousagainstactionsduetogroundmovementgeneratedbysuchactivefaults.

1.3 Selection of Structural Type of Mooring Facilities Theselectionofthestructuraltypeformooringfacilitiesispreferablydeterminedbasedonacomparativestudyofthefollowingitems,consideringthecharacteristicsofeachstructuraltype.

① Naturalcondition② Usagecondition③ Constructioncondition④ Economiccondition

1.4 Standard Concept of Allowable Deformation of High Earthquake-resistance Facilities for Level 2 Earthquake Ground Motion

(1)The standard limit fordeformation inaccidental situations forLevel2earthquakegroundmotionmaybe setasfollows,dependingontheperformancerequirementsofthefacilities.Provided,however,thatthisshallnotapplytocasesinwhichdeformationissetbasedonatotaljudgment,consideringsiteconditions,performancerequirements,structuraltype,etc.oftheobjectivefacilities.

(a) Highearthquake-resistancefacilities(speciallydesignated(emergencysupplytransport))From the viewpoint of function, the allowable residual deformation of high earthquake-resistance facilities(speciallydesignated(emergencysupplytransport))canbeset,asastandard,atapproximately30-100cm,and

Page 4: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–679–

theallowableresidualinclinationanglecanbesetatapproximately3°.Forexample,becausematerials,etc.foremergencyrestorationarestockpiledatall timesandasystemforemergencyrestoration isprepared, incaseswhereit is judgedthatserviceabilitycanbesecuredevenintheeventof largedeformation,allowabledeformationcanbesetatapproximately100cm.

(b)Highearthquake-resistancefacilities(speciallydesignated(trunklinecargotransport))Theallowableresidualdeformationforhighearthquake-resistancefacilities(speciallydesignated(trunklinecargotransport))issetbasedontheperioduntiltheexpectedfunctionscanberestored.Fromtheviewpointofmaintainingthetrunklinecargotransportfunction,itismorerationaltosetashorterperiodforearthquakesinwhichawideareasuffersdamage,asinoceantrenchtypeearthquakes,thanthatforearthquakesinwhichdamageisconcentratedinacomparativelynarrowarea,asinaninlandactivefaultearthquakes.Inthiscase,asmallerallowabledeformationcanbesetforanoceantrenchtypeearthquakethanforaninlandactivefaultearthquake. Inhighearthquake-resistancefacilities(speciallydesignated(trunklinecargotransport)),inordertosecurethesamelevelofearthquakeresistanceincranesasthatofthemooringfacilities,craneswithaseismicisolation/dampingmechanism are installed. In this case, a seismic response analysiswhich considers the dynamicinteractionofthemooringfacilitiesandcranesisperformed,andtheresponseofthestructuralmembersofthe cranes is setwithin the elastic limit. The limit of the relativedeformationof the rail span shall be setdependingonthecharacteristicsofthecargohandlingequipmentmountedontherails. Forexample, if theelasticdeformationrangeofthecranelegsis70cmandthelimit(displacementstroke)oftheseismicisolationmechanismis30cm,thelimitoftherelativedeformationoftherailspanmaybesetat100cm.

(c)Highearthquake-resistancefacilities(standard(emergencysupplytransport))The allowable residual deformation for high earthquake-resistance facilities (standard (emergency supplytransport))mustbesetwithconsiderationgiventoenablingcargohandlingafteracertainperiodfollowingtheactionofLevel2earthquakegroundmotion.Anappropriatevalueroughlyontheorderof100cmormorecanbesetforresidualhorizontaldeformation.

References

1) Takahashi,H.,T.NakamotoandF.Yoshimura:AnalysisofmaritimetransportationinKobePortafterthe1995Hyogoken-NanbuEarthquake,TechnicalNoteofPHRINo.861,1997

2) Kazui,K.,H.Takahashi,T.NakamotoandY.Akakura:Evaluationofallowabledamagedeformationofgravitytypequaywallduringearthquake,Proceedingsof10thSymposiumonEarthquakeEngineering,K-4,1998

Page 5: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–680–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2 WharvesMinisterial OrdinancePerformance Requirements for Quaywalls

Article 26 1Theperformancerequirementsforquaywallsshallbeasspecifiedinthesubsequentitemsinconsiderationofitsstructuraltype:(1)TheperformancerequirementsshallbesuchthattherequirementsspecifiedbytheMinisterofLand,

Infrastructure,TransportandTourismaresatisfiedsoas toenable thesafeandsmoothmooringofships,embarkationanddisembarkationofpeople,andhandlingofcargo.

(2) Damage to the quaywall due to self weight, earth pressure, Level 1 earthquake groundmotions,berthing and tractionby ships, imposed loadorother actions shall not impair the functionsof thequaywallconcernedandnotadverselyaffectitscontinueduse.

2Inadditiontotheprovisionsofthepreviousparagraph,theperformancerequirementsforquaywallswhichareclassifiedashighearthquake-resistancefacilitiesshallbesuchthatthedamageduetotheactionofLevel2earthquakegroundmotionsandotheractionsdonotaffecttherestorationthroughminorrepairworksofthefunctionsrequiredforthequaywallconcernedintheaftermathoftheoccurrenceofLevel2earthquakegroundmotions.Provided,however,thatfortheperformancerequirementsforthequaywallwhichrequiresfurtherimprovementinearthquake-resistantperformanceduetoenvironmentalconditions,socialconditionsorotherconditionstowhichthequaywallconcernedissubjected, thedamageduetosaidactionsshallnotaffecttherestorationthroughminorrepairworksofthefunctionsofthequaywallconcernedanditscontinueduse.

[Commentary]

(1)Wharvesclassifiedashighearthquake-resistancefacilities(restorability,serviceability)Thefollowingclassificationsareusedasstandardsinprovisionsstipulatingtheappropriateperformanceofhighearthquake-resistancefacilities,correspondingtothefunctionsnecessaryafteractionofLevel2 earthquake groundmotion and the allowable period for restoration in order to demonstrate thosefunctions.

①Speciallydesignated(emergencysupplytransport):Facilitieswhichcanbeusedbyshipsandperformembarkation/disembarkationofpersonsandcargohandlingofemergencysupplies,etc.immediatelyafteractionofLevel2earthquakegroundmotion.

②Speciallydesignated(trunklinecargotransport):FacilitieswhichcanbeusedbyshipsandperformcargohandlingoftrunklinecargoeswithinashortperiodafteractionofLevel2earthquakegroundmotion.

③Standard(emergencysupplytransport):Facilitieswhichcanbeusedbyshipsandperformembarkation/disembarkationofpersonsandcargohandlingofemergencysupplies,etc.withinacertainperiodafteractionofLevel2earthquakegroundmotion.

[Technical Note]

(1)WharvesClassifiedasHighEarthquake-resistanceFacilities

① Inwharveswhichareclassifiedashighearthquake-resistancefacilities,itisnecessarytosecurerestorabilityforaccidentalsituationsassociatedwithLevel2earthquakegroundmotion.Inthecaseofwharvesinwhichfurther improvement in earthquake resistance is necessary, depending on the natural conditions and socialconditionswherethewharfisinstalled,itisnecessarytosecureserviceabilityforthesameDesignsituation.Provided,however,thatrestorabilityandserviceability,asusedhere,refertotheperformancerequirementsofthefunctionsconsiderednecessaryinthequaywallafteractionofLevel2earthquakegroundmotion,andareindependentoftheessentialfunctionsconsiderednecessaryintheobjectivewharfundernormalconditions.

② Classificationofhighearthquake-resistancefacilitiesHighearthquake-resistancefacilitiesareclassifiedashighearthquake-resistancefacilities(speciallydesignated(emergency supply transport)), high earthquake-resistance facilities (specially designated (trunk line cargotransport)),andhighearthquake-resistancefacilities(standard(emergencysupplytransport)),correspondingto

Page 6: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–681–

thefunctionsrequiredintheobjectivefacilitiesafteractionofLevel2earthquakegroundmotion,andsettingsinconnectionwiththeperformancecriteriaanddesignsituationaregivencorrespondingtotheseclassifications.Fordetailsoftheclassificationofhighearthquake-resistancefacilities,seeTable 2.1.

Table 2.1 Classification of Earthquake-Resistance Facilities

Classofearthquake-resistancefacilitySpeciallydesignated Standard

Emergencysupplytransport Trunklinecargotransport Emergencysupplytransport

FunctionsrequiredafteractionofLevel2earthquakegroundmotion

Mustretainstructuralstabilityafterearthquakeandenableimmediateusebyships,boarding/deboardingofpersons,andcargohandlingofemergencysupplies,etc.

Mustretainstructuralstabilityafterearthquakeandenablequickuse(aftershorttime)byshipsandcargohandlingoftrunklinecargoes.

Mustretainstructuralstabilityafterearthquakeandenablecargohandlingofemergencysupplies,etc.afteracertainperiod.

Functionsnecessaryafterearthquake(essentialfunctionsarenotnecessary).

Essentialfunctions. Functionsnecessaryafterearthquake(essentialfunctionsarenotnecessary).

Performancerequirement

Serviceability*) Restorability Restorability*)

Allowablerestoration

Slightrestoration Slightrestoration Certaindegreeofrestoration

*):Thisperformancerequirementcorrespondstofunctions(emergencysupplytransport)whicharenecessaryafteranearthquake,andisdifferentfromtheperformancerequirementoftheessentialfunctionsofthefacilities.

(2)EmergencySupplyTransportTypeHighEarthquake-resistanceFacilities

① Speciallydesignated(emergencysupplytransport)Inhighearthquake-resistancefacilities(speciallydesignated(emergencysupplytransport)),itisnecessarytosecureserviceabilitywithrespecttoaccidentalsituationsassociatedwithLevel2earthquakegroundmotion.Here,thisserviceabilitydoesnotnecessarilymeanthatthefacilitiesconcernedwillbecompletelyundamagedafteractionofLevel2earthquakegroundmotion;rather,itmeansthatthedamagemustbelimitedtoadegreeatwhichthefacilitieswillbeutilizedforthetransportofemergencysupplies.

②Standard(emergencysupplytransport)In high earthquake-resistance facilities (standard (emergency supply transport)), it is necessary to securerestorabilitywith respect toaccidental situationsassociatedwithLevel2earthquakegroundmotion. Here,this restorabilitymeans that it isnecessary to limitdamage toadegreewhererestration ispossible,so thatemergencysuppliescanbetransported,afteracertainperiodbyemergencyrestration,evenincasesinwhichfacilitiesaredamagedbyactionofLevel2earthquakegroundmotion.“Certainperiod,”asusedhere,meansaperiodontheorderofapproximately1weekaftertheactionofLevel2earthquakegroundmotion.

(3)TrunkLineCargoTransportTypeHighEarthquake-resistanceFacilitiesInhighearthquake-resistancefacilities(speciallydesignated(trunklinecargotransport)),itisnecessarytosecurerestorability with respect to accidental situations associated with Level 2 earthquake groundmotion. Here,restorabilitymeans that it isnecessary to limitdamage toadegreewhere transportof trunk linecargoescanbeperformedafterashortperiodbyslightrestoration,forexample,withintheallowabledeformationsetinlinewiththecharacteristicsofthecargohandlingequipment,evenincaseofdamagebyactionofLevel2earthquakegroundmotion.“Shortperiod,”asusedhere,willdifferdependingonthefunctionsnecessaryinthefacilitiesconcerned,andthereforeshouldbesetappropriatelycorrespondingtotherespectivefacilities.

Page 7: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–682–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2.1 Common Items for WharvesPublic NoticePerformance Criteria of Quaywalls

Article 48 1 Theperformancecriteriawhicharecommonforquaywallsshallbeasspecifiedinthesubsequentitems:(1)Quaywallsshallhave thewaterdepthand lengthnecessary foraccommodating thedesignships in

considerationoftheirdimensions.(2)Quaywallsshallhavethecrownheightasnecessaryinconsiderationoftherangeoftidallevels,the

dimensionsofthedesignship,andtheutilizationconditionsofthefacilitiesconcerned.(3)Quaywalls shall have the ancillary equipment as necessary in consideration of the utilization

conditions.2Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofquaywallswhichareclassifiedasthehighearthquake-resistancefacilitiesshallbesuchthat thedegreeofdamageowingtotheactionsofLevel2earthquakegroundmotions,whicharethedominantactionintheaccidentalactionsituation,isequaltoorlessthanthethresholdlevelcorrespondingtotheperformancerequirements

[Commentary]

(1)PerformanceCriteriaforWharves①Quaywallsclassifiedashighearthquake-resistancefacilities(a)In settings inconnectionwith thecommonperformancecriteriaanddesignsituation (limited to

accidental situation) forwharves classifiedashighearthquake-resistance facilities, the followingcanbeused,correspondingtotheDesignsituation.Theperformancerequirementsofrestorabilityand serviceability inAttached Table 25 will differ depending on the classification of the highearthquake-resistancefacilities.Furthermore,“Damage”hasbeenadoptedastheverificationiteminAttached Table 25 fromtheviewpointofcomprehensiveness,consideringthefactthatverificationitemswilldifferdependingonthestructuraltype.Regardingtheperformancecriteriainconnectionwithaccidentalsituationscommontoquaywallswhichareclassifiedashighearthquake-resistancefacilities, itmayalsobenoted that settings in connectionwithTechnicalStandardpublicnoticeArticle22(CommonPerformanceCriteriaofComponentMembersofTargetFacilitiesSubjecttotheTechnicalStandard)mayalsobeapplied,whennecessary,inadditiontothiscode.

Attached Table 25 Settings in Connection with Common Performance Criteria and Design Situation of Wharves Classified as High Earthquake-resistance Facilities (Limited to Accidental Situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actions

Non-dominatingactions

26 2 - 48 2 - Restorability,Serviceability

Accidental L2earthquakegroundmotion

Selfweight,waterpressure,surcharge

Damage -

*)Inthistable,“serviceability”meansserviceabilitywithrespectto“necessaryfunctionafterearthquake(emergencysupplytransport).”*)Inthistable,“restorability”meansrestorabilitywithrespectto“essentialfunction”or“necessaryfunctionafterearthquake(emergency

supplytransport).”

(b)Gravity-typequaywalls(highearthquake-resistancefacilities)1)Amongthesettingsinconnectionwiththeperformancecriteriaanddesignsituation(limitedto

accidentalsituations)ofquaywallswhichareclassifiedashighearthquake-resistancefacilities,thoseconcerninggravity-typequaywallsareasshowninAttached Table 26.

Page 8: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–683–

Attached Table 26 Settings in Connection with Performance Criteria and Design Situation of Gravity-type Quaywalls Classified as High Earthquake-resistance Facilities (Limited to Accidental Situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actions

Non-dominatingactions

26 2 - 48 2 - Restorability,Serviceability

Accidental L2earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Deformationoffacelineofquaywall

Limitofresidualdeformation

**) Inthistable,“serviceability”meansserviceabilitywithrespectto“necessaryfunctionafterearthquake(emergencysupplytransport).”*) Inthistable,“restorability”meansrestorabilitywithrespectto“essentialfunction”or“necessaryfunctionafterearthquake(emergency

supplytransport).”

2) High earthquake-resistance facilities (specially designated (emergency supply transport))(serviceability)The limit of deformation of gravity-type quaywallswhich are classified as high earthquake-resistance facilities (specially designated (emergency supply transport)) shall be deformationofadegreesuch thatberthingofshipsformarine transportofemergencysupplies,evacuees,constructionmachineryforremovingobstructions,etc.ispossible,andshallbesetappropriately.Astheindexofdeformation,ingeneral,theresidualhorizontaldisplacementofthequaywallcanbeused.

3) High earthquake-resistance facilities (specially designated (trunk line supply transport)(restorability)The limit of deformation of gravity-type quaywallswhich are classified as high earthquake-resistancefacilities(speciallydesignated(trunklinecargotransport))shallbedeformationofadegreesuchthattrunklinecargotransportcanbeperformedafterslightrestoration,withinthepermissibledisplacementsetinlinewiththecharacteristicsofthecargohandlingequipment,orsimilar,andshallbesetappropriately.Asindexesofdeformation,ingeneral,theresidualhorizontaldisplacementofthequaywall,residualinclinationangleofthewall,andrelativedisplacementoftherailspancanbeused.Inthecaseofquaywallsusingcargohandlingequipmentfortrunklinecargotransport,appropriateconsiderationshallbegiventotheform,type,andcharacteristicsofthecargohandlingequipmentwhensettinglimitvalues.

4) Highearthquake-resistancefacilities(standard(emergencysupplytransport)The limit of deformation of gravity-type quaywallswhich are classified as high earthquake-resistancefacilities(standard(emergencysupplytransport))shallbedeformationofadegreesuchthatcargohandlingofemergencysuppliescanbeperformedafteremergencyrestorationwithinagivenperiodoftime,andshallbesetappropriately.Astheindexofdeformation,ingeneral,theresidualhorizontaldisplacementofthequaywallcanbeused.

(c)Sheetpilequaywalls(highearthquake-resistancefacilities)1) In the commentary on the performance criteria and design situation (limited to accidental

situations)forquaywallsclassifiedashighearthquake-resistancefacilities,theitemsinconnectionwithsheetpilequaywallsareasfollows,correspondingtothetypeofhighearthquake-resistancefacilities.

2) High earthquake-resistance facilities (specially designated (emergency supply transport)(serviceability)i)Settingsinconnectionwiththeperformancecriteriaanddesignsituation(limitedtoaccidental

situations)ofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities(speciallydesignated(emergencysupplytransport)areasshowninAttached Table 27.

Page 9: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–684–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 27 Settings in Connection with Performance Criteria and Design situation (limited to Accidental Situations) of Sheet Pile Quaywall type High Earthquake-resistance Facilities (Specially Designated (Emergency

Supply Transport), Specially Designated (Trunk Line Cargo Transport)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actions

Non-dominatingactions

26 2 - 48 2 - Restorability,Serviceability

Accidental L2earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Deformationoffacelineofquaywall

Limitofresidualdeformation

Yieldingofsheetpiles Designyieldstress

Ruptureoftiemembers Designrupturestrength

Fullyplasticstateofanchoragework*1)

Designsectionstrength(fullyplasticstatemoment)

Axialforceactingonanchoragework*2)

Resistancebasedongroundfailure(pushing,pulling)

Stabilityofanchoragework*3)

Designultimatecapacityofsection(ultimatelimitstate)

Crosssectionalfailureofsuperstructure

Designultimatecapacityofsection(ultimatelimitstate)

*1):Thestructuraltypeofanchorageworkislimitedtothecasesofverticalpileanchorage,coupled-pileanchorage,andsheetpileanchorage.*2)Thestructuraltypeofanchorageworkislimitedtothecaseofcoupled-pileanchorage.*3)Thestructuraltypeofanchorageworkislimitedtothecaseofconcretewallanchorage.*) Inthistable,“serviceability”meansserviceabilitywithrespectto“necessaryfunctionafterearthquake(emergencysupplytransport),”

andindicatestherequiredcapacityforspeciallydesignated(emergencysupplytransport).*) In this table,“restorability”meansrestorabilitywithrespect to“essential function,”and indicates therequiredcapacityforspecially

designated(trunklinecargotransport).

ii)DeformationoffacelineofquaywallThelimitofdeformationshallbeequivalenttothelimitforgravity-typequaywalls.

iii)YieldingofsheetpileVerificationofyieldingofsheetpilesshallmeanverificationthattheriskofstressgeneratedinthesheetpileexceedingtheyieldstressislessthanthelimitvalue.

iv)RuptureoftiememberVerificationofruptureoftierodsshallmeanverificationthattheriskofstressgeneratedinthetiemembersexceedingthedesignrupturestrengthislessthanthelimitvalue.

v)Fullyplasticstateofanchoragework(caseofsheetpileanchorage)Structuraltypesofanchorageworkarebroadlyclassifiedasverticalpileanchorage,coupled-pileanchorage,sheetpileanchorage,andconcretewallanchorage.Inperformanceverificationofanchoragework,appropriateverificationitemsshallbesetcorrespondingtothestructuraltype. It should be noted that, inAttached Table 27, verification items are presented foranchorageworkbyverticalpileanchorageandcoupled-pileanchorage;verificationofafullyplasticstateofanchorageworkmeansverificationthattheflexuralmomentgeneratedinthemembersoftheanchorageworkhasnotachievedafullyplasticstatemoment.

vi)Axialforceactingonanchoragework(batter-typecoupled-pileanchorage)Asmentioned inv),Attached Table 27 presentsverification items for anchoragework forverticalpileanchoragesandcoupledpileanchorages;verificationoftheaxialforceactingontheanchoragemeansverificationthattheriskoftheaxialforceactingontheanchoragepilesexceedingresistancebasedonfailureofthegroundislessthanthelimitvalue. Hereaxialforce is eitherpushing forceorpulling forceand the resistancebasedon the failureof thegroundincludepushingorpullingresistanceoftheanchorage.

vii)CrosssectionalfailureofsuperstructureVerificationofcrosssectionalfailureofthesuperstructuremeansverificationthattheriskofthesectionalforcegeneratedinthesuperstructureexceedingthedesignultimatestrengthislessthanthelimitvalue.

Page 10: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–685–

3) High earthquake-resistance facilities (specially designated (trunk line cargo transport)(restorability)Theperformancecriteriaofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities(speciallydesignated(trunklinecargotransport)shallbeequivalenttotheperformancecriteriaofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities (speciallydesignated(emergencysupplytransport)

4) Highearthquake-resistancefacilities(standard(emergencysupplytransport)(restorability)i) Settingsinconnectionwiththeperformancecriteriaanddesignsituation(limitedtoaccidentalsituations)

ofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities(standard(emergencysupplytransport)shallbeasshowninAttachedTable28. Regarding thecommentaryon theperformancecriteriaanddesignsituationofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities(standard (emergency supply transport)),with the exception of the verification items in connectionwith sheetpile, thecommentary shallbeequivalent to that for theperformancecriteria anddesignsituationofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities(speciallydesignated(emergencysupplytransport)).

Attached Table 28 Settings in connection with Performance Criteria and Design Situation (limited to Accidental Situations) of Sheet Pile Quaywalls Classified as High Earthquake-resistance Facilities

(Standard (Emergency Supply Transport))

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actions

Non-dominatingactions

26 2 - 48 2 - Restorability Accidental L2earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Deformationoffacelineofquaywall

Limitofresidualdeformation

Fullyplasticstateofsheetpile

Fullyplasticstatemoment

Ruptureoftiemember Designrupturestrength

Fullyplasticstateofanchoragework*1)

Designsectionstrength(fullyplasticstatemoment)

Axialforceactingonanchoragework*2)

Resistancebasedongroundfailure(pushing,pulling)

Stabilityofanchoragework*3)

Designultimatecapacityofsection(ultimatelimitstate)

Crosssectionalfailureofsuperstructure

Designultimatecapacityofsection(ultimatelimitstate)

*1):Thestructuraltypeofanchorageworkislimitedtothecasesofverticalpileanchorage,coupled-pileanchorage,andsheetpileanchorage.*2)Thestructuraltypeofanchorageworkislimitedtothecaseofcoupled-pileanchorage.*3)Thestructuraltypeofanchorageworkislimitedtothecaseofconcretewallanchorage.*) Inthistable,“Restorability”meansrestorabilitywithrespectto“necessaryfunctionafterearthquake(emergencysupplytransport.)”

d) Cantileveredsheetpilequaywalls(highearthquake-resistancefacilities)Among the settings in connectionwith theperformance criteria anddesign situation (limited toaccidentalsituations)ofquaywallsclassifiedashighearthquake-resistancefacilities,thoseapplicabletocantileveredsheetpilequaywalls,with theexceptionof theverification items for tie rodsandanchoragework,shallbeequivalenttotheperformancecriteriaanddesignsituationofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities.

e) Doublesheetpilequaywalls(highearthquake-resistancefacilities)Among the settings in connectionwith theperformance criteria anddesign situation (limited toaccidentalsituations)ofquaywallsclassifiedashighearthquake-resistancefacilities,thoseapplicabletodoublesheetpilequaywallsshallbeequivalent to thesettingsof theperformancecriteriaanddesignsituationofsheetpilequaywallsclassifiedashighearthquake-resistancefacilities.

f) Performancecriteriaofquaywallswithrelievingplatform(highearthquake-resistancefacilities)Among the settings in connectionwith theperformance criteria anddesign situation (limited to

Page 11: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–686–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

accidentalsituations)ofquaywallsclassifiedashighearthquake-resistancefacilities,thoseapplicabletoquaywallswithrelievingplatformshallbeequivalenttothesettingsoftheperformancecriteriaanddesignsituationforgravity-typequaywallsandsheetpilequaywallsclassifiedashighearthquake-resistancefacilities,correspondingtothestructuralcharacteristicsoftherespectivemembers.

g) Cellular-bulkheadquaywalls(highearthquake-resistancefacilities)Among the settings in connection with performance criteria and design situation (limited toaccidentalsituations)ofquaywallsclassifiedashighearthquake-resistancefacilities,thoseapplicabletocellular-bulkheadquaywallsshallbeequivalenttothesettingsoftheperformancecriteriaanddesignsituationforgravity-typequaywallsclassifiedashighearthquake-resistancefacilities.

[Technical Note]

2.1.1 Dimensions of Wharves

(1)DimensionsofWharves

① LengthThelengthofawharfusedinperformanceverificationofthewharfshallbesetasthevalueobtainedbyaddingthenecessarylengthsofthebowandsternmooringlinestothetotallengthofthedesignship,preconditionedonexclusiveuseoftheobjectivewharfbythedesignship.

②WaterdepthThewaterdepthusedinperformanceverificationofawharfshallbesetasthevalueobtainedbyaddingthekeelclearancecorrespondingtothedesignshiptothemaximumdraft,forexample,theloaddraft,etc.,ofthedesignshipinordertoobtainavaluewhichwillnothamperuseofthedesignship.

③ Thecrownheightofawharfusedinperformanceverificationofthewharfshallgiveappropriateconsiderationtotheassumeduseconditionsofthefacilities,soastoenablesafeandsmoothuseofthewharf.

④ ShapeofwallandfronttoeInadditiontotheitemsprovidedhere,inperformanceverificationofwharves,theshapeofthewallandfronttoeofthewharf(clearancelimitsofstructure)shallbesetsothattheshipdoesnotcomeintocontactwiththewharfmembersduringberthing.

(2)Length,WaterDepthandLayoutofBerths

① Itispreferablethatthelengthandwaterdepthofberthsbesettoappropriatevaluesbasedonastudyofthemaindimensionsofships,etc.

②Whenavesselismooredparalleltoawharf,themooringlinesshowninFig. 2.1.1 arerequired.Thebowandsternlinesareusuallysetatanangleof30to45ºwiththequayface,becausetheselinesareusedtopreventboththelongitudinalmovement(inthebowandsterndirections)andlateralmovement(intheonshoreandoffshoredirections)ofthevessel.

③ Thewaterdepthofberthscanbecalculatedusingequation (2.1.1).Here,themaximumdraftrepresentsthemaximumdraftinacalmwatercondition,suchaswhentheshipismoored,etc.,intheoperatingcondition,e.g.Fullloaddraftofthedesignship.Forthekeelclearance,ingeneral,itispreferabletouseavalueequaltoapproximately10%of themaximumdraft. Provided,however, inmooringfacilitieswhereshelteringbyshipsinamooredconditioninabnormalweatherorthelikeisconceivable,additionofakeelclearancewhichconsiderswindandwavefactors,etc.isnecessary.

Berthwaterdepth=Maximumdraft+UnderKeelClearance (2.1.1)

④ Incaseofaberthwhereflammabledangerouscargoesarehandled,itisnecessarytosecureadistanceof30mormorefromoiltanks,boilers,andworkingareasthatuseopenfiretothecargohandlingareaandthemooringvesselattheberth.However,whenthereisnoriskthatthecargowillcatchfireintheeventofleakagebecauseofthesurroundingtopographyorstructureofthefacilitiesoftheberth,thedistancemaybeshortenedtoaround15m.

⑤ Incaseofaberthwhereflammabledangerouscargoesarehandledbytankers,etc.,itisnecessarytosecureadistanceof30mormorefromotheranchoredvesselsandalsotosecureadistanceof30mormorefromothervesselsnavigatingnearbyinordertoprovidearoomfortheirmaneuvering. However,thisdistancemaybeincreasedordecreasedasnecessaryinconsiderationofthesizeofthecargocarryingvessel,thetypeandsizeofvesselsanchoredornavigatingnearby,andtheconditionofshipcongestion.

Page 12: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–687–

A D C D BC

A: bow lineB: stern lineC: spring linesD: breast lines

Fig. 2.1.1 Arrangement of Mooring Ropes

⑥ StandardvaluesofwharfdimensionsInsettingthelengthandwaterdepthofawharfincaseswherethedesignshipcannotbeidentified,thestandardvaluesofthemaindimensionsofwharvesbyshiptypeshowninTable 2.1.1canbeused.Here,thestandardvalueshavebeensetbasedonthestandardvaluesofthemaindimensionsofthedesignshipsshowninPart II, Chapter 8 Ships, Table 1.1.Inprinciple,thestandardvaluesshowninTable 2.1.1havebeensetassumingthatthedesignshipmoorsparalleltothewharf;however,thestandardvaluesforferrieshavebeensetalsoassumingcasesofbowandsternsidedockingtypewharves.Inthestandardvaluesforsmallcargoships,becausetherearelargedeviationsincomparisonwithothershiptypes,aswiththestandardvaluesofthemaindimensionsofdesignships,dueconsiderationofthispointisnecessarywhenapplyingthestandardvaluesshowninTable 2.1.1insettingthelengthandwaterdepthofwharvesforsmallcargoships.Here,thegrosstonnageGTinTable 2.1.1,4 to 7 isbasicallyinternationalgrosstonnage,buttherearealsocasesinwhichdomesticgrosstonnageisused,correspondingtothefeaturesofthedatausedinsettingthestandardvalues.InTable 2.1.1,incaseswheregrosstonnageGTreferstodomesticgrosstonnage,anotetothateffectisadded.

Table 2.1.1 Standard Values of Main Dimensions of Berths in Cases where Design Ship cannot be Identified

1. Cargo ShipsSelfweighttonnage

DWT(t)Lengthofberth

(m)Waterdepthofberth

(m)1,0002,0003,0005,00010,00012,00018,00030,00040,00055,00070,00090,000120,000150,000

80100110130160170190240260280300320350370

4.55.56.57.59.010.011.012.013.014.015.017.018.020.0

2. Container ShipsSelfweighttonnage

DWT(t)Lengthofberth

(m)Waterdepthofberth

(m)(Reference)Container

capacity(TEU)10,00020,00030,00040,00050,00060,000100,000

170220250300330350400

9.011.012.013.014.015.016.0

5001,3002,0002,8003,5004,3007,300

–––––––

8901,6002,4003,2003,9004,7007,700

Page 13: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–688–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

3. TankersSelfweighttonnage

DWT(t)Lengthofberth

(m)Waterdepthofberth

(m)1,0002,0003,0005,00010,00015,00020,00030,00050,000

80100110130170190210230270

4.55.56.57.59.010.011.012.014.0

4. Roll-on Roll-off (RORO) shipsGrosstonnageGT

(t)Lengthofberth

(m)Waterdepthofberth

(m)3,0005,00010,00020,00040,00060,000

150180220240250270

7.07.59.010.012.012.0

(3,000,5,000,10,000GT:DomesticGrossTonnage)

5. Pure Car Carriers (PCC)GrosstonnageGT

(t)Lengthofberth

(m)Waterdepthofberth

(m)3,0005,00012,00020,00030,00040,00060,000

150170180200230240260

6.57.07.59.010.011.012.0

(3,000,5,000GT:DomesticGrossTonnage)

6. Passenger ShipsGrosstonnageGT

(t)Lengthofberth

(m)Waterdepthofberth

(m)3,0005,00010,00020,00030,00050,00070,000100,000

130150180220260310340370

5.05.57.59.09.09.09.09.0

Page 14: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–689–

7. Ferries

7–1 Intermediate- and Short-Distance Ferries (sailing distance less than 300km in Japan)

GrosstonnageGT(t)

Caseofbowandsternsidedockingtype

Lengthofberth(m)

Lengthofbowandsternsidedockingtypequaywall(m)

Waterdepthofberth(m)

400700

1,0003,0007,00010,00013,000

608090140160190220

20202525303035

3.54.04.55.57.07.58.0

(Inallcases,domesticgrosstonnage.)

7–2 Long-Distance Ferries (sailing distance of 300km or more in Japan)

Gross tonnage GT (t)

Caseofnobowandsternsidetype

dockingCaseofbowandsternsidetypedocking

Waterdepthofberth(m)

Lengthofberth(m)

Lengthofberth(m)

Lengthofbowandsternsidedockingtypequaywall(m)

6,00010,00015,00020,000

190220250250

170200230230

30304040

7.57.58.08.0

(Inallcases,domesticgrosstonnage.)

8. Small Cargo ShipsSelfweighttonnage

DWT(t)Lengthofberth

(m)Waterdepthofberth

(m)500700

6070

4.04.0

(3)CrownHeightofWharves

① Asthetidallevelusedasthedatumforthecrownheightofwharves,themeanmonthly-highestwaterlevelcanbeused.

②Incaseswherethedesignshipcannotbeidentified,ingeneral,thevaluesshowninTable 2.1.2arewidelyused.Itshouldbenotedthatthevaluesinthistableareexpressedusingthemeanmonthly-highestwaterlevelasastandard.

Table 2.1.2 Standard Crown Heights of Wharves

Tidalrange3.0mormore Tidalrangelessthan3.0m

Wharfforlargevessels(waterdepthof4.5mormore) +0.5–1.5m +1.0–2.0m

Wharfforsmallvessels(waterdepthoflessthan4.5m) +0.3–1.0m +0.5–1.5m

(4)ClearanceLimitofWharves

①Theshapeofthewallandfronttoeofthewharvesshallbesetappropriatelysoasnotcomeintocontactwithshipsduringberthing.

② Inthecrosssectionsofavessel,thebottomcornersectionsareslightlyroundedandhaveprojectingbilgekeels.Inmanycases,theradiusofcurvatureofthecornersectionsandtheheightofthebilgekeelsare1.0to1.5mand30to40cm,respectively.Thereforetheenvelopeofcornersectionsmaybeassumedtobenearly90º,includingthebilgekeels.Theplannedwaterdepthsofberthsaregenerallydeeperthantheloaddraftofthedesignvesselby0.3mormore.

Page 15: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–690–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

③Fig.2.1.2 showstheclearancelimitforwharvessetinconsiderationoftheabovefactsandpastexamples.1),2)The clearance limitofwharvesmaybedeterminedusing thisfigure as reference. However, care shouldnormallybeexercisedinusingtheclearancelimitshowninthefigure,becausetherolling,pitching,andheavingmotionsofvesselatberthhavenotbeentakenintoconsiderationinthefigure.

0.3m

b

Clearance limit line

Planned water depth

b : height of fender from the face line of wharf when it is compressed

Face

line

of w

harf

20° 70°

Fig. 2.1.2 Clearance Limit for Mooning Facilities

(5)DesignWaterDepth

①Thedesignwaterdepthofawharfshallbedeterminedbyconsideringitsplannedwaterdepthaswellasthestructuraltype,theoriginalseabottomdepth,themethodandaccuracyofexecutionofwork,andthetheresultofscouringinfrontofthemooringfacility.

②Ingeneral,thedesignwaterdepthisnotequaltotheplannedwaterdepth.Thedesignwaterdepthisordinarilyobtainedby adding amargin to theplannedwater depth inorder toguarantee the required stabilityof themooringfacility. As thismarginwillvaryaccording to thestructural type, thewaterdepthof thesite, theconstructionmethodandaccuracy,and the resultofscouring, it is important todetermine thedesignwaterdepthcarefullyinconsiderationofthesefactors.

③Whenit isdifficult todeterminethedepthofscouringduetoberthingvesselsorcurrents, it isadvisable toprovidescourpreventionmeasuresasdescribedin2.1.2 Protection against Scouring.

2.1.2 Protection against Scouring

Incaseswherelargescouringisanticipatedatthefrontsideofawharfduetocurrentsorturbulencegeneratedbyshippropellers,etc.,thefrontofthemooringfacilityshallbeprotectedwitharmorstones,concreteblocks,orothermaterialsasameasureagainstscouring.

Page 16: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–691–

2.2 Gravity-type QuaywallsPublic NoticePerformance Criteria of Gravity-type Quaywalls

Article 49 Theperformancecriteriaofgravity-typequaywallsshallbeasspecifiedinthesubsequentitems:(1)Theriskofslidingfailureofthegroundunderthepermanentactionsituationinwhichthedominant

actionisselfweightshallbeequaltoorlessthanthethresholdlevel.(2)Theriskoffailureduetoslidingoroverturningofthequaywallbodyorinsufficientbearingcapacity

ofthefoundationgroundunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthemainactionisLevel1earthquakegroundmotionsshallbeequaltoorlessthanthethresholdlevel.

[Commentary]

(1)PerformanceCriteriaofGravity-typeQuaywalls①Thecommentaryoftheperformancecriteriaanddesignsituation(excludingaccidentalsituations)of

gravity-typequaywallsshallbeasshowninAttached Table 29.Inadditiontothiscode,thesettingsinconnectionwiththeStandardPublic Notice, Article 22, Paragraph 3(ScouringandSandWashingOut)shallbeappliedasnecessary,andthesettingsinconnectionwithArticle 23andArticle 27shallbeappliedcorrespondingtothetypeofmemberscomprisingtheobjectivegravity-typequaywall.

Attached Table 29 Settings of Performance Criteria and Design Situation (Excluding Accidental Situations) of Gravity-type Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actions

Non-dominatingactions

26 1 2 49 1 1 Serviceability Permanent Selfweight Waterpressure,surcharge

Circularslipfailureofground

Systemfailureprobabilityinpermanentsituationforselfweightandearthpressure(Earthquake-resistancefacilities:Pf=1.0x10-3)(Facilitiesotherthanearthquake-resistancefacilities:Pf=4.0x10-3)

Earthpressure

Selfweight,waterpressure,surcharge

Sliding,overturningofquaywall,bearingcapacityoffoundationground

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Sliding,overturningofquaywall,bearingcapacityoffoundationground

LimitvalueforslidingLimitvalueforoverturningLimitvalueforbearingcapacity(Allowabledeformationofquaywallcrown:Da=10cm)

[Technical Note]

2.2.1 Fundamentals of Performance Verification

(1)Dependingonthetypeofwallstructure,gravity-typequaywallsareclassifiedascaissontypequaywalls,L-shapedblocktypequaywalls,massconcreteblocktypequaywalls,cellularconcreteblocktypequaywalls,cast-in-placeconcretetypequaywalls,uprightwave-dissipatingtypequaywalls,andothers.Thedescriptionprovidedhereincanbeappliedtoperformanceverificationofthesegravity-typequaywalls.Regardinguprightwaveabsorbingtypequaywalls,theperformanceverificationmethodshownin2.11 Upright Wave-absorbing Type Quaywallscanbeusedasreference.

(2)Anexampleoftheperformanceverificationprocedureforgravity-typequaywallsisshowninFig. 2.2.1.

Page 17: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–692–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Verification of sliding, overturning of superstructure

Verification in connection with sliding, overturning of wall structure,and bearing capacity of foundation ground

Verification in connection with sliding, overturning of wall structure,and bearing capacity of foundation ground

Study of deformation by dynamic analysis

Verification of deformation by dynamic analysis

Verification of circular slip failurev

Permanent state, variable states associated withship actions and Level 1 earthquake ground motion

Permanent state

Variable states associated with Level 1 earthquake ground motion

Permanent state

Accidental state associatedwith Level 2 earthquake ground motion

Determination of design conditions

Provisional setting of cross section dimensions

Evaluation of actions (including setting of seismic coefficient for verification)

Determination of cross sectional dimensions

Verification in connection with structural members

Performance verificationPerformance verification

*1

*2

*3

*1 AsEvaluationsoftheeffectsofliquefaction,subsidenceetc.arenotincludedinthisprocedure,separateconsiderationis necessary.*2 Whennecessary,studyofdeformationbydynamicanalysisforLevel1earthquakegroundmotionispossible.Inearthquake-resistance facilities,studyofdeformationbydynamicanalysisispreferable.*3 Forearthquake-resistancefacilities,verificationforlevel2earthquakegroundmotionisperformed.

Fig. 2 2.1 Example of Performance Verification Procedure for Gravity-type Quaywalls

(3)Anexampleofthecrosssectionofagravity-typequaywallisshowninFig. 2.2.2.

L.W.L.H.W.L.

Fillingsand

Fillingsand

Sand invasion prevention Sand invasion prevention

Backfilling stonesBackfilling stones

Sand invasion prevention sheetSand invasion prevention sheet

Current water depthPlanned water depth

Fig. 2.2.2 Example of Cross Section of Gravity-type Quaywall

Page 18: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–693–

2.2.2 Actions

(1)SeismiccoefficientforverificationusedinverificationofdamageduetoslidingandoverturningofwallbodyandinsufficientbearingcapacityoffoundationgroundinvariablesituationsinrespectofLevel1earthquakegroundmotion9),10)

① Astheseismiccoefficientforverificationusedinperformanceverification,itisnecessarytosetanappropriateseismiccoefficientcorrespondingtothedeformationofthefacilitiesconcerned,consideringtheeffectsofthefrequencycharacteristicsanddurationofthegroundmotionandotherrelevantfactors.Theprocedureofthegenerally-usedmethodofcalculatingtheseismiccoefficientforverificationisasshowninFig. 2.2.3.

Acceleration time history in engineering ground Setting of geotechnical conditions (see ③)

Setting of filter considering frequencycharacteristics (see ⑤)

Evaluation of clayey ground

Calculation of initial natural period ofhinterland ground and ground directlyunderlying wall (see (b))

Setting of filter (see (a))

Setting of reduction factor (see ⑥)

Calculation of root sum square of time history (see (b))

Calculation of reduction factor p (see (a))

Setting of allowable deformation Dα (see ⑧(b))

Acceleration time history of ground surface

Consider frequency dependency by filter processing.

Maximum value of acceleration time historyof ground surface considering frequencydependency α f

Consider influence due to duration of seismic motion by reduction factor (α f × p).

Calculation of maximum corrected value ofacceleration αc (see ⑦)

Calculation of characteristic value of seismic coefficient for verification (see ⑧(a))

1-dimensional seismic response analysis (see ④)

Fig. 2.2.3 Example of Procedure for Calculation of Seismic Coefficient for Verification

② TheoutlineofthemethodofcalculatingtheseismiccoefficientforverificationisshowninFig. 2.2.4.First,theaccelerationtimehistoryofthegroundsurfaceiscalculatedbysettingtheLevel1earthquakegroundmotioninthebedrockandperforminga1-dimensionalseismicresponseanalysisusingthisastheinputgroundmotion.AfastFouriertransform(FFT)isperformedontheaccelerationtimehistoryobtainedinthismannertoobtaintheaccelerationspectrumofthegroundsurface.Filterprocessingisthenperformedontheresult,takingintoconsideration frequency characteristics corresponding to the deformation of the gravity-type quaywall. Thefilterusedhereobtains themaximumvalueofaccelerationat thefreesurfaceof thegroundfromtheresultsof a seismic response analysis performed onmultiple sinewaves of different frequencies in suchway thatthehorizontalresidualdisplacementofthecrownofthegravity-typequaywallbecomesthetargetvalue,andassessesthecontributiontodeformationofthequaywallofeachfrequencycomponentofthegroundmotion.Accordingly,afterfiltering,thespectrumisauniformdeformationspectrum.Asaresult,themaximumvalueofaccelerationobtainedafteraninversefastFouriertransform(IFFT)isindependentoffrequencyandisassigned

Page 19: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–694–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

acorrespondencewithacertainamountofdeformation.Next,thecorrectedpeakaccelerationαcatthegroundsurfaceisobtainedbyobtainingthemaximumaccelerationfromtheaccelerationtimehistoryafterfiltering,andmultiplyingαf by areductionfactorpwhichconsidersthedurationofthegroundmotion. Thecharacteristicvalueoftheseismiccoefficientforverificationiscalculatedusingthiscorrectedpeakaccelerationαcandtheallowable deformationDa at the crown of the quaywall. It should be noted that themethod of calculatingthe characteristic value of the seismic coefficient for verification differs in caseswhere soil improvement isperformedusingthedeepmixingmethodandsandcompaction(SCP)withareplacementrateofmorethan70%.Therefore,itisnecessarytorefertothefollowing⑨(e).

Da

×

Da

×

αc

αf

×αf

DaDa

××

Sea bottom

Ground surface

Backfill stonesBackfill stones

Mound

Replaced sand

Engineering groundDetermination ofground model

Setting of Level 1 earthquake ground motion in engineering ground

Acceleration time history of ground surface

Acceleration spectrum of ground surface

1-dimensional seismicresponse analysis

Fast Fouriertransform (FFT)

Consideration offrequency characteristics

Acceleration spectrumof ground surface Filter

Uniform deformation spectrum after filtering

Inverse fast Fouriertransform (IFFT)

Acceleration time history after filtering

Consideration ofeffect of duration

Acceleration time historyafter filtering

Reductionfactor (p)

Corrected acceleration time history of ground surface

Calculation of characteristic value of seismiccoefficient for verification based on maximum

corrected acceleration αc and allowabledeformation Da.

Fig. 2.2.4 Outline of Method of Calculating Seismic Coefficient for Verification

③SettingofgeotechnicalconditionsIncalculatingtheseismiccoefficientforverification,itisnecessarytodefinethegeotechnicalconditionssoastoenableanappropriateassessmentofthegeotechnicalcharacteristicsatthelocationconcerned.Indefiningthe geotechnical conditions,Part II, Chapter 3 Geotechnical Conditions,Part II, ANNEX 4, 1 Seismic Response Analysis of Local Soil Depositmaybeusedasreference.In1-dimensionalseismicresponseanalysis,theobjectisthelayeredground,asshowninthegroundmodelinFig. 2.2.4,andtheeffectsofthemoundandlocalgroundfactorssuchasthebackfillingstones,sandreplacement,andthelikearenotconsidered.

④One-dimensionalseismicresponseanalysisTheaccelerationtimehistoryofthegroundsurfaceiscalculatedbya1-dimensionalseismicresponseanalysiswhichenablesappropriateconsiderationofthegroundcharacteristicsatthelocationconcerned,usingtheLevel1earthquakegroundmotionsetforthebedrockastheinputgroundmotion.The1-dimensionalseismicresponseanalysisshallbeperformedbasedonandappropriatemethodandsettingofanalysisconditions,referringtoANNEX 4, 1 Seismic Response Analysis of Local Soil Deposit.

Page 20: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–695–

⑤ Settingoffilterconsideringfrequencycharacteristics

(a) SettingoffilterAsafilterwhichconsidersthefrequencycharacteristicsofgroundmotionusedinverificationofgravity-typequaywalls, theresultgivenbyequation (2.2.1)maybeused. This isafilterwhichobtains themaximumaccelerationatthefreegroundsurfaceofthegroundfromtheresultsofaseismicresponseanalysisperformedonmultiplesinewavesusingquaywallmodelswithdifferentgeotechnicalconditionsandwaterdepths insuchawaythatthehorizontalresidualdisplacementofthecrownofthegravity-typequaywallbecomesthetargetvalue,andassessesthecontributiontodeformationofthequaywallbythewavesofeachfrequencycomponent comprising the groundmotion. In thismethod, if the frequency is large, an extremely largeinputgroundmotionisnecessaryinordertocausedeformationofthewall,andif thefrequencyissmall,equivalentdeformationoccursduetoaninputgroundmotionof thesameorder. Inotherwords,becausedeformationoccurseasilyinthesmallfrequencybandandtendsnottooccurinthelargefrequencyband,thefiltercomprisesaflatregionwithalargevalueofbforfrequenciesof1.0Hzandunder,andaregioninwhichfrequenciesgreaterthan1.0Hzattenuaterapidly.

(2.2.1)

where a :filterconsideringfrequencycharacteristicsofgroundmotion f :frequency(Hz) H :wallheight(m) HR :standardwallheight(=15.0m) Tb :initialnaturalfrequencyofhinterlandground(s) TbR :standardinitialnaturalfrequencyofground(=0.8s) Tu :initialnaturalfrequencyofgroundunderneathofwall(s) TuR :standardinitialnaturalfrequencyofgroundunderneathofwall(=0.4s) i :imaginaryunit

Thevalueofbshallbesetasavalueintherangeshownbyequation (2.2.2)usingthewallheightH ofthequaywall.However,irrespectiveoftherangesetinequation (2.2.2),inallcases,thelowerlimitshallbe0.28.

(2.2.2)

Provided,however,b≥0.28.where

H :wallheight(m)

Page 21: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–696–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Fig. 2.2.5 Example of Filter

(b)CalculationofnaturalfrequencyofgroundandgrounddirectunderneathofwallIncalculationsofthenaturalfrequencyforequation (2.2.1),calculationsmaybemadebyequation(2.2.3)usingthethicknessoftherespectivesoillayersabovetheseismicbedrockdefinedinthe1-dimensionalseismicresponseanalysisandtheshearwavevelocity.Asthenaturalfrequencyoftheground,theprimarynaturalperiodofthefrequencyresponsefunctionobtainedusinglinearmultiplereflectiontheorymaybeused.Inthiscase,iftheshearwavevelocitycannotbeobtained,thismaybeestimatedfromtheNvalueofthegroundorotherappropriatevalues,referringtoPart II Chapter 3, 2.4 Dynamic Analysis.Provided,however,that,incalculatingtheinitialnaturalperiodofthegroundTbandtheinitialnaturalperiodofthegroundunderneathofthewallTu,backfillingstonesandrubblestonesdirectlyunderthewallshallnotbeevaluatedusingthephysicalpropertiesofthosematerials,butbysubstitutingthephysicalpropertiesoftheoriginalground.Incaseswheresoilimprovementisperformedonnormallyconsolidatedclaystrata,etc.usingreplacementsandorsimilar,limitedtotheareadirectlyunderagravity-typequaywall,itisnecessarytoevaluatedTb andTuinthestatepriortosoilimprovement.Thatis,Tb andTucanbecalculatedatthepositionsshowninFig. 2.2.6.Becausetheeffectivesurchargepressurewillvary,thenaturalperiodforthegroundundertheseabottommaynotbeused.

(2.2.3)

where T :naturalperiodofground(s) Hi :thicknessoflayeri(m) VSi :shearwavevelocityinlayeri(m/s)

Object ground incalculation of Tb

Engineering ground

Ground surface

Object ground incalculation of Tu

Ground below sea bottom is not used fornatural period of ground.

Sea bottom Mound

Backfill stonesBackfill stones

Replaced sand

Fig. 2.2.6 Object Ground in Calculation of Natural Period

⑥ Settingofreductionfactor

(a) SettingofreductionfactorEvenwith thesamemaximumaccelerationofgroundmotion, theeffectonfacilitieswillvarydependingonthedurationofthegroundmotion.Thereductionfactorp,whichconsiderstheeffectofthedurationof

Page 22: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–697–

groundmotion,canbesetfromequation (2.2.4),usingtherootsumsquareS oftheaccelerationtimehistoryandthemaximumaccelerationαfofthegroundsurfaceonwhichfilteringwasperformed.Equation(2.2.4)wasobtainedstatisticallybasedontheabove-mentionednumericalanalysis.Theupperlimitofthereductionfactoris1.0.

(2.2.4)

where p :reductionfactor(p≤1.0) S :rootsumsquareofaccelerationtimehistoryafterfiltering(cm/s2) αf :maximumaccelerationafterfiltering(cm/s2)

(b)CalculationofrootsumsquareoftimehistoryTherootsumsquareS oftheaccelerationtimehistoryusedincalculatingthereductionfactoriscalculatedfrom equation (2.2.5) using the acceleration time history of the ground surface on which filtering wasperformed.Calculationsoftherootsumsquareshallbeperformedforthetotaldurationofgroundmotion.Thesamplingfrequencyofgroundmotionshallbe100Hz.

(2.2.5)where

S :rootsumsquareofaccelerationtimehistory(cm/s2) acc :accelerationafterfilteringatrespectivetimes(cm/s2)

⑦ CalculationofmaximumcorrectionaccelerationThemaximumcorrectionaccelerationαccanbecalculatedfromequation(2.2.6)usingthemaximumaccelerationαfofthegroundsurfaceafterfiltering,consideringthefrequencycharacteristicsofthegroundmotionandthereductionfactorpcalculatedconsideringtheeffectofduration.

(2.2.6)where

αc :maximumcorrectionacceleration(cm/s2) αf :maximumaccelerationafterfiltering(cm/s2) p :reductionfactor

⑧ Calculationofcharacteristicvalueofseismiccoefficientforverification

(a) CharacteristicvalueofseismiccoefficientforverificationThecharacteristicvalueoftheseismiccoefficientforverificationkhkwhichisusedinperformanceverificationsof gravity-type quaywalls can be calculated from equation (2.2.7) using the maximum compensatedaccelerationαcandtheallowabledeformationDa ofthequaywallcrown.

(2.2.7)where

khk :characteristicvalueofseismiccoefficientforverification αc :maximumcorrectionacceleration(cm/s2) g :accelerationofgravity(=980cm/s2) Da :allowabledeformationofquaywallcrown(=10cm) Dr :standarddeformation(=10cm)

(b)SettingofallowabledeformationTheallowabledeformationoffacilitiesmustbesetappropriatelydependingonthefunctionsrequiredinthefacilitiesandtheconditionswherethefacilitiesarelocated.Thestandardvalueoftheallowabledeformationofgravity-typequaywallsforLevel1earthquakegroundmotioncanbegivenasDa=10cm.Thisstandardallowable deformation (Da=10cm) is the average value of residual deformation of existing gravity-typequaywallsforLevel1earthquakegroundmotioncalculatedbyseismicresponseanalysis.

Page 23: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–698–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

⑨ Notesoncalculationofseismiccoefficientforverification

(a) Themethodpresentedherewasdevelopedassumingconditionsunderwhichliquefactiondoesnotoccur.Ifthemethodistobeappliedunderotherconditions,itsapplicabilitymustbeexamined.

(b)ThemethodpresentedherewaspreparedforallowabledeformationDa of5-20cm.Therefore,careisnecessaryincaseswheredeformationoutsideofthisrangeisadoptedastheallowablevalue.

(c) Dependingonthesite,Level1earthquakegroundmotionmaybeunderestimated.Therefore,ifthismethodis used, there is a possibility that extremely small valueswill be obtained for the seismic coefficient forverification.Insuchcases,thelowerlimitshallbesetat0.05,consideringtheuncertaintyofhazardanalysiswhencalculatingLevel1earthquakegroundmotion,theaccuracyofthemethodofcalculatingtheseismiccoefficientforverification,themethodofdefiningallowabledeformation,andsimilarfactors.

⑩ Incaseswhereexaminationoftheverticaldirectionbytheseismiccoefficientforverificationisnecessaryintheseismiccoefficientmethod,itisnecessarytosetanappropriateseismiccoefficientforverificationdependingonthecharacteristicsofthefacilities,characteristicsoftheground,etc.

(2)FortheseismiccoefficientforverificationusedinperformanceverificationofstructuralmembersinaccidentalsituationsassociatedwithLevel2earthquakegroundmotion,calculationbasedonappropriateexaminationispreferable.Forconvenience,theseismiccoefficientforverificationusedinperformanceverificationofstructuralmembers inaccidentalsituationsassociatedwithLevel2earthquakegroundmotionmaybecalculatedbythemethoddescribedintheabove(1),usingtheaccelerationtimehistoryofthegroundsurfaceofthefreegroundarea.Inthiscase,theallowabledeformationDacanbesetat50cm.However,incaseswherethismethodisused,avaluegreaterthantheseismiccoefficientforverificationforLevel1earthquakegroundmotionmustbeused,withanupperlimitof0.25.Provided,however,thatincasetheseismiccoefficientforverificationforLevel1earthquakegroundmotionexceeds0.25,thehighervalueshallbeused.

(3)DeterminationofWallBodyPortion

① Incaseswherestabilityistobeconfirmedbysubstitutinginertiaforcesforseismicforces,itisnecessarytoassesstheinertiaforcebasedonanappropriatedeterminationofthequaywallbody.Inthiscase,thequaywallbodymaybedefinedasshownbelow,dependingonthetypeofstructure. Provided,however, thatincaseswheredeformationisassesseddirectlybyadetailedmethodsuchasnonlineareffectivestressanalysisorthelike,examinationbythismethodshallnotberequired.

② AsshowninFig. 2.2.7,thewallbodyofagravity-typequaywallcanbetakenastheportionbetweenthefacelineofthequaywallandtheverticalplanepassingthroughthereartoeofthequaywall.Normallybackfillisplacedattherearofthequaywall.Inmanytypesofgravityquaywalls,somepartofthisbackfillactsasself-weightofthequaywall,andtheportionofthebackfillcanbeconsideredasapartofthequaywallbody.Itisdifficulttoapplythisconcepttoallcasesunconditionally,becausetheextentofbackfillconsideredasapartofthequaywallbodyvariesdependingontheshapeofthequaywallbodyandthemodeoffailure.Ingeneral,however,theextentofbackfillconsideredasapartofthequaywallbodycanbedefinedasshownbyhatchinginFig. 2.2.7tosimplifythedesigncalculation,becausemodestchangesinthelocationofthequaywallbodyboundaryplanedonotaffectthestabilityofthequaywallbodysignificantly.

a

b

a

b

a

b

(d) Wall of caisson type(c) Wall of cellular concrete block type(b) Wall of concrete block type

Fig. 2.2.7 Determination of Quaywall Body

③ Instructuresinwhichstabilitymustbeexaminedineachhorizontalstratum,asinblocktypequaywalls,thedeterminationofthevirtualwallbodymaybeasfollows.Normally,keysareprovidedbetweenblocksforbetter

Page 24: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–699–

interlocking;however,inexaminationofthefollowingitems,itispreferablethattheeffectofthekeystructurebeignored.

(a) ExaminationofslidingAsshowninFig. 2.2.8,theportioninfrontoftheverticalplanepassingthroughthereartoeatthelevelunderexaminationcanberegardedaswallbody.

Wall body portion

Horizontal plane to beassessed for stability

Fig. 2.2.8 Determination of Wall body Portion for Stability of Sliding at Horizontal Joints

(b)ExaminationofoverturningBackfillinfrontofaverticalplanepassingthroughthemostlandwardsideedgeamongblocksstackedonablockplacedontheseawardsideabovetheplanesubjecttostabilityexaminationmayberegardedasapartofthewallbody.Forexample,inthecaseofablock-typequaywall,asinFig. 2.2.9,ingeneral,theweightoftheportiononthefront(shownbyhatchedlines)fromtheverticalplanethroughtheblockplacedonblockⒸontheseawardsidecanbeconsideredasresistancetooverturning,butblockⒷandtheweightofsoilⒶincontacttherewithareconsiderednottocontributetoresistingoverturning.

 

 

A

BC

Wall body portionWall body portion

Horizontal plane to beassessed for stability

Fig. 2.2.9 Determination of Wall Body Portion for Stability Overturning

(c) ExaminationoffailureduetoinadequatebearingcapacityoffoundationgroundIfcalculationsrelated tobearingcapacityaremadeusing thesamevirtualsectionasforoverturning, theproportionofthedesignvalueofresistancerelativetothedesignvalueofactionswillbeextremelysmall.However,whenloadactionsfromthewallbodyareconcentratedlocallyontheground,settlementwilloccurin thatportion; therefore, inactuality, loadactionisdistributedoverarelativelyextensiveareaandisnotextremelyconcentrated.Theresultsofexaminationofthestabilityofexistingstructuresshowthatthereisnoobjectiontoassumingtheportioninfrontoftheverticalplanepassingthroughthereartoeofthewallbodyisavirtualwallbody.Inthecaseofcellularblocks,thebottomreactionappearstodifferinthewallbodyandfillingparts.Inconsiderationofthesefacts,itispreferablethatthebottommostblockbeasingleblock.

(4)Theresidualwaterlevelshouldbesetatalevelone-thirdofthetidalrangeabovethemeanmonthly-lowestwaterlevel(LWL).Ingeneral,therangeofresidualwaterleveldifferenceincreasesasthetidalrangeincreasesandthepermeabilityofthewallbodymaterialdecreases.Waterbehindthewallbodypermeatesthroughvoidsinwalljoints,thefoundationmound,andbackfill.Theresidualwaterleveldifferencecanbereducedbyimprovingthepermeabilityofthesematerials.Ontheotherhand,careisnecessary,asthisapproachmayresultinleakageofthebackfillingmaterial.Theabove-mentionedvalueoftheresidualwaterlevelisapplicabletocasesinwhichlong-termpermeabilitycanbesecured.Incaseswherepermeabilityislowfromtheinitialstageorreductionof

Page 25: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–700–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

permeabilityisexpectedoverthelongterm,itispreferabletoassumealargeresidualwaterleveldifferenceinconsiderationofthoseconditions.Incaseswherewavesattackthefrontfaceofthewallbody,theresidualwaterleveldifferencemayalsoconsiderthewavetrough;ingeneral,however,itisnotnecessarytoconsidertheincreaseintheresidualwaterleveldifferenceduetoattackbywavesinperformanceverificationofquaywalls.11)

(5)Forthewallfrictionangle,ingeneral,δ=15ºcanbeused.ForL-shapedblocks,theshearresistanceangleofthebackfillingmaterialat thevirtualbackplanecanbeused. Fordetails, the Technical Manual for L-Shaped Block Quaywalls12)maybeusedasareference.

(6)ThesurchargemaybedeterminedinaccordancewithPart II, Chapter 10, 3 Surcharge.

(7)Buoyancyisaffectedbynumerousindeterminatefactors.Therefore,itispreferabletosetbuoyancyconsideringtheworst-case scenario for the facilitiesconcerned. Forexample, as shown inFig. 2.2.10,buoyancymaybecalculatedforthesubmergedportionofthewallbodybelowtheresidualwaterlevel. Provided,however,thatthisapproachisapplicabletocasesinwhichthedifferencebetweenthefrontwaterlevelandtheresidualwaterleveliswithinnormallevels;incaseswherethedifferenceinwaterlevelsisremarkable,buoyancymustbesetappropriately,dependingonthenaturalconditionswheretheobjectivefacilitiesconcernedarelocated,andotherrelevantfactors.

Wall body Wall body

The part below this lineis subjected to buoyancyThe part below this lineis subjected to buoyancy Residual water level

Front water level

The part subjectedto buoyancy

Fig. 2.2.10 Assumption for Calculating Buoyancy

(8)Inearthpressureduringactionofgroundmotion, it isnormalpractice touse theequations forcalculationofearthpressureproposedbyMonobeandOkabe,asshowninPart II, Chapter 5, 1 Earth Pressure.However,this isbasedon theconceptof the seismiccoefficientmethod. Theactualearthpressures resulting from thedynamicinteractionofstructures,soil,andwaterwillvary.Whentheseismiccoefficientforverificationshownin(1)isused,verificationcorrespondingtothedeformationofthequaywallconsideringthesepointsispossible.Provided,however, that incaseswhere theverification isnot limited to theseismiccoefficientmethod,but isperformedusingacombinationoftheseismiccoefficientmethodandhighaccuracyseismicresponseanalysistechniques(nonlineareffectivestressanalysisconsideringthedynamicinteractionofthegroundandstructure,orthelike)and/ortechniquesforactualphysicalassessmentofdeformation,suchasmodelvibrationtests,etc.,whendefiningthecrosssectionforwhichdeformationistobeverified,theearthquakepressuregeneratedinthewallbodyduringearthquakescanbereducedtoanintermediatevaluebetweenthevaluegivenbytheearthpressureequationsproposedbyMonobeandOkabeandtheactiveearthpressureinthePermanentsituation.Provided,however,thatthecontentdescribedhereinmaynotbeappliedtostructuresotherthangravity-typequaywalls.

(9)EffectofEarthPressureReductionbyBackfillIncaseswheregoodqualitybackfillingisplaced(forexample,abackfillingmaterialwithashearresistanceangleof40°isusedforrubble),theeffectofearthpressurereductionbythebackfillcanbeobtainedusingananalyticalmethod (calculation of earth pressure by discretemethod)which takes into consideration the composition ofthe soil behind thewall bodyand the strengthof each layerbehind thequaywall.14) Inordinarygravity-typequaywalls,rubbleorcobblestonesareusedasthebackfillingmaterial.Inthiscase,theeffectofearthpressurereductionmaybeassessedusingthefollowingsimplifiedmethod.15)

①Whenthecrosssectionofbackfillistriangular:Whenthebackfillislaidinatriangularshapefromthepointofintersectionoftheverticallinepassingthroughthereartoeofquaywallandthegroundsurfacewithanangleofslopelessthantheangleofreposeαofthebackfillingmaterial,asshowninFig. 2.2.11,itmaybeassumedthattheentirerearofwallisfilledwiththebackfillingmaterial.Provided,however,thatwhenthereclaimingmaterialisslurrylikecohesivesoil,applicationoffilling-upworkorinstallationofsandinvasionpreventionsheetstothesurfaceofthebackfillshallbeusedtopreventtheslurrycohesivesoilfrompassingthroughthevoidsinthebackfillandreachingthequaywall.

Page 26: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–701–

②Whenthecrosssectionofbackfillisrectangular:Inthecaseofatriangular-shapedbackfillwithaslopesteeperthantheangleofreposeofthebackfillingmaterialoranyotherirregularshapeofbackfill,theeffectmaybeconsideredasinthecaseofrectangular-shapedbackfillwhichhasanareaequivalenttothebackfillinquestion.TheeffectoftherectangularbackfillshowninFig. 2.2.11(b)maybeconsideredasfollows:Whenthewidthboftherectangular-shapedbackfillislargerthantheheightofthewall,thiscaseshouldbeconsideredinthesamemannerasinthecaseoftriangularbackfillFig. 2.2.11,andwhenthewidthbisequalto1/2oftheheight,itshallbeassumedthattheearthpressureisequivalenttothemeanofearthpressureduetothebackfillandthatduetothereclaimedsoil.Ifthewidthbis1/5orlessoftheheightofthewall,theearthpressurereductioneffectduetothebackfillshallnotbeconsidered.

α

(a) Triangular shape backfill

b

(b) Rectangular shape backfill

Fig. 2.2.11 Shape of Backfill

2.2.3 Performance Verification

(1)GeneralThe stability of gravity-typequaywalls ismaintainedby theweight of thewall body. Therefore, in general,the following items are examined in the permanent situation and variable situations associatedwith Level 1earthquakegroundmotion.

① Slidingofthewall② Bearingcapacityofthefoundationground③ Overturningofthewall④ Circularslipfailure⑤ Settlement

Incaseswhereverificationofsliding,overturning,andbearingcapacity forvariablesituationsassociatedwithLevel1earthquakegroundmotionistobeperformedbytheseismiccoefficientmethod,verificationmaybeperformedbythefollowing(2)–(4).However,ifverificationisperformedbyadetailedmethodsuchasdynamicanalysisorthelike,thisabove-mentionedmethodcannotbeapplied.Verificationbydetailedmethodssuchasdynamic analysis shall be performed in accordancewith (9) Performance Verification for Ground Motion (detailed methods).

(2)Examinationof slidingof thewall in thepermanent situationandvariable situations associatedwithLevel1earthquakegroundmotion

① Examinationofstabilityagainstslidingofthewallmaybeperformedusingthefollowingequation. Inthisequation,thesymbolγisthepartialfactor,andthesuffixeskanddindicatecharacteristicvaluesanddesignvalues,respectively.

(2.2.8)where

f :coefficientoffrictionbetweenbottomofwallandfoundation W :weightofmaterialscomprisingwall(kN/m) PV :resultantverticalforceactingonwall(kN/m) PB :buoyancyactingonwall(kN/m) PH :resultanthorizontalforceactingonwall(kN/m) PW :resultantresidualwaterpressureactingonwall(kN/m)

Page 27: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–702–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

PdW :resultantdynamicwaterpressureactingonwall(kN/m)(onlyduringactionofgroundmotion) PF :inertiaforceactingonwall(kN/m)(onlyduringactionofgroundmotion) γa :structuralanalysisfactor

Thedesignvaluesintheequationcanbecalculatedusingthefollowingequations.

(Usingthehorizontalcomponent, maybeassumed) (2.2.9)

where δ : frictionangleonwall(°) ψ :angleofwalltoperpendicular(°) ρw :densityofseawater(kN/m3) g : accelerationofgravity(m/s2) h :waterdepthatwallfront(depthfromwallbottomtowaterlevelatwallfront)(m) kh :seismiccoefficientforverification

Thecharacteristicvaluesofthehorizontalandverticalcomponentsofearthpressuremaybecalculatedusing equation (1.2.7) and equation (1.2.8) inPart II, Chapter 5, 1.2.1 Earth Pressure of Sandy Soil,respectively.However,fortheresidualwaterlevelwhencalculatingearthpressure,thecharacteristicvalueshallbeused. The design value of residualwater pressurePWd shall be calculated appropriately referring toPart II, Chapter 5, 2.1 Residual Water Pressure,aftercalculatingthedesignvalueoftheresidualwaterlevel.ThedesignvalueoftheresidualwaterlevelRWLdcanbecalculatedusingthefollowingequation (2.2.10).

(2.2.10)

ThedesignvalueoftheweightofthequaywallWdcanbecalculatedbythefollowingequation,usingtheweightofreinforcedconcretewRC,weightofnon-reinforcedconcretewNC,andweightoffillingsandwSAND.

(2.2.11)

② Inexaminationofslidingofthewall,verticalforcecanbeconsideredasfollows.

(a)Theweightofthewall,notincludingsurcharges(loadofbulkcargoes,etc.)anteriortothevirtualboundaryplanewiththewall,andsubtractingbuoyancy.

(b)Verticalcomponentofearthpressureactingonvirtualboundaryplane.

③ Inexaminationofslidingofthewall,horizontalforcecanbeconsideredasfollows.

(a)Horizontalcomponentoftheearthpressureactingonthevirtualboundaryplanewiththewall,inastatewithasurchargeapplied.

(b)Residualwaterpressure

(c)Inperformanceverificationforactionofgroundmotion,inadditiontotheabove,theinertiaforceanddynamicwaterpressureactingonthewallshallbeconsidered.Asearthpressure,thehorizontalcomponentofearthpressureduringgroundmotionshallbeused.Incaseswherecargohandlingequipmentispresentonthewall,thehorizontalforceofthelegsshallbeconsidered.

④ ThecoefficientoffrictionshallconformtoPart II, Chapter 11, 9 Friction Coefficient.

(3)ExaminationofbearingcapacityoffoundationgroundinpermanentsituationandvariablesituationsassociatedwithLevel1earthquakegroundmotion

① Inmanycases,gravity-typequaywallsarestructureswhicharesusceptibletosettlementandinclinationofthewall.Therefore,performanceverificationofthefoundationshallbeperformedsoastoavoidimpairmentof

Page 28: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–703–

functionsduetosettlementorinclinationofthewall.

② Inexaminationsofshallowfoundations,theforceactingonthebottomofthewallistheresultantforceofloadsactingintheverticalandhorizontaldirections,andthereforemaybeexaminedusingChapter 2, 2.2 Shallow Spread Foundations, 2.2.5 Bearing Capacity for Eccentric and Inclined Actions.Asthestandardpartialfactorusedinperformanceverification,thevaluesshowninTable 2.2.2maybeused.

③ Thefollowingequationmaybeusedinexaminationofthestabilityofthebottomofthewallasitrelatestothebearingcapacityoftheground.Inthefollowingequation,thesymbolγisthepartialfactor,andthesuffixeskanddindicatecharacteristicvaluesanddesignvalues,respectively.

(2.2.12)

where c' :in case of clayey ground, undrained shear strength, and in case of sandy ground, apparent

cohesioninanundrainedcondition(kN/m2) s :widthofsegment(m) w' :weightofsegment(kN/m) q :loadofsurchargeactingonsegment(kN/m) ' :apparentshearresistanceanglebasedoneffectivestress(°) θ :angleofsegmentwithbottom(°) Ff :parametershowingthatthedesignvalueofresistanceexceedsthedesignvalueofactionif1.0

orhigher R :radiusofslipcircle(m) γa :structuralanalysisfactor α :armlengthfromthecenteroftheslipcircleatthecircularslipfailureoftheactionpointofPHd(m)PHd :designvalueofhorizontalactiontothesoilmasintheslipcircleofcircularslipfailure(kN/m)

Forthedesignvaluesintheequation,inadditiontoreferringtoequation (2.2.9),designvaluescanalsobecalculatedusingthefollowingequation(2.2.13).

(2.2.13)

④ Ingeneral,examinationofthebearingcapacityofthefoundationgroundisperformedforacaseinwhichnosurchargeisappliedtothewall.However,whenasurchargeisappliedtothewall,eccentricitydecreases,buttheresultantverticalforceincreases. Therefore,examinationmustalsobeperformedincaseasurchargeisapplied,asnecessary.

⑤ Thethicknessofthefoundationmoundcanbedeterminedbyexamininginadequacyofthebearingcapacityofthefoundationground,theflatnessofmoundsurfaceforinstallingthewallbody,andalleviationofpartialstressconcentrationintheground,etc.Itispreferablethattheminimumthicknesssatisfythefollowingvalues.

(a) Foraquaywallwithawaterdepthoflessthan4.5m,athicknessof0.5mormore;provided,however,thatthethicknessofthemoundisatleast3timesthediameteroftherubble.

(b)Foraquaywallwithawaterdepthof4.5mormore,athicknessof1.0mormore;provided,however,thatthethicknessofthemoundisatleast3timesthediameteroftherubble.

(4)Examination of overturning of wall in permanent situation and variable situations associated with Level 1earthquakegroundmotion

① Examinationofthestabilityofthewallagainstoverturningcanbeperformedusingthefollowingequation.Inthefollowingequation,thesymbolγisthepartialfactorfortherelatedsuffix,andthesuffixeskanddindicatecharacteristicvaluesanddesignvalues,respectively.

(2.1.14)

where W :weightofmaterialscomprisingwall(kN/m) PB :buoyancyactingonwall(kN/m)

Page 29: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–704–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

PV :resultantverticalearthpressureactingonwall(kN/m) α :armlengthfromthecenteroftheslipcircleatthecircularslipfailureoftheactionpointofPHd(m)PHd :designvalueofhorizontalactiontothesoilmasintheslipcircleofcircularslipfailure(kN/m) R :radiusofslipcircle(m) γa :structuralanalysisfactor

Thedesignvaluesintheequationcanbecalculatedusingequation (2.2.9).ThedesignvalueofresidualwaterpressurePWdcanbecalculatedreferringtoPart II, Chapter 5, 2.1 Residual Water Pressure,aftercalculatingthedesignvalueoftheresidualwaterlevelRWLdusingequation (2.2.10).ForthedesignvalueoftheweightofmaterialscomprisingthewallWdintheequation,equation (2.2.11)canbeused.Incaseswherecaissonshavefootingswitharectangularcrosssectiononboththeseaandshoresides,equation (2.2.12) canbeusedforthedesignvalueofbuoyancyPBd.

(5)ExaminationofSlidingFailureofGroundinPermanentSituation

① Incaseswherethefoundationgroundisweak,circularslipfailurefromanarbitrarypointbehindintersectionoftheverticalplanethroughthereartoeofthewallandthebottomplaneoftherubblemaybeexamined.

② Verificationofcircularslipfailureofthefoundationgroundinthepermanentsituationasitrelatestoselfweightcanbeperformedusingthefollowingequation.Inthefollowingequation,thesymbolγisthepartialfactorfortherelatedsuffix,andthesuffixkindicatescharacteristicvalues.

(2.2.15)

where c’ :in case of clayey ground, undrained shear strength, and in case of sandy ground, apparent

cohesioninanundrainedcondition(kN/m2) s :widthofsegment(m) w' :weightofsegment(kN/m) q :loadofsurchargeactingonsegment(kN/m) qRWL :incasetheresidualwaterlevel(RWL)atthebackofthefacilityishigherthanthewaterlevel

(LWL)atthefrontofthefacility,theweightofthewateratthesegmentcorrespondingtothedifferenceinthesewaterlevelρwg(RWL–LWL)s(kN/m)

φ‘ :apparentshearresistanceanglebasedoneffectivestress(°) θ :angleofsegmentwithhorizontalplane(°)

Thedesignvaluesintheequationcanbecalculatedusingthefollowingequations.Thedesignvalueoftheresidualwaterlevelcanbecalculatedusingequation(2.2.10).

(2.2.16)

(6)ExaminationofSettlementForgravity-typequaywalls,thestabilityofthestructureagainstsettlementduetoconsolidationoftheground,etc.shallbesecured,correspondingtothecharacteristicsofthegroundandthestructure.

(7)Performanceverificationandpartialfactorsforsliding,overturning,bearingcapacityofthefoundationground,andcircularslipfailure

① Standardpartialfactorsforsystemfailureprobabilityrelatedtoslidingandoverturningofthewall,bearingcapacityofthefoundationground,andcircularslipfailureinthepermanentsituationforgravity-typequaywallscanbedeterminedreferringtothevaluesinTable 2.2.2(a).Ifbasedontheaveragesafetystandardsinpastdesignmethods,theaveragesystemreliabilityindexforthestabilityofthewallbodyis2.3(ifconvertedtofailureprobability,1.1x10-2),andtheaveragereliabilityindexforcircularslipfailureis7.0(failureprobability,1.1x10-12).Whenconsideringtheexpectedtotalcostexpressedbythesumoftheinitialconstructioncostandthecostofrecoveryincurredincaseoffailure,thesystemreliabilityindexwhichminimizestheexpectedtotalcostis3.1(failureprobability,1.0x10-3)forhighearthquake-resistancefacilitiesand2.7(failureprobability,4.0 x 10-3) for other quaywalls. The partial factors for sliding and overturning of the wall and bearingcapacityof the foundationground invariable situations associatedwithLevel1 earthquakegroundmotioncanbedeterminedreferringtothevaluesinTable 2.2.2(b).ThepartialfactorsshowninTable 2.2.2(b)were

Page 30: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–705–

determinedconsideringtheaveragesystemreliabilityofthepastdesignmethod.

② Aspartial factors forcircular slip failure, incaseof soil improvementusingsandcompaction (SCP)withareplacement rateof30-80%under thewallbody, thosegiven in thispart,Chapter 2, 4 Soil Improvement Methodsforthesandcompactionpilemethod(4.10.6 Performance Verification)shallbeused.

Page 31: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–706–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 2.2.2 Standard Partial Factors 16)

(a) Permanent situationHighearthquake-resistance

facilities Otherfacilities

TargetsystemreliabilityindexβT 3.1 2.7TargetsystemfailureprobabilityPfT 1.0×10-3 4.0×10-3

Targetsystemreliabilityindex βT’ usedincalculationofγ 3.31 2.89γ α µ/Xk V γ α µ/Xk V

Sliding

γf Frictioncoefficient 0.55 0.946 1.06 0.15 0.60 0.935 1.06 0.15γPH ,γPV Resultantofearthpressure 1.15 -0.288 1.00 0.12 1.15 -0.316 1.00 0.12γRWL Residualwaterlevel 1.00 -0.024 1.00 0.05 1.00 -0.027 1.00 0.05γWRC UnitweightofRC 0.95 0.026 0.98 0.02 0.95 0.028 0.98 0.02γWNC UnitweightofNC 1.00 0.009 1.02 0.02 1.00 0.01 1.02 0.02γWSAND Unitweightoffillingsand 1.00 0.143 1.02 0.04 1.00 0.157 1.02 0.04γa Structuralanalysisfactor 1.00 — — — 1.00 — — —

Overturning

γPH,γPU Resultantofearthpressure 1.35 -0.832 1.00 0.12 1.30 -0.842 1.00 0.12γRWL Residualwaterlevel 1.05 -0.092 1.00 0.05 1.05 -0.092 1.00 0.05γWRC UnitweightofRC 0.95 0.097 0.98 0.02 0.95 0.094 0.98 0.02γWNC UnitweightofNC 1.00 0.035 1.02 0.02 1.00 0.034 1.02 0.02γWSAND Unitweightoffillingsand 0.95 0.538 1.02 0.04 0.95 0.521 1.02 0.04γa Structuralanalysisfactor 1.00 — — — 1.00 — — —

Bearingcapacityof

foundationground

γPH Resultantofearthpressure 1.15 -0.328 1.00 0.12 1.15 -0.345 1.00 0.12γw’ Unitweightoffoundationground 1.00 0.032 1.00 0.03 1.00 0.033 1.00 0.03γq Surcharge 1.00 0.031 1.00 0.04 1.00 0.032 1.00 0.04

γtanφ’Soilstrength:Tangentofangleofshearresistance 0.70 0.903 1.00 0.10 0.70 0.894 1.00 0.10

γc ‘ Soilstrength:Cohesion 0.90 0.252 1.00 0.10 0.90 0.257 1.00 0.10γRWL Residualwaterlevel 1.00 -0.023 1.00 0.05 1.00 -0.024 1.00 0.05γa Structuralanalysisfactor 1.00 — — — 1.00 — — —

Circularslipfailure

γc' Soilstrength:Cohesion 0.90 0.407 1.00 0.04 0.90 0.406 1.00 0.04

γtanφ’Soilstrength:Tangentofangleofshearresistance 0.90 0.330 1.00 0.04 0.90 0.320 1.00 0.04

γwi

Whenmoundispositionedbelowlevelofseabottom

1Ground,wave-dissipatingworks,etc.abovelevelofseabottom 1.10 -0.176 1.00 0.03 1.10 -0.173 1.00 0.03

2Sandysoilbelowlevelofmoundandseabottom 0.90 0.227 1.00 0.03 0.90 0.227 1.00 0.03

3Clayeysoilbelowlevelofseabottom 1.00 0.000 1.00 0.03 1.00 0.000 1.00 0.03

Whenmoundispositionedabovelevelofseabottom

1Ground,wave-dissipatingworks,etc.abovelevelofseabottom 1.10 -0.176 1.00 0.03 1.10 -0.173 1.00 0.03

2Sandysoilbelowlevelofseabottom 0.90 0.227 1.00 0.03 0.90 0.227 1.00 0.03

3Clayeysoilbelowlevelofseabottom 1.00 0.000 1.00 0.03 1.00 0.000 1.00 0.03

γq Surcharge 1.80 -0.543 1.00 0.40 1.70 -0.551 1.00 0.40γRWL Residualwaterlevel 1.10 -0.014 1.00 0.05 1.10 -0.015 1.00 0.05

*1:α:sensitivityfactor,µ/Xk:deviationofmeanvalue(meanvalue/characteristicvalue),V:coefficientofvariation.*2:RC:reinforcedconcrete,NC:non-reinforcedconcrete.*3:Whencalculatingtheresultantofearthpressure,forthesoilstrength,frictionangleofwall,unitweight,residualwaterlevel,surcharge,

etc.,thecharacteristicvalues(valuesnotconsideringpartialfactors)shallbeused.*4:Surcharges(exceptinthecaseofcircularslip)andsealevelshallbesetwithoutconsideringpartialfactors.*5:γw1,γw2,andγw3arepartialfactorsfortheweightsofsegmentsandshallbesetinaccordancewiththeclassificationinFig.2.2.13.*6:Wave-dissipatingworks,etc.includewave-dissipatingworks,coveringwork,footprotection,andthelike.*7:Partialfactorsfortheunitweightofsoilandpavementatthetopofcaissonscanbesetinthesamemannerastheunitweightoffilling

sand.*8:Inapplicationofthepartialfactorsforcircularslipfailure,refertothenotesshowninthisvolume,Chapter2.3StabilityofSlopes,3.1.(7),

PartialFactors.WhensoilimprovementisperformedbytheSandCompactionPile(SCP)methodwithareplacementrateof30-80%,thepartialfactorsshownfortheSandCompactionPilemethodinthisvolume,Chapter2.4SoilImprovementMethods,4.10.6PerformanceVerificationshallbeused.

Page 32: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–707–

Table 2.2.2 Standard Partial Factors (b) Variable situation for Level 1 earthquake ground motion

AllfacilitiesPerformancerequirement Serviceability

γ α µ/Xk VSliding

γf Frictioncoefficient 1.00 — — —γPH,γPU Resultantofearthpressure 1.00 — — —γkh Seismiccoefficientforverification 1.00 — — —γRWL Residualwaterlevel 1.00 — — —γWRC UnitweightofRC 1.00 — — —γWNC UnitweightofNC 1.00 — — —γWSAND Unitweightoffillingsand 1.00 — — —γa Structuralanalysisfactor 1.00 — — —

Overturning

γPH,γPU Resultantofearthpressure 1.00 — — —γkh Seismiccoefficientforverification 1.00 — — —γ RWL Residualwaterlevel 1.00 — — —γWRC UnitweightofRC 1.00 — — —γWNC UnitweightofNC 1.00 — — —γWSAND Unitweightoffillingsand 1.00 — — —γa Structuralanalysisfactor 1.10 — — —

Bearingcapacityoffoundation

ground

γPH Resultantofearthpressure 1.00 — — —γkh Seismiccoefficientforverification 1.00 — — —γw’ Unitweightoffoundationground 1.00 — — —γq Surcharge 1.00 — — —γtanφ’ Soilstrength:Tangentofangleof

shearresistance1.00 — — —

γc’ Soilstrength:Cohesion 1.00 — — —γRWL Residualwaterlevel 1.00 — — —γa Structuralanalysisfactor 1.00 — — —

*1: α:sensitivityfactor,µ/Xk:deviationofmeanvalue(meanvalue/characteristicvalue),V:coefficientofvariation.*2:RC:reinforcedconcrete,NC:non-reinforcedconcrete.*3:Whencalculatingtheresultantofearthpressure,thesoilstrength,frictionangleofwall,unitweight,andresidualwaterlevelshallbe

calculatedwithoutconsideringpartialfactors.*4:Surchargesandsealevelshallbesetwithoutconsideringpartialfactors.*5:Partialfactorsfortheunitweightofsoilandpavementatthetopofcaissonscanbesetinthesamemannerastheunitweightoffilling

sand.

(8)PerformanceVerificationofCellularBlocks

① Unlikeothergravity-typequaywalls,gravity-typequaywallscomprisingcellblocks inwhich thewallbodyhasnobottomslabformastructurethatmaintainsintegritywiththewallbodybysandfilling.Therefore,inadditiontotheexaminationofstabilityinothergravity-typequaywalls,overturningshouldbeexaminedwithdueconsiderationgiventoseparationofthefilling.

② Stabilityverificationequationforcellularblocks Examinationofoverturningconsideringseparationofthefillingincellularblockscanbeperformedusingthefollowingequation.

(2.2.17)

where W :weightofmaterialscomprisingwall(kN/m) PB :buoyancyactingonwall(kN/m) PV :resultantverticalearthpressureactingonwall(kN/m) Mf :resistantmomentduetofrictionofwallsurfaceswithfilling(kN-m/m) PH :resultanthorizontalearthpressureactingonwall(kN/m) PW :resultantresidualwaterpressureactingonwall(kN/m)

Page 33: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–708–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

PdW :resultantdynamicwaterpressureactingonbody(kN/m)(onlyduringactionofgroundmotion) PF :inertiaforceactingonbody(kN/m)(onlyduringactionofgroundmotion) a :distancefromactionlineofresultantweightofwalltofronttoeofwall(m) b :distancefromactionlineofbuoyancytofronttoeofwall(m) c :distancefromactionlineofresultantverticalearthpressuretofronttoeofwall(m) d :distancefromactionlineofresultanthorizontalearthpressuretobottomofwall(m) e :distancefromactionlineofresultantresidualwaterpressuretobottomofwall(m) g :accelerationofgravity(m/s2) h :distance from action line of resultant dynamicwater pressure to bottom of body (m) (only

during actionofgroundmotion) γa :structuralanalysisfactor

Thedesignvalues in the equation canbe calculatedusing equation (2.2.9) and the following equation (2.2.18).

(2.2.18)

③ ValuesofpartialfactorsAsstandardvaluesofpartialfactorforuseinperformanceverificationofcellularblocks,thepartialfactorsforoverturningshowninTable 2.2.2canbeused.AsthepartialfactorγMfoftheresistantmomentduetofrictionbetweenthewallsurfacesandfillingMf,thesamevalueasthepartialfactorγWSANDfortheweightoffillingsandWSANDmaybeused.

④ If(designvalueofresistance)/(designvalueofaction)<1, theoverturningmomentduetoexternalforcesislarger than the sumof the resistantmomentof the resultantvertical forceexcluding thefillingand frictionbetweenthewallsurfacesandfilling.Asaresult,thecellularblockwillseparate,leavingthefillinginplace.Insuchcases,itisnecessarytotakeappropriatemeasuressuchasincreasingtheweightofthecellularblocksorprovidingpartitionwallsforcellularblock.

⑤ ThecharacteristicvalueMf oftheresistantmomentduetofrictionF1andF2betweenthewallsurfacesandthefillingisobtainedasfollows.InFig. 2.2.12,themomentaroundpointAisl1F1+1F2.Here,F1=P1fandF2= P2f.Thevalueoffisthecoefficientoffrictionbetweenthewallsurfaceandthefilling.(P1andP2aretherespectiveearthpressuresofthefilling.)TheconceptoftheearthpressureofthefillingactingonthewallmayconformtoChapter 2, 1.4 Cellular Blocks.Itisalsopreferabletoconsiderthefrictionalresistanceactingonpartitionwallsofcellularblocksinthesamemanner.

b

2

1

A

H

F1

P1

F2

P2

q p

q :H :p :

K :γ' :

P1,P2 :

earth pressure due to the vertical load transmitted to fillingH=bearth pressure due to fillingp=KHγ'coefficient of earth pressureunit weight of filling material in the waterresultant force of earth pressure

Fig. 2.2.12 Determination of Frictional Resistance

⑥ Thecoefficientoffrictionusedfortheexaminationoftheslidingofcellularconcreteblockswithnobottomslabshouldbe0.6forreinforcedconcreteand0.8forfillingstones.However,forconvenience,anaveragevalueof0.7canbeused.

(9)PerformanceVerificationforGroundMotion(detailedmethods)Performanceverificationofseismic-resistantofgravity-typequaywallsforLevel2earthquakegroundmotionisperformedbyappropriateseismicresponseanalysisorcalculationoftheamountofdeformation,etc.offacilities

Page 34: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–709–

basedonexperimental results. Standard limitvalues fordeformation inaccidental situationsassociatedwithLevel 2 earthquakegroundmotionmaybe set appropriately referring,Chapter 5, 1.4 Standard Concept of Allowable Deformation of High Earthquake-resistance Facilities for Level 2 Earthquake Ground Motion. Performance verification techniques for deformation, etc. of facilities can be broadly classified into twotypes,namely,methodsemployingseismicresponseanalysisandshakingtestsusingashakingtableorsimilarapparatus.

(a)MethodsemployingseismicresponseanalysisSeismicresponseanalysiscanbeclassifiedasshowninTable 2.2.3. In thefollowing, thevarious typesofseismicresponseanalysismethodswillbeexplainedinaccordancewiththeseclassifications.Dependingontheseismicresponseanalysismethod,insomecases,thesetechniquesmaynotbesuitableforthepurposeofverificationofdeformation,etc.Therefore,itisnecessarytoselectananalysistechniquecorrespondingtotheintendedpurpose,basedonthefollowingexplanation.

Table 2.2.3 Classification of seismic response analysis Analysismethod(treatmentofsaturatedground

Effectivestressanalysismethod,totalstressanalysismethod(individuallayersandliquidlayers,individuallayers)

Objectdomainofcalculation(dimensions) 1dimension,2dimensions,3dimensions

Generalcalculationmodels Multiplereflectionmodel,pointmassmodel,finiteelementmodel

Materialcharacteristics Linear,equivalentlinear,nonlinear

Calculationdomain Timedomainanalysismethod,frequencydomainanalysismethod

(b)MethodsemployingshakingtestsThesearemethodsinwhichshakingisappliedtoastructureconsideringmechanicalsimilarity,andareeffectiveforassessingthetotalbehaviorofthestructureincludingtheground.Provided,however,thatahighlevelofexperimentaltechnologyisnecessary,including,forexample,preparationofamodelwhichadequatelysatisfiestheconditionofsimilarity,etc.

1) Modelshakingtabletestin1Ggravityfield

Basedonconsiderationoftheshapeandmechanicalcharacteristicsofthetargetstructureandground,amodelispreparedsoastosatisfysimilarity,andtheassumedgroundmotionisappliedinagravitationalfieldusinga shaking table. In general, it is possible to prepare large-scalemodels, and it is also possible to examinecasesinvolvingcomplexgroundandstructuralconfigurations.Asthesimilaritylaw,lawswhichconsidertheconfiningpressuredependencyofthephysicalpropertiesofsoilarewidelyused.24)

2) ModelshakingtabletestusingcentrifugalloadingdeviceThisisatypeoftestinwhichstressstatessimilartothoseintheactualobjectarereproducedinamodelusingthecentrifugalforcegeneratedbyacentrifugalloadingdevice.Theassumedgroundmotionisappliedbytheshakingtestdeviceunderconditionswhichsatisfythelawofsimilarity.Modelsaregenerallysmallinscale;however,becausearelationshipbetweenthepropertiesofthesoilandeffectiveconfiningpressureisnotassumed,experimentswhichconsiderconfiningpressuredependencyarepossible.Provided,however,thatconsiderationbasedonalawofsimilarityisnecessaryforthecoefficientofpermeability,andcareisalsorequiredwithregardtotheinfluenceoftheparticlesizeofthegroundmaterialusedinthetest.

3) In-situshakingtabletestInthistypeoftest,amodelsimilartothetargetstructureormodelofsubstantiallythesamescaleisprepared,eitheratthelocationwhereconstructionisplannedorundersimilargroundconditions,andtheresponseofthemodeltoartificialgroundmotionornaturalgroundmotionisobserved.Methodsofgeneratingartificialgroundmotionincludeuseofawavevibrator,methodsemployingexplosion,andothers.

2.2.4 Performance Verification of Structural Members

Inperformanceverificationofthesuperstructureofpartswherefendersareinstalled,itispermissibletoconsideronly the range inwhich theweight of the superstructure acts integrally. In caseswhere fenders are installed atlocationswherethesuperstructureandbodyareconnectedwithreinforcingbars,etc.,atmooringpostsorsimilar,displacementofthesuperstructurewherepassiveearthpressurefunctionseffectivelycannotbeexpected.Therefore,it is desirable that resistance against the reaction of the fenders be borne completely by the reinforcing rods. Inperformanceverificationofthesuperstructurecrosssection,thereactionofthefendersisassumedtobedistributedasalinearloadintherangeofwidthbinFig. 2.2.13(a),andmaybeconsideredtoactasshowninFig. 2.2.13(b).Inmanyexamples,theverticaldirectionverificationisperformedassumingacantileverbeamwiththebottomedgeof

Page 35: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–710–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

thesuperstructureasafulcrum,andthehorizontaldirectionisverificationperformedassumingeitheracontinuousbeamorasimplebeamwitharigidpointinthebodyasafulcrum.

b

45°

b

45°

R/b

R/b

Fender

Passive earth pressure in permanent state(not considered in parts which are connectedto the wall by reinforcing bars, etc.)

Passive earth pressure in permanent state(not considered in parts which are connectedto the body by reinforcing bars, etc.)

(a) (b)b : width of action of berthing force (m)R : ship berthing force (KN)

Fig. 2.2.13 Reaction of Protective Works Acting on Superstructure

Page 36: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–711–

2.3 Sheet Pile QuaywallsPublic NoticePerformance Criteria of Sheet Pile Quaywalls

Article 50 1 Theperformancecriteriaofsheetpilequaywallsshallbeasspecifiedinthesubsequentitems:(1)Sheetpileshallhavetheembedmentlengthasnecessaryforstructuralstabilityandcontainthedegree

ofriskthatthestressesinthesheetpilesmayexceedtheyieldstressatthelevelequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationsinwhichthedominantactionisLevel1earthquakegroundmotions.

(2)ThefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotionsandtractionbyships:(a)Foranchoredstructures, theanchorageshallbelocatedinappropriatepositionscorrespondingto

thestructuraltype,andtheriskoflosingthestructuralstabilityshallbeequaltoorlessthanthethresholdlevel.

(b)Forstructureshavingtiesandwaling,theriskthatthestressesinthetiesandwalingmayexceedtheyieldstressshallbeequaltoorlessthanthethresholdlevel.

(c)For structures having superstructures, the risk of impairing the integrity of themembers of thesuperstructureshallbeequaltoorlessthanthethresholdlevel.

(3)For structures having superstructures, the risk of impairing the integrity of the members of thesuperstructureshallbeequaltoorlessthanthethresholdlevelunderthevariableactionsituationinwhichthedominantactionisshipberthing.

(4)Underthepermanentactionsituationinwhichthedominantactionisselfweight,theriskofoccurrenceofslipfailureinthegroundbelowthebottomendofthesheetpileshallbeequaltoorlessthanthethresholdlevel.

2Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofcantileveredsheetpilesshallbesuchthattheriskinwhichtheamountofdeformationofthetopofthepilemayexceedtheallowable limit of deformation is equal toor less than the threshold level under thepermanent actionsituationsinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships.

3Inadditiontotheprovisionsinthefirstparagraph,theperformancecriteriaofdoublesheetpilestructuresshallbeasspecifiedinthesubsequentitems:(1)Theriskofoccurrenceofslidingofthestructuralbodyshallbeequaltoorlessthanthethresholdlevel

underthepermanentactionsituationsinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(2)Theriskthatthedeformationofthetopofthefrontorrearsheetpilemayexceedtheallowablelimitofdeformationshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhich thedominantaction isearthpressureandunder thevariableactionsituation inwhich thedominantactionisLevel1earthquakegroundmotions.

(3)Theriskoflosingthestabilityduetosheardeformationofthestructuralbodyshallbeequaltoorlessthanthe threshold levelunder thepermanentactionsituationinwhich thedominantactionisearthpressure.

[Commentary]

(1)PerformanceCriteriaofSheetPileQuaywalls①Theperformancecriteriaofsheetpilequaywallsshallusethefollowing,inaccordancewiththedesign

situationsexcludingaccidentalsituationsandtheconstituentmembers. Apart from these requirements,whennecessary the settingofArticle 22 Item 3 of the Public Notice shall be applied. When sheet pile with special connections or large connections is used,theperformancecriteriafor thestressesoccurring in theconnectionsshallbeappropriatelyset,asnecessary.

Page 37: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–712–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

②Sheetpilequaywalls(serviceability)(a)Performancecriteriaofsheetpile

ThesettingoftheperformancecriteriaforsheetpilequaywallsandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 30forthesheetpiles.

Attached Table 30 Setting of the Performance Criteria and the Design Situations (excluding accidental situations) for the Sheet Piles of Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 1 1 Serviceability Permanent Earthpressure Waterpressure,surcharges

Necessaryembedmentlength

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–4)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

Yieldingofsheetpile

Variable L1earthquakegroundmotion

Earthpressure,waterpressure,surcharges

Necessaryembedmentlength

Designyieldstress(allowabledeformationoftopofquaywall:Da=15cm)

Yieldingofsheetpile

(b)PerformancecriteriaofanchorageworkThesettingoftheperformancecriteriaforsheetpilequaywallsandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 31foranchoragework.

Attached Table 31 Setting of the Performance Criteria and the Design situations (excluding accidental situations)for the Anchorage Work of Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 1 2a Serviceability Permanent Earthpressure Waterpressure,surcharges

Necessaryembedmentlength

Embedmentlengthrequiredforstructuralstability

Yieldingofanchorage*1)

Designyieldstress

Axialforcesintheanchorage*2)

Resistanceforcebasedonfailureofthesoil(pushin,pullout)

Stabilityofanchorwall*3)

・Passiveearthpressureofanchoredwall

・Designcross-sectionresistance(ultimatelimitstate)

Variable L1earthquakegroundmotion

Earthpressure,waterpressure,surcharges

Necessaryembedmentlength

Embedmentlengthrequiredforstructuralstability(Allowabledeformationoftopofquaywall:Da=15cm)

Yieldingofanchorage*1)

Designyieldstress(Allowabledeformationoftopofquaywall:Da=15cm)

Axialforcesintheanchorage*2)

Resistanceforcebasedonfailureofthesoil(pushin,pullout)(Allowabledeformationoftopofquaywall:Da=15cm)

Stabilityofanchorwall*3)

・Passiveearthpressureofanchoredwall・Designcross-sectionresistance(ultimatelimitstate) (Allowabledeformationoftopofquaywall:Da=15cm)

*1):Onlywhenthestructuraltypeoftheanchorageisaverticalpileanchor,acoupledpileanchor,orsheetpileanchor.*2):Onlywhenthestructuraltypeoftheanchorageisacoupledpileanchor.*3):Onlywhenthestructuraltypeoftheanchorageisawallanchor.

Page 38: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–713–

(c)Performancecriteriaoftiesandwaling1)Thesettingoftheperformancecriteriaforsheetpilequaywallsandthedesignsituationsexcluding

accidentalsituationsshallbeinaccordancewithAttached Table 32forthetiesandwaling.Forpermanentsituationswheredominatingactionisearthpressure,andforvariablesituationswheredominatingaction isLevel1earthquakegroundmotionas shown inAttached Table 32, theindexrepresentingtheriskoffailureduetoyieldingofthetiemembersshallcomplywiththatofthesheetpile.

Attached Table 32 Setting of the Performance Criteria and the Design Situations (excluding accidental situations) for the Ties and Waling of Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 1 2b Serviceability Permanent Earthpressure Waterpressure,surcharges

Requiredembedment

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–4)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

Yieldingofwaling DesignyieldstressVariable L1earthquake

groundmotion

Earthpressure,waterpressure,surcharges

Yieldingoftie Designyieldstress(allowabledeformationoftopofquaywall:Da=15cm)

Yieldingofwaling Designyieldstress(allowabledeformationoftopofquaywall:Da=15cm)

Yieldingoftie DesignyieldstressYieldingofwaling Designyieldstress

(d)PerformancecriteriaofsuperstructuresThesettingoftheperformancecriteriaforsheetpilequaywallsandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 33forthesuperstructure.

Attached Table 33 Setting of the Performance Criteria and the Design Situations (excluding accidental situations) for the Superstructure of Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 1 2c Serviceability Permanent Earthpressure Waterpressure,surcharges

Serviceabilityofcross-sectionofsuperstructure

Limitvalueofbendingcompressionstress(serviceabilitylimitstate)

Variable L1earthquakegroundmotion

Earthpressure,surcharges

Failureofcross-sectionofsuperstructure

Designcross-sectionresistance(ultimatelimitstate)

Tractionbyships

3 Berthing

i)Serviceabilityofsuperstructurecross-sectionVerificationof serviceabilityof the superstructure cross-section is to verify that the risk thatthebendingcompressionstressinthesuperstructurewillexceedthelimitvalueofthebendingcompressionstressisequaltoorlessthanthelimitvalue.

ii)Cross-sectionfailureofthesuperstructureVerificationofcross-sectionfailureofthesuperstructureistoverifythattheriskthatthedesigncross-sectionforcesinthesuperstructurewillexceedthedesigncross-sectionresistanceisequal

Page 39: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–714–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

toorlessthanthelimitvalue.(e)Performancecriteriaofthefoundationgrounds

a)The setting of the performance criteria for sheet pile quaywalls and the design situationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 34forthefoundationgrounds.TheindexrepresentingtheriskofoccurrenceoffailureduetocircularslipfailureinthefoundationsunderpermanentsituationswheredominatingactionistheselfweightindicatedinAttached Table 34shallcomplywiththatofsheetpile.

Attached Table 34 Setting of the Performance Criteria and the Design Situations (excluding accidental situations) for the Foundation Grounds of Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 1 4 Serviceability Permanent Earthpressure Waterpressure,surcharges

Circularslipfailureofground

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–4)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

b)CircularslipfailureofthegroundCircularslipfailureofthegroundisslipfailureofthegroundpassingunderthebottomofthesheetpile.

③Cantileveredsheetpilequaywalls(serviceability)(a)Besidescomplyingwiththeperformancecriteriaofsheetpilequaywalls,excludingthosewithties

andwaling, the settingof theperformancecriteria for cantilevered sheetpilequaywalls and thedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 35.

Attached Table 35 Setting of the Performance Criteria and the Design Situations (excluding accidental situations) for Cantilevered Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 2 – Serviceability Permanent Earthpressure Waterpressure,surcharges

Deformationoftopofsheetpile

Limitvalueofamountofdeformation

Variable L1earthquakegroundmotion

Earthpressure,waterpressure,surcharges

Tractionbyships

(b)LimitvalueoftheamountofdeformationofthetopofthesheetpileThelimitvalueoftheamountofdeformationofthetopofthesheetpileforpermanentsituationswherethedominatingactionisearthpressureandthevariablesituationswheredominatingactionareLevel1earthquakegroundmotion, tractionbyships, shallbesetappropriatelybasedon theenvisagedconditionsofuseofthefacility.

④Doublesheetpilequaywalls(serviceability)(a)Besidesapplyingtheperformancecriteriaofsheetpilequaywalls,thesettingoftheperformance

criteriafordoublesheetpilequaywallsandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 36.TheindexrepresentingtheriskofoccurrenceoffailureduetoslidingofthewallunderpermanentsituationswheredominatingactionisearthpressureandthevariablesituationswheredominatingactionisLevel1earthquakegroundmotionindicatedin

Page 40: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–715–

Attached Table 36shallcomplywiththatofgravity-typequaywalls.Attached Table 36 Setting of the Performance Criteria and the Design Situations (excluding accidental situations) for

Double Sheet Pile Quaywalls

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 50 3 1 Serviceability Permanent Earthpressure Selfweight,waterpressure,surcharges

Slidingofwallbody Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.0×10–3)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

49 1 – Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharges

Limitvalueforsliding(allowableamountofdeformationDa=10cm)

50 3 2 Permanent Selfweight Waterpressure,surcharges

Circularslipfailureofground

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–4)(Otherthanhighearthquake-resistancefacilityPf =4.0×10–3)

Earthpressure Selfweight,waterpressure,surcharges

Deformationofthefrontandrearofthetopofthesheetpile

Limitvalueofamountofdeformation

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharges

3 Permanent Earthpressure Waterpressure,surcharges

Sheardeformationofwallbody

Resistancemoment

(b)DeformationofthetopofthefrontandrearsheetpileThelimitvalueoftheamountofdeformationofthetopofthesheetpileforthepermanentsituationswheredominatingactionisearthpressureandthevariablesituationswheredominatingactionisLevel1earthquakegroundmotionshallbesetappropriatelybasedonthestructuralstabilityofthefacilityandtheenvisagedconditionsofuseofthefacility.

(c)SheardeformationofwallbodyVerificationofsheardeformationofwallbodyistoverifythattheriskthatthedeformationmomentinrespectofthesheardeformationofawallbodywillexceedtheresistancemomentisequaltoorlessthanthelimitvalue.

[Technical Note]

2.3.1 Fundamentals of Performance Verification

(1)The performance verification of structural stability for a steel sheet pile quaywall with anchoragework cangenerallybeconductedbycheckingthestabilitiesofthesheetpilewall,thetierodsandtheanchoragework.

(2)AnexampleofthesequenceoftheperformanceverificationofsheetpilequaywallsisshowninFig. 2.3.1.

(3)Anexampleofthecross-sectionofsheetpilequaywallsisshowninFig. 2.3.2.

Page 41: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–716–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

タイ材に生じる応力の検討

Evaluation of stresses in waling

Determination of dimensions of sheet pile wall, ties and waling

Assumption of dimensions of anchorage work

Evaluation of anchorage stresses, embedment length and installation position

Determination of dimensions of anchorage work

Permanent situation, variable situation in respect ofLevel 1 ground motion

Permanent situation, variable situation in respectof Level 1 ground motion and

actions caused by ships

Permanent situation

Permanent situation, variable situation in respect of Level 1 earthquake ground motion

Evaluation of amount of deformation by dynamic analysis

Verification of deformation and stresses by dynamic analysis

Accidental state in respect ofLevel 2 earthquake

ground motion

Evaluation of actions including seismic coefficient for verification

Determination of embedment length of sheet pile

Evaluation of stresses in sheet pile wall

Variable situation in respect ofLevel 1 earthquake

ground motion

Evaluation of circular arc slips

Determination of dimensions of cross-section

Verification of structural members

Evaluation of stresses in ties

Setting of design conditions

Assumption of cross-sectional dimensions(including determination of the position of tie installation point)

*1

Performance verificationPerformance verification

*2

*3

*1:Evaluationofliquefactionandsettlementarenotshown,soitisnecessarytoconsidertheseseparately.*2:Whennecessary,anevaluationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. Forhighearthquake-resistancefacilities,itispreferablethatanexaminationoftheamountofdeformationbecarriedoutbydynamic

analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.3.1 Example of Sequence of Performance Verification of Sheet Pile Quaywalls

Page 42: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–717–

Rubble

Steel pipe pile

Concrete paving

Subbase course

Steel sheet pile

H.W.L.

L.W.L.Tie rods

Backfill rocks

Sandy soil

Fig. 2.3.2 Example of Cross-section of Sheet Pile Quaywall

(4)PointsofCautiononSoftGround

① Theperformanceverificationofasheetpilewallonsoftgroundsuchasalluvialcohesivesoilonsoftseabedshouldpreferablybeconductedthroughcomprehensiveexaminationusingperformanceverificationmethodsshownbelowfortieandanchoragework,aswellasotherperformanceverificationmethods.Unexpectedlargedeformationmayoccur insheetpilesconstructedonsoftgrounddue to lateralflows thatarecausedby thesettlementofthegroundbehindthesheetpilewall.Severalmethodsforlateralflowprediction36)havebeenproposed.Sucheffectsshouldbetakenintoconsiderationincarryingouttheperformanceverifications.

② Careshouldbeexercisedinusingtheperformanceverificationmethodsforsheetpilequaywalldescribedinthissection,becausemanyofthesemethodsassumethatasteelsheetpilewallisdrivenmainlyintosandysoilgroundorhardclayeysoilground.Forsoftground,itispreferabletoperformsoilimprovementwork.Whenitisnotpossibletoperformsoilimprovementworkbecauseofsiteconditions,itispreferabletoconsiderusingotherperformanceverificationmethods,inadditiontothemethodsdescribedinthissection,suchasdynamicanalysismethodswhichcanaccuratelyevaluatethenonlinearcharacteristicsofsoil,sothatacomprehensiveanalysiscanbemade.

2.3.2 Actions

(1)Theactiveearthpressureisnormallyusedastheearthpressurethatactsonthesheetpilewallfromthebackside.Forthefront-sidereactionthatactsontheembeddedpartofthesheetpile,itisnecessarytouseanappropriatevaluesuchaspassiveearthpressureora subgrade reaction thatcorresponds to thedeflectionof thewallandmodulusofsubgradereaction.

(2)Whenthefreeearthsupportmethodandtheequivalentbeammethodareusedintheperformanceverificationforasheetpilewall,itshouldbasicallybeassumedthattheearthpressureandresidualwaterpressureactasshowninFig. 2.3.3,andthepressurevaluescanbecalculatedinaccordancewithPart II, Chapter 5, 1 Earth Pressure andPart II, Chapter 5, 2.1 Residual Water Pressure.Thewallfrictionangleusedforcalculationoftheearthpressureactingonthesheetpilewallmayusuallybetakenat15ºfortheactiveearthpressureand–15ºforthepassiveearthpressure,respectivelywhenthegroundissandysoillayer.

Page 43: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–718–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Residual water levelL.W.L.

Residual water levelL.W.L.

Act

ive

earth

pre

ssur

e

Act

ive

earth

pres

sure

Res

idua

l wat

er p

ress

ure

Res

idua

l wat

er p

ress

ure

Pass

ive

earth

pre

ssur

e

Pass

ive

earth

pre

ssur

e

(a) Sandy soil ground (b) Hard clayey soil ground

Fig. 2.3.3 Earth Pressure and Residual Water Pressure to be considered for Performance Verification of Sheet Pile Wall

(3)Sincetheearthpressurechangesinresponsetodisplacementofthesheetpilewall,theactualearthpressurethatactsonthesheetpilewallvariesdependingonthefollowing:

(a)Theconstructionmethodi.e.,whetherbackfillisexecutedorthegroundinfrontofthesheetpilesisdredgedtotherequireddepthafterthesheetpileshavebeendrivenin

(b)Thelateraldisplacementofthesheetpileatthetierodsettingpoint

(c)Thelengthoftheembeddedpartofthesheetpile

(d)Therelationshipbetweentherigidityofthesheetpileandthecharacteristicsoftheseabottomground.

ThereforetheearthpressuredistributionisnotnecessaryasshowninFig. 2.3.3.

(4)WhenP. W. Rowe’smethod, elasticbeamanalysismethod, isused ina sheetpile stabilitycalculation, it isassumed that the earth pressure and residualwater pressure act as shown inFig. 2.3.4 and a reaction earthpressure that corresponds to themodulusof subgrade reaction and the earthpressure at rest act on the frontsurfaceofthesheetpile.

G.L.

L.W.L.Residual water level

Tie rod

Earth pressure at rest

Active earth pressure+ residual water pressure

Subgrade reactionearth pressureSubgrade reactionearth pressure

Fig. 2.3.4 Earth Pressure and Residual Water Pressure to be considered for Performance Verification of Sheet Pile Walls Using P.W. Rowe's Method

Page 44: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–719–

(5)Whenthereiscargohandlingequipmentsuchascranesonthequaywall,itisnecessarytotakeintoconsiderationtheearthpressureduetotheselfweightandtheliveloadoftheequipment.

(6)Inthedeterminationofthereactionforceofearthpressurethatactsonthefrontsurfaceoftheembeddedpartofthesheetpile,itisnecessarytoassumethatdredgingoftheseabottomwillbeexecutedtoacertaindepthbelowtheplanneddepth,inconsiderationoftheaccuracyofdredgingwork.

(7)Inthecaseofanearthretainingwallofanopen-typewharf,theseabottominfrontofthesheetpilewallhasacompositeshapeofhorizontalandslopedsurfaces.Insuchacase,thepassiveearthpressuremaybecalculatedusingCoulomb’smethodinwhichthedesignpassiveearthpressureistriallycalculatedwithseveralfailureplanesofdifferentangles.Thesmallestvalueamongthemisadoptedasthepassiveearthpressure.41)However,itisnecessarytoconsidertheempiricalevidencebyexperimentsthatthebehaviorofthegroundinfrontofthesheetpilewallcanbewellpredictedundertheassumptionofthegroundbeinganelasticbody.

(8)The residualwater level tobeused in thedeterminationof the residualwaterpressureneeds tobeestimatedappropriatelyinconsiderationofthestructureofthesheetpilewallandthesoilconditions.Theresidualwaterlevelvariesdependingonthecharacteristicsofthesubsoilandtheconditionsofsheetpilejoints,butinmanycasestheelevationwiththeheightequivalenttotwothirdsofthetidalrangeabovethemeanmonthly-lowestwaterlevel(LWL)isusedforsheetpilewalls.Inthecaseofasteelsheetpilewalldrivenintocohesivesoilground,however,careshouldbeexercisedinthedeterminationoftheresidualwaterlevel,becauseitissometimesnearlythesameasthehighwaterlevel.Whensheetpilesmadeofothermaterialsaretobeused,itispreferabletodeterminetheresidualwaterlevelbasedontheresultofinvestigationsofsimilarstructures.

(9) SeismicCoefficientusedinPerformanceVerificationofSheetPileQuaywallswithPileAnchorageforVariableSituationinrespectofLevel1EarthquakeGroundMotion42)

① Fortheperformanceverificationofseismic-resistantofsheetpilesquaywallswithpileanchorageforthevariablesituationinrespectofLevel1earthquakegroundmotion,theperformanceverificationbydirectevaluationoftheamountofdeformationbyadetailedmethodsuchasnonlineareffectivestressanalysiscanbecarriedout,butsimplifiedmethodssuchastheseismiccoefficientmethodcanalsobeused.Inthiscase,itisnecessarytouseanappropriateseismiccoefficientintheperformanceverification,takingintoconsiderationtheeffectsofthefrequencycharacteristicsanddurationofthegroundmotions.AtypicalsequenceoftheseismiccoefficientcalculationfortheverificationisasshowninFig. 2.3.5.

Page 45: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–720–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Acceleration time history at seismic bedrock

Acceleration time history at ground surface

Considering of the effect of duration of seismic motion by means ofreduction ratio (αf × p)

Calculation of maximum value ofcorrected acceleration αc

1-dimensional seismic response analysis

Considering of frequency dependence by filter processing

Setting of foundation conditions

Calculation of root mean sum ofsquares of time history

Setting of filter considering frequency characteristics

Setting of reduction ratio

Setting of allowable amount ofdeformation Dα (see ⑤ (b))

Calculation of characteristic value of seismiccoefficient for verification (see ⑤ (a))

Setting of filter (see ③ (a))

Calculation of reduction ratio p (see ④ )

Maximum value of ground surface accelerationtime history considering frequency dependence

Calculation of initial natural periods ofground and foundations below wall (see ③ (b))

Evaluation of cohesive soil ground

Fig. 2.3.5 Example of Sequence for Calculation of Seismic Coefficient for Verification

②ItispreferablethattheseismiccoefficientforverificationusedinperformanceverificationofsheetpilequaywallsforthevariablesituationsinrespectofLevel1earthquakegroundmotionissetappropriatelyasahorizontalgroundmotionforwhichtheamountofdeformationofthesheetpilequaywalldoesnotexceedthelimitvalue.WhenLevel1earthquakegroundmotionisacting,failureofsheetpilewallsisprecededbydeformation,andiftheallowableamountofdeformationofasheetpilequaywallisabout30cm,deformationwillbedominant.

③Settingofthefilterconsideringthefrequencycharacteristics

(a)SettingofthefilterWiththesamewayasforgravity-typequaywalls,theaccelerationresponsespectrumisobtainedfromtheFouriertransformoftheaccelerationtimehistoryatthegroundsurfaceobtainedby1-dimensionalseismicresponseanalysis,andthisisprocessedwithafilterconsideringthefrequencycharacteristicscorrespondingtothedeformationofthesheetpilequaywall.Forthisfilterthevaluegivenbyequation(2.3.1)maybeused.Fordetailsreferto2.2.2(1)⑤ Setting of filter considering frequency characteristics in 2.2 Gravity-type Quaywalls.AnexampleoffilterisshowninFig. 2.3.6.

Page 46: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–721–

(2.3.1)

(verticalpileanchoragetype)

(coupled-pileanchoragetype)

where, H :wallheight(m) HR :standardwallheight(=15m) Tb :initialnaturalperiodoftheground(s) TbR :standardinitialnaturalperiodoftheground(=0.8s) Tu :initialnaturalperiodofthegroundbelowtheseabedsurface(s) TuR :standardinitialnaturalperiodofthegroundbelowtheseabedsurface(=0.4s)

Thevalueofbshallbesetwithintherangeindicatedbyequation(2.3.2),usingthewallheightHofthewallbody.However,regardlessofthesettingrangeindicatedbyequation(2.3.2),inallcasestheminimumvalueshallbe0.41.

(2.3.2)However,b ≥ 0.41

where, H :wallheight(m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.1 1.0 10.0f (Hz)

a( f

)

H =15.0mT b=1.07sT u=0.57s

0.00.20.40.60.81.01.21.41.61.8

0.1 1.0 10.0f (Hz)

a( f

)

H =15.0mT b=1.07sT u=0.57s

(a) Vertical pile anchorage type (b) Coupled-pile anchorage type

Fig. 2.3.6 Examples of Filters

(b)CalculationofthenaturalperiodsofthegroundandthegroundbelowtheseabedsurfaceForcalculationofthenaturalperiodsforequation(2.3.1),referto2.2.2(1)⑤ Setting of filter considering frequency characteristicsin2.2 Gravity-type Quaywalls.However,theinitialnaturalperiodofthegroundTbandtheinitialnaturalperiodofthegroundbelowtheseabedsurfaceTuarecalculatedasTbandTuatthepositionsshowninFig. 2.3.7.

Page 47: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–722–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Ground for calculation of Tb

Engineering bedrock

Ground surface

Ground for calculationof Tu

Seabed surface

Replacementsand

Sheet pile wallAnchorage

Tie rod

Fig. 2.3.7 Ground Subject to the Calculation of the Natural Periods

④SettingofthereductionratioThe reduction ratiop that takes intoconsideration theeffectof thedurationof thegroundmotionsused intheverificationofsheetpilequaywallsmaybeobtainedfromequation(2.3.3).Fordetailsreferto2.2.2(1)⑥ Setting of reduction in2.2 Gravity-type Quaywalls.

(2.3.3)where,

p :reductionratio(p ≤1.0) S :squarerootofthesumofsquaresoftheaccelerationtimehistoryafterfiltering(cm/s2) αf :maximumvalueoftheaccelerationafterfiltering(cm/s2)

⑤ Calculationofthecharacteristicvalueoftheseismiccoefficientforverification

(a) CharacteristicvalueoftheseismiccoefficientforverificationThecharacteristicvalueof theseismiccoefficient forverificationkhkused in theperformanceverificationofsheetpilequaywallsmaybecalculatedfromequation(2.3.4),usingthecorrectedmaximumaccelerationαc, and theallowableamountofdeformationof the topof thequaywallDa. For thecorrectedmaximumacceleration, refer to 2.2.2(1)⑦ Calculation of maximum corection acceleration in 2.2 Gravity-type Quaywalls.

(verticalpileanchoragetype) (2.3.4(a))

(coupledpileanchoragetype) (2.3.4(b))

where,

khk :characteristicvalueoftheseismiccoefficientforverification αc :correctedvalueofthemaximumaccelerationofthegroundatthegroundsurface(cm/s2) g :gravitationalacceleration(=980cm/s2) Da :allowableamountofdeformationatthetopofthequaywall(=15cm) Dr :standarddeformationamount(=10cm)

(b)SettingoftheallowableamountofdeformationItisnecessarytoappropriatelysettheallowableamountofdeformationforafacility,inaccordancewiththefunctionrequiredofthefacilityandthecircumstancesinwhichthefacilityisplaced.TheallowablevalueofthestandarddeformationamountofasheetpilequaywallinLevel1earthquakegroundmotionmaybetakentobeDa=15cm.Thisallowablevalueofthestandarddeformationamount(Da=15cm)istheaveragevalueoftheamountofresidualdeformationoftheexistingsheetpilequaywallsinLevel1earthquakegroundmotion,calculatedbyseismicresponseanalysis.

⑥ Thecalculationofthecharacteristicvalueoftheseismiccoefficientforverificationforsheetpileanchoragetypeandconcretewallanchoragetypesheetpilequaywallsmayapplythatofverticalpileanchoragetypesheetpilequaywalls.

Page 48: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–723–

(10)Theseismiccoefficientforverificationofsuperstructureofsheetpilefor theaccidentalsituationinrespectoftheLevel2earthquakegroundmotionmaybeconvenientlycalculatedusing themethod in (10) above,usingtheaccelerationtimehistoryofthegroundsurfaceatthefreegroundpart.Inthiscase,theallowableamountofdeformationDamaybetakentobe50cm.Whenthismethodisused,theupperboundvalueshallbe0.25,andavalueequaltoorgreaterthantheseismiccoefficientfortheverificationofLevel1earthquakegroundmotionmustbeused.However,iftheseismiccoefficientfortheverificationofLevel1earthquakegroundmotionexceeds0.25,thatvalueshallbeused.FortheverificationofthesuperstructureoftheanchoragefortheaccidentalsituationsinrespectofLevel2earthquakegroundmotion,thetietensionforcesobtainedbyadynamicanalysismaybeused.

(11)Forthedynamicwaterpressureactingduringanearthquake,refertoPart II, Chapter 5, 2.2 Dynamic Water Pressure.

(12)Forthetractiveforcesofships,refertoPart II, Chapter 8, 2.3 Actions Caused by Ship Motions,andPart II, Chapter 8, 2.4 Actions due to Traction by Ships.

(13)Thefenderreactionforce isgenerallyconsideredfor theperformanceverificationof thecoping. The tractiveforceofshipisnotconsideredwhenthefoundationforbollardsistobeconstructedseparatelyfromthecoping.However,whenbollardsaretobeinstalledonthecopingofthesheetpilewall,it isnecessarytoconsiderthetractiveforceofshipintheperformanceverificationofthecoping,tierodandwale.

2.3.3 Setting of Cross-sectional Dimensions

(1)PositionofInstallationofTieMembers

① Thecrosssectionsofsheetpileandtiememberwillbelargelyinfluencedbythepositionofthetiememberinstallation.Thepositionofthetiememberinstallationshouldbedeterminedconsideringthedifficultyoftheworkoftiememberattachmentsandthecosts.

②Whenthewallheightofasheetpilewallishigh,tierodsmaybeprovidedattwolevelstosupportthewallstructureattwopoints,toreducetheflexuralmomentsinthewallstructure.

(2)SelectionofthestructuraltypeofanchorageworkThe structural types of anchorageworks are generally broadly classified as vertical pile anchorage, coupled-pile anchorage, sheet pile anchorage, and slab anchorage. The economy, construction time, and constructionmethoddifferdependingonthestructuraltype,soitisnecessarytodeterminethestructuraltype,consideringtheelevationofthegroundandothersiteconditionsbeforeconstruction.

2.3.4 Performance Verification

(1)FundamentalsofPerformanceVerificationofSheetPileWalls

① GeneralWhenverificationforvariablesituationinrespectofLevel1earthquakegroundmotioniscarriedoutusingasimplifiedmethodsuchastheseismiccoefficientmethod,thefollowing(2)–(4)maybeused.Intheverificationof theembedment lengthof thesheetpilewall, it isassumed that theembeddedbottomend isfixed in theground. Also, for verificationof stresses in the sheetpilewall, it is assumed that thepoint of intersectionbetweenthesheetpilewallandtheseabedsurfaceisfixedintheground.However,theseassumptionsusedinthesimplifiedmethodsarenotnecessarilyconsistentwiththeactualmechanisms,sowhenthesemethodsareadopted,itisnecessarytopayattentiontothis.43)Ifadetailedmethodsuchasdynamicanalysisisused,(10) Verification of Ground Motion by Dynamic Analysis Methods canbereferred.

② Considerationoftheeffectoftherigidityofthesheetpilewallcross-section

(a) Thecross-sectionofthesheetpileshallbesetappropriatelyconsideringofthecross-sectionalrigidityofthesheetpile.

(b)Thebehaviorofsheetpilewallwiththeanchorageworkisstronglyaffectedbytherigidityandembeddedlengthofthesheetpilesandthecharacteristicsoftheground.Inparticular,therigidityofthesheetpilesstronglyaffectsthedeterminationoftheembeddedlength.Thereforeitisessentialtoconsidertheeffectofthecross-sectionalrigidityofthesheetpileinthefinalselectionofthecross-section.

(c) Theanalysismethoddescribedbelow,whichisamodifiedRowe’smethod,examinestheembeddedpartofsheetpilesasabeamsetonanelasticbed. Elasticbeamanalysismethodofsheetpiles Thiselasticbeamanalysismethodisappliedtothesheetpilewallasthetheoreticalequationforbeamsonelasticbedbyintroducinganelasticcoefficientofsubgradereactionforthegroundintowhichthesheetpile

Page 49: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–724–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

wallisdriven.Thebasicequationfortheembeddedpartisasequation(2.3.5):

(2.3.5)

where E : Young’smodulusofsheetpile(MN/m2) I : geometricalmomentofinertiaofsheetpilewallperunitwidth(m4/m) pA0 : load intensity at the sea bottom generated by the active earth pressure and residual water

pressure(MN/m2) h : modulusofsubgradereactiontothesheetpilewall(MN/m3) D : embeddedlengthofsheetpile(m)

Asthereisnogeneralsolutiontoadifferentialequationofthisform,aspecialtechniqueisrequiredtosolveequation(2.3.5).BromsandRoweproposedamethodtoobtainthecoefficientofeachterminanumericalanalysisbyassumingapowerseriesasthesolution. BasedonRowe’smethod,46)TakahashiandIshigurohavepublisheddetailsofamethodtoderiveasolutionofthedeflectioncurveequationofsheetpilewallandacomputer-basednumericalcalculationmethod.47)TakahashiandKikuchihaveamendedthismethodtobetterreflectthebehavioralcharacteristicsofactualsheetpilewallsasfollows(seeFig. 2.3.8):

(2.3.6)

where E : Young’smodulusofsheetpile(MN/m2) I : geometricalmomentofinertiaofsheetpilewallperunitwidth(m4/m) pA0 : load intensity at the sea bottom generated by the active earth pressure and residual water

pressure(MN/m2) KAD : coefficientofactiveearthpressureintheembeddedpartofthesheetpilewall γ : unitweightofsoil(MN/m3) K0 : coefficientofearthpressureatrest DF : convergedembeddedlengthofsheetpilewall(m) rf : ratiooftheexertingdepthoftheprimarypositivereactionearthpressureactingonthefront

surfaceoftheembeddedpartofthesheetpiletoDF

Fig. 2.3.8 Earth Pressure Distribution for the Analysis of Sheet Pile Wall

Page 50: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–725–

(2)Embedment length of sheet pilewalls for permanent situations and variable situations in respect of Level 1earthquakegroundmotion

① Themechanical behavior of the sheet pilewall varies depending on the embedment length. With a shortembedmentlengththebehaviorcharacteristicsarefreeearthsupportconditions,andwithalongembedmentlengththebehaviorcharacteristicsarefixedearthsupportconditions.Inordertoensurestabilityofthesheetpilewallunderpermanentsituationsandvariablesituations,Itispreferablethatthebottomofthesheetpileisfixedsufficientlyintheground,inotherwordsthatfixedearthsupportconditionsbesatisfied.Conventionally,theembedmentlengthwasobtainedbythefreeearthsupportmethodbasedonclassicalearthpressuretheory.Takahashi and Kikuchi 49) showed that the embedment length obtained with this method by consideringappropriatepartialfactorsisconsideredtobefixedearthsupportcondition.Also,theequivalentbeammethodforobtainingthecross-sectionofsheetpilesassumesfixedearthsupportconditions.

② Iftheembedmentlengthofsheetpilesistoobtainbythefreeearthsupportmethod,analysisoftheembedmentlengthofthesheetpilewallcanbecarriedoutusingthefollowingequation.Thisequationisobtainedfromtheequilibriumofmomentsoftheearthpressureandresidualwaterpressureaboutthepointofinstallationoftheties,asshowninFig. 2.3.3.Inthefollowingequation,thesymbolγisthepartialfactorcorrespondingtoitssubscript,wherethesubscriptskanddindicatethecharacteristicvalueandthedesignvalue,respectively.

(2.3.7)

where, Pp :resultantpassiveearthpressureactingonthesheetpilewall(kN/m) Pa :resultantactiveearthpressureactingonthesheetpilewall(kN/m) Pw :resultantresidualwaterpressureactingonthewallstructure(kN/m) Pdw :resultantactivewaterpressureactingonthewallbody(kN/m)(onlyduringearthquakes) a–d :distancebetweenthepositionofinstallationofthetierodandthepointofactionoftheresultant

force(m) γa :structuralanalysiscoefficient

Incalculating thedesignvaluesof earthpressure in theequation, the tangentof theangleof shearingresistancetanφ,thecohesionc,thewallsurfacefrictionangleδ,theeffectiveunitweightw',thesurchargeq,andtheseismiccoefficientforverificationduringearthquakesonlykhmaybecalculatedusingequation(2.3.8),andPart II, Chapter 5, 1 Earth Pressuremaybeusedforreference.Thedesignvalueofresidualwaterpressuremaybecalculatedasappropriateby reference toPart II, Chapter 5, 2.1 Residual Water Pressure,aftercalculatingthedesignvalueofresidualwaterlevelfromequation(2.3.8),takingthetidelevelandtidaldifferenceatthefrontsurfaceintoconsideration.Also,thedesignvalueofdynamicwaterpressureused in theperformanceverificationduringanearthquakemaybecalculatedas appropriateby referencetoPart II, Chapter 5, 2.2 Dynamic Water Pressure, after first calculating the design value of seismiccoefficientforverificationfromequation(2.3.8).ThepartialcoefficientsusedincalculationofthedesignvaluesmaybeobtainedbyreferencetoTable 2.3.3.

(2.3.8)

③ Incohesivesoilground,normallyifequation(2.3.9)isnotsatisfied,stabilityofembedmentisnotensured.

(2.3.9)where,

c :cohesionofthesoilattheseabed(kN/m2) q :surcharge(kN/m2) wi :weightofthesoiloftheithstratumabovetheseabedsurface,forbelowtheresidualwaterlevel,

theweightinwater(kN/m2) ρw :densityofseawater(t/m3) g :gravitationalacceleration(m/s2) hw :differenceinwaterlevelbetweentheresidualwaterlevelandthefrontsurfacetidelevel(m)

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.

(2.3.10)

Page 51: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–726–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Whenequation(2.3.9)isnotsatisfiedbecausethesoilsattheseabedareweak,theneithertheseabedsoilsshouldbeimprovedbyanappropriatemethod,orastructuresuchasasheetpilewallwitharelievingplatformshouldbeadopted.

④ Characteristicembedmentlengthconsideringtherigidityofthesheetpilewallcross-section

(a) According to the elastic beam analysismethod described in (1)④ above, the behavior characteristics ofasheetpilewallcanvarydependingon theembedment length. Inotherwords, if thesheetpiling isnotlongerbyacertainvalue, thesheetpilewallwillnotbestable. Theembedment length thatbringsaboutthelimitingstabilitystateiscalledthelimitingembedmentlengthDC. Iftheembedmentlengthislongerthanthelimitingembedmentlength,theflexuralmomentinthesheetpilewallbecomesthepeakmaximumflexuralmomentMPunderfreeearthsupportconditions.TheembedmentlengthobtainedaboveiscalledthetransitionembedmentlengthDP.Iftheembedmentlengthisincreasedfurther,theflexuralmomentbecomestheconvergentmaximummomentMFunderfixedearthsupportconditions.TheminimumembedmentlengthatwhichthisisachievediscalledtheconvergentembedmentlengthDF.

(b)FlexibilitynumberofthesheetpileAsameasuretoindicatetherigidityofasheetpilewallasastructure,thefollowingflexibilitynumberintheequation(2.3.11)proposedbyRoweisused:

(2.3.11)where

ρ :flexibilitynumber(m3/MN) H :totallengthofsheetpile(m) E :Young’smodulusofthesheetpile(MN/m2) I :geometricalmomentofinertiaperunitwidthofthecross-sectionofthesheetpile(m4/m)

ForHinρ=H4/EI,RoweusesthesumoftotalheightofthesheetpilewallfromtheseabottomtothetopofthesheetpilewallHandtheembeddedlengthD offixedearthsupportstateasthetotallengthofsheetpile.Also,TakahashiandKikuchiEtal.suggestanewindexcalledthesimilaritynumberthatisderivedbyusingtheflexibilitynumberandgroundcharacteristics.TheheightHT fromtheseabottomtothetierodinstallationpointisusedforthelengthH inthisequation:

(2.3.12)where,

ω :similaritynumber ρ :flexibilitynumber(m3/MN) h :modulusofsubgradereactionofthesheetpilewall(MN/m3) HT :heightfromthetieinstallationpointtotheseabedsurface(m) E :Young’smodulusofthesheetpile(MN/m2) I :geometricalmomentofinertiaperunitwidthofthecross-sectionofthesheetpile(m4/m)

Byexpressingthemechanicalcharacteristicsofasheetpilewallwithasimilaritynumber,theeffectoftherigidityofthesheetpilescanbeestimatedquantitatively.

(c)ModulusofsubgradereactionofsheetpilesThereareaveryfewreferencedatathatgivesmeasuredorsuggestedvaluesofmodulusofsubgradereactionof thesheetpileh. Therefore it ispreferable toobtain thesevaluesbymeansofmodel testsand/orfieldmeasurements. The proposed values that have traditionally been used include the values proposed byTerzaghiandtheonesproposedbyTakahashiandKikuchi,etal.,whichhavebeenobtainedbymodifyingTerzaghi’svalues.TheresearchconductedbyTakahashiandKikuchi,etal.showsthattheeffectoferrorsinthemodulusofsubgradereactionisnotfatalforpracticaluse.49)ThusthevaluesproposedbyTakahashiandKikuchi,etal.maynormallybeusedasthecoefficientofsubgradereactionofsheetpilewall.

1) ValuesproposedbyTerzaghi51)ThevaluesproposedbyTerzaghiareaslistedinTable 2.3.1.

Table 2.3.1 Modulus of Subgrade Reaction for Sheet Pile Wall in Sandy Ground (h)(MN/m3)

Relativedensityofsand Loose Medium Dense

Modulusofsubgradereaction(h) 24 38 58

Page 52: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–727–

2) ValuesproposedbyTakahashiandKikuchi,etal.49)TakahashiandKikuchi,etal.confirmedthattheresultofTschebotarioff’smodeltestofsheetpilewall52)doesnotcontradictwiththevaluesproposedbyTerzaghi.TheyrelatedthemodulusofsubgradereactionlistedinTable 2.3.1 withtheN-value,usingtherelationshipbetweenthemodulusofsubgradereactionand the relativedensityproposedbyTerzaghiaswell as the relationshipbetween theN-valueand therelativedensity53)alsodemonstratedbyTerzaghi.ThentheyadoptedthesmallervalueofmodulusofsubgradereactiontobeonthesafesideandconnectedtheresultantvaluesusingasmoothlineasshowninFig. 2.3.9. TheyalsorelatedthemodulusofsubgradereactionwiththeangleofshearingresistanceasshowninFig. 2.3.10,usingoneequation(2.3.13)ofDunham’sequationsforcalculatingthesmallerangleofshearingresistanceforagivenN-value.

(2.3.13)

where, φ :angleofshearingresistance(°) N :N-value

However, it shouldbenoted thatFig. 2.3.10 isanexpedientgraph toacertaindegree,asDunham’sequationsincludecasesthatgivethelargerangleofshearingresistancedependingonthegrainsizeofsandysoil. Fig. 2.3.9 and2.3.10 alsoshowthevaluesproposedbyTerzaghiinadditiontothevaluesproposedbyTakahashiandKikuchi,atal.

1000

20

40

60

80

20 30 40 50

N-value

Values proposed by Terzaghi

Values proposed by Takahashi, Kikuchi, et al.

Mod

ulus

of s

ubgr

ade

reac

tion

h (M

N/m

3 )

Fig. 2.3.9 Relationship between Modulus of Subgrade Reaction(h)and N-value

Page 53: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–728–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

20150

20

40

60

80

25 30 35 40

Values proposed by Terzaghi

Values proposed by Takahashi, Kikuchi, et al.

Angle of ineternal friction (°)

Mod

ulus

of s

ubgr

ade

reac

tion

h (M

N/m

3 )

Fig. 2.3.10 Relationship between Modulus of Subgrade Reaction(h)and Angle of Internal Friction( )

(d)DeterminationoftheembeddedlengthofsheetpileusingRowe’smethodInthedeterminationoftheembeddedlengthofsheetpilesusingRowe’smethod,acharacteristicvaluethatsatisfiesequation(2.3.14)canbeused.Asequation(2.3.14)takesintoconsiderationthestiffnessofthesheetpilewithout theearthpressure,whenreducing theearthpressureof theexistingsteelsheetpilequaywallorsimilarimprovementmethod,itisnecessarytobeawarethattheearthpressurereductioneffectdoesnotnecessarilyresultinashorteningoftheembedmentlength.Therefore,whenconsideringtheearthpressurereductioneffect,itispreferabletoalsousethemethodsof①to④above.

(2.3.14)where

δs :ratiooftheembeddedlengthofsheetpiletotheheightofthetierodinstallationpointabovetheseabottom

DF :embeddedlengthofsheetpile(m) HT :heightofthetierodinstallationpointabovetheseabottom(m) ω :similaritynumber(=ρh) ρ :flexibilitynumber(=HT4/EI)(m3/MN) E :Young’smodulusofsheetpile(MN/m2) I :geometricalmomentofinertiaofsheetpilewallperunitwidth(m4/m) h :modulusofsubgradereactiontosheetpilewall(MN/m3)

Theembeddedlengthcalculatedwiththisequationistheconvergedembeddedlength.AccordingtothestudyconductedbyTakahashiandKikuchi,etal.anincreaseofjusta2%–plusinthemaximumflexuralmoment occurs when an embedded length corresponding to 70% of the converged embedded length isemployed.Thereforetheuseoftheconvergedembeddedlengthasthedesignembeddedlengthsecuresthesafety,andthereisnoneedtoconsideramarginagainstthesafety. Equation (2.3.14) formulates the relationship between the ratio of the convergent embedment lengthDF to thevirtualwallheightHT,δ=(DF/HT), and the similaritynumberω shown inFig. 2.3.11. This isbasedonanalysiscarriedoutbyTakahashiandKikuchi,atal.usingasimulationmodelfor72caseswithacombinationofconditions forwaterdepthof thequay (–4 to–14m), soil conditions, seismicconditions(kh=0.2), andmaterial conditions of the steel sheet piles. InFig. 2.3.11, δ for permanent situations andearthquakeconditionsareobtainedasδN and δSrespectively,butinequation(2.3.14)δSisusedfortheactionofearthquakesbecauseitindicateslargevalues. Also,inthisanalysisbyTakahashiandKikuchi,etal.therelationshipbetweenthesimilaritynumber,theratioµ (=MF/MT),andtheratioτ(=TF/TT)werestudied.TheratioµistheratioofthemaximumflexuralmomentMFwhenthereisconvergentembedmentlengthDFinthebendingcurveanalysistothemaximumflexuralmomentMTcalculatedbytheequivalentbeammethodassumingthetie installationpointandtheseabedsurfaceasthesupportpoints.TheratioτistheratiooftietensionforceTFwhenthereisconvergent

Page 54: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–729–

embedmentlengthDF inthebendingcurveanalysistothetietensionforceTTcalculatedfromthevirtualbeammethod.TheserelationshipsareshowninFigs. 2.3.12to2.3.13.

Fig. 2.3.11 Relationship between ω and δ

Perm

anen

t sta

tes

Dur

ing

seis

mic

mot

ions

Fig. 2.3.12 Relationship between µ and ω

Page 55: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–730–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Perm

anen

t sta

tes

Dur

ing

seis

mic

mot

ions

Fig. 2.3.13 Relationship between τand ω

(3)FlexuralMomentofSheetPilesandReactionatTieMemberInstallationPoint

① Themaximumflexuralmomentofsheetpilesandreactionatthetiememberinstallationpointshallbecalculatedwithanappropriatemethodthattakesintoconsiderationtherigidityandembeddedlengthofthesheetpilesandthecharacteristicsoftheground.

② ThemaximumflexuralmomentandreactionforceatthetiememberinstallationpointofsheetpilesmaybedeterminedusingtheequivalentbeammethoddescribedbeloworRowe’smethod.However,careshouldbeexercisedwhenusingtheequivalentbeammethod,becausethesectionforcesmaybeunderestimatedwhentherigidityofthesheetpilesishigh.

③ EquivalentBeamMethodTheequivalentbeammethodcalculatesthemaximumflexuralmomentandreactionforceatthetiememberinstallationpointofthesheetpilesbyassumingasimplebeamsupportedatthetiememberinstallationpointandtheseabottomwiththeearthpressureandresidualwaterpressureactingastheloadabovetheseabottom(seeFig. 2.3.14).

L.W.L.Reaction at the tie rod point (Ap)

Tie member

Act

ive

earth

pre

ssur

eA

ctiv

e ea

rth p

ress

ure

Residualwater pressure

Residual water level

Fig. 2.3.14 Equivalent Beam for Obtaining Flexural Moment

Page 56: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–731–

④ The seabed surface used in calculating the flexural moment should take margin of the depth intoconsideration.

⑤ Thedesignvaluesofmaximumflexuralmomentinthesheetpilewallandthereactionforceatthetiememberinstallation point can normally be calculated using the following equation. In the following equation, thesubscriptdindicatesthedesignvalue.

(a) Reactionforceatthetieinstallationpoint

(2.3.15)

where, Ap :reactionforceatthetieinstallationpoint(kN/m) Pa :resultantactiveearthpressurefromthetopofthesheetpilingtotheseabedsurface(kN/m) Pw :resultantresidualwaterpressurefromthetopofthesheetpilingtotheseabedsurface(kN/m) Pdw :resultantdynamicwaterpressureactingonthesheetpilewall(kN/m)(onlyduringearthquakes) a–c :distancefromtheinstallationpositionofthetiemembertothepointofactionoftheresultant

force(m) L :distancefromtheinstallationpositionofthetiemembertotheseabedsurface(m)

(b)Maximumflexuralmoment

(2.3.16)where,

Ap :reactionatthetieinstallationpoint(kN/m) P'a :resultantactiveearthpressurefromthetopofthesheetpiletothepositionwheretheshearforce

Sbecomes0(kN/m) P'w :resultantresidualwaterpressurefromthetopofthesheetpiletothepositionwheretheshear

forceSbecomes0(kN/m) P'dw :resultantdynamicwaterpressurefromthetopofthesheetpiletothepositionwheretheshear

forceSbecomes0(kN/m)(duringanearthquakeonly) a :distancefromthepositionwhere theshearforceSbecomes0 to the tiemember installation

position(m) b–d :distance from the positionwhere the shear forceS becomes 0 to the point of action of the

resultantforce(m)

Thedesignvaluesofearthpressure,residualwaterpressure,andresultantdynamicwaterpressureforcemaybeappropriatelycalculatedbyreferencetoPart II, Chapter 5, 1 Earth Pressure. Part II, Chapter 5, 2.1 Residual Water Pressure,andPart II, Chapter 5, 2.2 Dynamic Water Pressure,aftercalculatingthedesignvaluesof the tangentof theangleof shearing resistance tanφ, thecohesionc, thewall surfacefrictionangleδ,theeffectiveunitweightw',thesurchargeq,theseismiccoefficientforverificationduringearthquakesonlykh,andtheresidualwaterlevelRWL,fromequation(2.3.8).

⑥When themaximumflexuralmomentofsheetpilesand the tiemember installationpoint reactionforceareto be determined taking the effects of themodulus of subgrade reaction and the rigidity of the sheet pilesintoconsideration,thefollowingmethodcanbeused.Themaximumflexuralmomentandreactionforcearecalculatedbyusing theequivalentbeammethodand thecorrection factorsobtained fromFigs. 2.3.12and2.3.13aremultipliedby thosevalues. Theseismiccoefficient forperformanceverificationpurposesshowninFigs. 2.3.12 and2.3.13 has been set at 0.20. Values obtained from these figuresmay be used for theperformanceverificationforvariablesituationinrespectofLevel1earthquakegroundmotionunlessaverydetailedverificationisrequired.

(4)VerificationofStressesintheSheetPileWallforPermanentSituationandVariableSituationinrespectofLevel1earthquakegroundmotion

① Analysisofstressesinthesheetpilewallmaybecarriedoutusingthefollowingequation.Inthefollowingequation,thesymbolγisthepartialfactorcorrespondingtoitssubscript,wherethesubscriptskanddindicatecharacteristicvalueandthedesignvaluerespectively.

(2.3.17)

Page 57: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–732–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

where, σy :bendingyieldstressofthesteelmaterial(N/mm2) Mmax :maximumflexuralmomentinthesheetpilewall(Nmm/m) Z :sectionmodulusofthesteelmaterial(mm3/m) γa :structuralanalysisfactor(seeTable 2.3.3)

Equation(2.3.18)maybeusedforcalculatingthedesignvaluesofbendingyieldstressofthesteelmaterialin theequation. Forthedesignvalueof themaximumflexuralmomentinthesheetpilewall,refer to(3) Flexural Moment of Sheet Piles and Reaction at Tie Member Installation Point.

(2.3.18)

② Thejointlengthofsteelsheetpilesshouldbeaslongaspossible,fromthepointofviewofmaintainingtheintegrityofthesheetpiles.However,takingintoconsiderationdamagetothejointsduringconstruction,thejointsdonotnormallyextendtothebottomsofthesheetpiles.Normallythebottomendofthejointisatthedepthwheretheactiveearthpressurestrengthandthepassiveearthpressurestrengthareequal,oriscontinuoustothevirtualfixitypoint(1/β, refertothevirtualfixingpointshowninChapter 5, 5.2.2 Setting of Basic Cross-section),andisfrequently2–3mbelowtheseabedsurface.Iftheresidualwaterleveldifferenceislarge,thejointlengthofsteelsheetpilesshouldbedeterminedtakingthepipingphenomenonintoaccount.Thetopendofthejointisoftenextendedupto30–40cmabovethebottomsurfaceofthesuperstructure.

③ WhenU-shapedSteelsheetpileissubjectedtobending,thereisapossibilitythatverticalslipoccuratjointswhichlocateatthecenterofthewall.Inthiscase,theU-shapedsteelsheetpileswillnotactintegrallywiththeadjacentsheetpiles.Inthissituationthesectionmodulusandthegeometricalmomentofinertiaofthecross-sectioncalculatedassumingthesteelsheetpilesactintegrallyinthewallmaynotbeobtained.Methodsforevaluatingtheeffectofthisslipinthejointsincludethemethodofreducingthecross-sectionperformancebymultiplyingbyajointefficiencycoefficient.55),56)

(5)VerificationofStressesintheTieMembersunderPermanentSituationandVariableSituationsinrespectofLevel1earthquakegroundmotion

① Analysis of stresses in the tiemembersmaybe carriedout using the following equation. In the followingequation,thesubscriptdindicatesthedesignvalue.

(2.3.19)

where, σy :yieldstressintensioninthetiemember(N/mm2) Td :tensionforceintiemember(N) A :cross-sectionalareaoftiemember(mm2) γa :structuralanalysisfactor

Equation(2.3.18)maybeusedforcalculatingthedesignvalueoftensileyieldstressofthetiememberintheequation.Forthedesignvalueofthetensionforceinthetiemember,referto② Tension force of tie member,below.

② Tensionforceoftiemember

(a) Thetensionactingonatiemembercanbecalculatedbasedonthereactionattieinstallationpointcalculatedinaccordancewith(3) Flexural Moment of Sheet Pile and Reaction at Tie Member Installation Point above.Inthiscase,thereactionattiememberinstallationpointshouldbecalculatedbytakingtherigidityof thesheetpilewallcrosssectionintoconsideration. Takenotethat thetiemembertensionforcethat iscalculatedinaccordancewith(3) Flexural Moment of Sheet Pile and Reaction at Tie Member Installation Point aboveis thetensionforcepermeterofquaywall length. Tiemembersareusuallyinstalledatfixedintervals,andinsomecases,tiemembersmaybeattachedatacertainanglewiththelineperpendiculartothesheetpilewalltoavoidtheexistingstructurelocatedbehindthewall.Therefore,itisnecessarytocalculatethetiemembertensionforceconsideringthesesiteconditions.

(b)Thetensionforcethatactsonatiememberisgenerallycalculatedbyequation(2.3.20).Intheequationbelow,subscriptd standsforthedesignvalue.

(2.3.20)where

T :tensionforceoftiemember(kN)

Page 58: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–733–

Ap :reactionatthetiememberinstallationpoint (kN/m) :tiememberinstallationinterval(m) θ :inclinationangleoftiemembertothelineperpendiculartothesheetpilewall(°)

(c) Insomecases,bollardsareinstalledonthecopingofasheetpilewallandthetractiveforcesofshipsactingonthebollardsaretransmittedtothetiemembers. Usually,thecopingisassumedtobeabeamwiththetiemembersaselasticsupportsandthetiemembertensionforcemaybecalculatedusingequation(2.3.21),assumingthatthetractiveforceisevenlysharedbyfourtiemembersnearabollard.Intheequationbelow,subscriptd standsforthedesignvalue.

(2.3.21)where

T :tensionforceactinginthetiemember(kN) Ap :reactionforceattheinstallationpointofthetiemember(kN/m) :spacingofinstallationoftiemembers(m) θ :inclinationangleoftiememberinperpendiculartothesheetpilewallandthetiemember(°) P : horizontalcomponentofthetractiveforceofshipactingonabollard(kN)

RefertoPart II, Chapter 8, 2.4 Actions due to Traction by Ships fordetailsontractiveforcesofships.

③ Tierods

(a) Fortheyieldstressoftierods,refertoTable 2.3.2.

(b)Thetensilestressinthetierodiscalculatedusingthecross-sectionfromwhichtheamountofcorrosionhasbeendeducted.Fortheamountofcorrosion,refertoPart II, Chapter 11, 2.3.2 Corrosion Rates of Steel.

④ TiewiresInsteadoftierods,so–calledtiewiremaybeused,thatismadefromhardenedsteelwirehavingcharacteristicsequivalenttohardenedsteelwire(JISG3506),orPCsteelwirehavingcharacteristicsequivalenttopianowire(JISG3502).

Table 2.3.2 Characteristics of Tie Rod Materials

TypeRupturestrength

(N/mm2)Yieldstress(N/mm2)

Elongation(%)

Yieldstress/rupturestrength

SS400 ≥402(dia.40mmorless)

≥235≥24 0.58

(dia.>40mm)≥215

≥24 0.53

SS490 ≥490(dia.40mmorless)

≥275≥21 0.56

(dia.>40mm)≥255

≥21 0.52

Hightensilestrengthsteel490

≥490 ≥325 ≥24 0.66

Hightensilestrengthsteel590

≥590 ≥390 ≥22 0.66

Hightensilestrengthsteel690

≥690 ≥440 ≥20 0.64

Hightensilestrengthsteel740

≥740 ≥540 ≥18 0.73

(6)VerificationofStressesinWale

① Analysisofstressesinwalingmaybecarriedoutusingthefollowingequation.Inthefollowingequation,thesubscriptdindicatesthedesignvalue.Intheequation,allthepartialfactorsexceptthestructuralanalysisfactormaybetakentobe1.0.Thestructuralanalysisfactormaybetakentobe1.4forthepermanentsituations,and1.12forthevariablesituationsassociatedwithLevel1earthquakegroundmotion.

Page 59: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–734–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2.3.22)

where, σy :bendingyieldstressinthewaling(N/mm2) Mmax :maximumflexuralmomentinthewaling(Nmm/m) Z :sectionmodulusofthewaling(mm3) γa :structuralanalysisfactor

Equation (2.3.18)may be used to calculate the design value of bending yield stress of thewaling in theequation.Forthecalculationofthemaximumflexuralmomentinthewaling,referto②below.

② Variousequationsforcalculatingthemaximumflexuralmomentofwalehavebeenproposed.Themoment,however,shouldbedeterminedaccordingtoconditionsatthesitesothatthecrosssectionissafeandeconomical.Ingeneral,themaximumflexuralmomentofwalemaybecalculatedusingequation(2.3.23).Intheequationbelow,subscriptd standsforthedesignvalue.

(2.3.23)where

:maximumflexuralmomentofwale(kN·m) T :tensionforceofatiemembercalculatedinaccordancewith(5) ② Tension force of tie member

(kN) :tierodinstallationinterval(m)

Thisequationisobtainedbyanalyzingathree–spancontinuousbeamsupportedatthetiememberinstallationpointsandsubjectedtothereactionatthetieinstallationpoint(Ap)asauniformlydistributedload.

③Whenbollardsareinstalledonthecoping,itisnecessarytoverifytheperformanceofthewalenearoneofthebollardsusingatiemembertensionforcethattakesintoconsiderationthetractiveforceofshipinaccordancewith(5) ② Tension force of tie member above.However,whenthewaleisembeddedintothecoping,theeffectofthetractiveforceofshipmaybeignored.

(7)AnalysisofSlipFailureintheGroundunderpermanentsituationsForanalysisofslipfailureinthegroundofsheetpilesquaywalls,refertoanalysisofslipfailureinthegroundin2.2 Gravity-type Quaywalls.Inthiscase,theanalysisiscarriedoutforcircularslipfailurespassingbelowthebottomofthesheetpilewall.StandardvaluesofthepartialfactorsusedintheperformanceverificationareshowninTable 2.3.3.

(8)PartialFactorsforpermanentsituationsandvariablesituationsinrespectofLevel1earthquakegroundmotion

① Partialfactorsforthestandardsystemfailureprobabilitiesfortheembedmentlengthofsheetpilewalls,sheetpilewallstresses,tierodstresses,andcircularslipfailureforsheetpilequaywallsunderpermanentsituationsareshowninTable 2.3.3(a).Basedontheaveragesafetylevelfordesignmethodsofthepast,theaveragesystemreliabilityindexforstabilityofwallstructuresis5.6orwhenconvertedintoafailureprobability9.9×10–9,theaveragereliabilityindexforcircularslipfailureis6.0orwhenconvertedintoafailureprobability9.2×10–10.Whentheexpectedtotalcostexpressedbythesumoftheinitialconstructioncostandtheexpectedvalueoftherestorationcostduetocollapseistakenintoconsideration,thesystemreliabilityindexthatminimizestheexpectedtotalcostis3.6orwhenconvertedintoafailureprobability1.7×10–4forhighearthquake-resistancefacilities,and2.7orwhenconvertedintoafailureprobability4.0×10–forotherquaywalls.358)

Page 60: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–735–

Table 2.3.3 Standard Partial Factors(a) Permanent situations (No. 1)

Highearthquake-resistancefacilities

OtherthanHighearthquake-resistancefacilities

TargetsystemreliabilityindexβT 3.6 2.7TargetsystemreliabilityindexβT 1.7×10–4 4.0×10–3

γ γ µ/X k V γ α µ/X k V

Embedm

entlengthofsh

eetpilewalls

Sandysoilground

γtanφ’ Tangentoftheangleofshearingresistance

0.65 1.000 1.00 0.100 0.75 1.000 1.000 0.100

γc’ Cohesion 1.00 0.000 1.00 0.100 1.00 0.000 1.000 0.100γw’ Effectiveunitweight 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γδ Wallsurfacefrictionangle 0.90 0.300 1.00 0.100 0.90 0.300 1.000 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Cohesivesoilground

γtanφ’ Tangentoftheangleofshearingresistance

0.70 0.820 1.00 0.100 0.80 0.820 1.000 0.100

γc’ Cohesion 0.75 0.700 1.00 0.100 0.80 0.700 1.000 0.100γw’ Effectiveunitweight 1.05 –0.190 1.00 0.050 1.05 –0.190 1.000 0.050γδ Wallsurfacefrictionangle 0.95 0.120 1.00 0.100 0.95 0.120 1.000 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Sheetpilewallstresses Sandysoilground

γtanφ ‘ Tangentoftheangleofshearingresistance

0.75 0.760 1.00 0.100 0.85 0.760 1.000 0.100

γc’ Cohesion 1.00 0.000 1.00 0.100 1.00 0.000 1.000 0.100γw’ Effectiveunitweight 1.05 –0.320 1.00 0.050 1.05 –0.320 1.000 0.050γδ Wallsurfacefrictionangle 1.00 0.000 1.00 0.100 1.00 0.000 1.000 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.000 0.050γσy SY295,SY390,SKY490 1.00 0.720 1.20 0.065 1.00 0.720 1.200 0.065γσy SKY400 1.00 0.720 1.26 0.073 1.00 0.720 1.260 0.073γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Cohesivesoilground

γtanφ ‘ Tangentoftheangleofshearingresistance

0.80 0.500 1.00 0.100 0.85 0.500 1.00 0.100

γc’ Cohesion 1.00 0.000 1.00 0.100 1.00 0.000 1.00 0.100γw’ Effectiveunitweight 1.05 –0.250 1.00 0.050 1.05 –0.250 1.00 0.050γδ Wallsurfacefrictionangle 1.00 0.000 1.00 0.100 1.00 0.000 1.00 0.100γq Surcharge 1.00 – – – 1.00 – – –γ RWL Residualwaterlevel 1.00 0.000 1.00 0.050 1.00 0.000 1.00 0.050γσy SY295,SY390,SKY490 0.90 1.000 1.20 0.065 1.00 1.000 1.20 0.065γσy SKY400 0.95 1.000 1.26 0.073 1.00 1.000 1.26 0.073γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Stressesintiemem

bers

Sandysoil

ground

γσy HT690 0.60 0.750 1.13 0.070 0.65 0.750 1.13 0.070γσy SS400 0.65 0.750 1.26 0.073 0.70 0.750 1.26 0.073γa Structuralanalysis

coefficient1.00 – – – 1.00 – – –

Cohesiv

esoilg

round γσy HT690 0.55 0.940 1.13 0.070 0.60 0.940 1.13 0.070

γσy SS400 0.65 0.940 1.26 0.073 0.70 0.940 1.26 0.073γa Structuralanalysisfactor 1.00 – – – 1.00 – – –

Page 61: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–736–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 2.3.3 Standard Partial Factors(a) Permanent situations (No. 2)

Highearthquake-resistancefacilities

Otherthanhighearthquake-resistancefacilities

γ α µ/X k V γ α µ/X k V

Circularslipfailure

γc’ Soilstrength:cohesion 0.90 0.309 1.00 0.040 0.90 0.329 1.00 0.040

γtanφ’Soilstrength:tangentoftheangleofshearingresistance 0.90 0.398 1.00 0.040 0.90 0.396 1.00 0.040

γw1 Unitweightofsoilsabovetheseabedsurface 1.10 –0.259 1.00 0.030 1.10 –0.271 1.00 0.030

γw2 Unitweightofsandysoilstratabelowtheseabedsurface 0.90 0.314 1.00 0.030 0.90 0.312 1.00 0.030

γw3 Unitweightofcohesivesoilstratabelowtheseabedsurface 1.00 0.000 1.00 0.030 1.00 0.000 1.00 0.030

γq Surcharges 1.70 –0.467 1.00 0.400 1.60 –0.487 1.00 0.400γ RWL Residualwaterlevel 1.10 –0.040 1.00 0.050 1.10 –0.040 1.00 0.050

*1: α:sensitivityfactor,µ/Xk:deviationofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.*2: Itisnecessarytodeterminewhichisgoverninginthesoilcompositionofthefoundationsunderconsideration,thesandysoilstrataorthe

cohesivesoilstrata,andusethepartialfactorsappropriateforsandysoilgroundorcohesivesoilground.Forexample,ifitisdeterminedthatthesandysoilstrataaregoverning(sandysoilground),whenthereisathinstratumofcohesivesoil,verificationiscarriedoutusingthepartialfactorforthecohesionofasandysoilground.

*3: σyindicatestheyieldstrengthofthesteelmaterial,andthepartialfactorsareselectedinaccordancewiththetypeofsteelused.*4: Thedesignvalueof the tensionforce in the tiemember iscalculatedfromthedesignvalueof tiemember installationpoint reaction

obtainedfromtheverificationofstressesinthesheetpiles.*5: Theangleofshearingresistanceφ'whencalculatingearthpressureisobtainedfromφ'=arctan(γtanφ'・tanφ'k).*6: Forapplyingthepartialfactorstocircularslipfailure,refertothepointsofcautiongivenin Chapter 2, 3 Slope Stability, 3.1(7) Partial

Factors.

Table 2.3.3 Standard Partial Factors(b) Variable situations in respect of Level 1 earthquake ground motion

AllfacilitiesPerformancerequirement Serviceability

γ α µ/X k V

Embedm

entlengthofsh

eet

piledwalls

Sandysoilground

γtanφ’ Tangentoftheangleofshearingresistance 1.00 – – –γc’ Cohesion 1.00 – – –γw’ Effectiveunitweight 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γRWL Residualwaterlevel 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

Stressesofsheetpiledwalls

Sandysoilground

γtanφ’ Tangentoftheangleofshearingresistance 1.00 – – –γc’ Cohesion 1.00 – – –γw’ Unitweight 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γp Tractiveforces(duringtractionbyships) 1.00 – – –γ RWL Residualwaterlevel 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γσy Steelmaterialyieldstress 1.00 – – –γa Structuralanalysisfactor 1.12 – – –

Stressesintiemembers

γσy Steelmaterialyieldstrength 1.00 – – –γa Structuralanalysisfactor 1.67 – – –

*1:Thedesignvalueofthetensionforceinthetiememberiscalculatedfromthedesignvalueofthetiememberinstallationpointreactionobtainedfromtheverificationofsheetpilingstresses.

Page 62: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–737–

② Itisnecessarytodeterminewhichisdominantinthesoilcompositionofthegroundunderconsideration,thesandysoilstrataorthecohesivesoilstrataground,andusethepartialfactorsasappropriate.Forexample,ifitisdeterminedthatthesandysoilstrataaredominant,whenthereisathinstratumofcohesivesoil,verificationiscarriedoutusingthepartialfactorforthecohesionofasandysoilground. Regardingthepartialfactorsofquaywallsotherthanhighearthquake-resistancefacilities,calculationsshallbecarriedoutusingapartialfactorof1.0orhigherforthesteelmaterialyieldstressforthestressesinsheetpilewalls insandysoilground. For theperformanceverificationof facilitiesother thanports, therearenoexamplesoftheuseofdesignvaluesofthesteelmaterialyieldstrengthgreaterthantheJISspecificationvalues.Therefore,insettingthepartialfactors,thepartialfactorforthetangentoftheangleofshearingresistancewithalargesensitivityfactorissettoavaluelargerthanthevaluecalculatedfromareliabilityanalysis.Inthiswaytheflexuralmomentinthesheetpilewallisreduced,andacorrectioniscarriedoutsothatthepartialfactorofthesteelmaterialstrengthis1.0.

③ Intheverificationofsheetpiledquaywalls,itisnecessarytotakeintoconsiderationboththeactiveandpassiveearthpressure.Also,thereareapproachesthatdonotnecessarilyevaluatetheresistanceonthepassivesideasearthpressureandratherevaluateasabeamonanelasticfoundation,sopartialfactorsarenotprovidedforearthpressureinTable 2.3.3.

(9)PerformanceVerificationofAnchoragesforSheetPileQuaywallsonVariableSituationsinrespectofLevel1earthquakegroundmotion

① Locationofanchoragework

(a) Inprinciple,thelocationoftheanchorageworkshallneedtobesetatanappropriatedistancefromthesheetpilewall toensure the structural stabilityof themainbodyof thewall andanchorage,dependingon thecharacteristicsoftheanchoragework.Normally,thefurtherthepositionofinstallationoftheanchorageworkfromthesurfaceofthesheetpilewall,themoreeffectiveinrestrainingdeformationofthesheetpilewallduringanearthquake.59)

(b)Thelocationoftheanchorageworkshouldbedeterminedappropriatelyinconsiderationofthestructuraltypeoftheanchoragework,becausethestabilityoftheanchorageworkitselfisaffectedbyitspositionandthelocationatwhichthestabilityisachievedvariesdependingonthestructuraltype.

(c) ThelocationofconcretewallanchorageispreferablydeterminedtoensurethattheactivefailureplanestartingfromtheintersectionofseabottomandsheetpilewallandthepassivefailureplaneoftheslabanchoragedrawnfromthebottomoftheanchoragedonotintersectbelowthegroundsurfaceasshowninFig. 2.3.15.

(d)Thelocationofverticalpileanchorageispreferablydeterminedtoensurethatthepassivefailureplanefromthe point of m1/3 below the tiemember installation point of the anchorage and the active failure planefromtheintersectionofseabottomandsheetpilesdonotintersectatthelevelbelowthehorizontalsurfacecontainingthetiememberinstallationpointattheanchorageasshowninFig. 2.3.16.Thevalueofm1isthedepthofthefirstzeropointofflexuralmomentforafree–headpilebelowthetiememberinstallationpoint,whilethehorizontalsurfacecontainingtheinstallationpointoftiememberattheanchorageisassumedasthegroundsurface.

Tie memberW.L.

Residualwater level

Activefailure plane

Slab anchorage

Passivefailure plane

Shee

t pile

Fig. 2.3.15 Location of Slab Anchorage Works

Page 63: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–738–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

W.L.

3m1

Tie member

Residual waterlevelResidual waterlevel

Activefailure plane

Passivefailure planeSh

eet p

ile

Verticalpile anchorage

Fig. 2.3.16 Location of Vertical Pile Anchorage

(e) Thelocationofsheetpileanchoragemaybedeterminedinaccordancewiththelocationofverticalpilewhenthesheetpilescanberegardedasalongpile.Whenthesheetpilescannotberegardedasalongpile,thelocationofanchoragemaybedeterminedbyignoringthepartdeeperthanthelevelm1/2belowthetiememberinstallationpointatthesheetpileanchorageandthenapplyingthemethodofthelocationdeterminationofconcretewallanchorage.

(f) Forthemethodtoobtainthefirstzeropointoftheflexuralmomentoftheverticalpileanchorageandsheetpileanchorageandthemethodtodeterminewhetherasheetpileanchoragecanbeconsideredasalongpile,refertoPortandHarbourResearchInstitute’smethoddescribedinPart III, Chapter 2, 2.4 Pile Foundations, 2.4 .5 Estimation of Pile Behavior using Analytical Methods.

(g)For ordinary sheet pile quaywallswhose tiemembers run horizontally, an angle of –15ºmay be used asthewallfrictionangleinthedeterminationofthepassivefailureplanethatisdrawnfromtheverticalpileanchorageorsheetpileanchorage.

(h)Thelocationofcoupled-pileanchorageshouldbebehindtheactivefailureplaneofthesheetpilewalldrawnfromtheseabottomwhenitisassumedthatthetensionofthetiememberisresistedonlybytheaxialbearingcapacityofthepilesasshowninFig. 2.3.17.Whenthetensionofthetiememberisevaluatedtoberesistedbyboth theaxialand lateralbearingcapacity inconsiderationof thebending resistanceof thepiles, it isnecessarytolocatetheanchorageinaccordancewiththelocationoftheverticalpile.

(i) Thepartialfactorsusedindeterminingthepositionoftheanchorageworkmayallbetakentobe1.0.

W.L. Tie member

Residualwater levelResidualwater level

Activefailure plane

Shee

t pile

Coupled-pileanchorage

Fig. 2.3.17 Position of Coupled-Pile Anchorage

② Examinationofthestabilityofslabanchorage

(a) The height and placing depth of slab anchorage may be determined to satisfy equation (2.3.24), on theassumption that the tiemember tension forceand theactiveearthpressurebehind theslabanchorageareresistedbythepassiveearthpressureinfrontoftheslabanchorageasshowninFig. 2.3.18.Inthefollowingequations,symbolγrepresentsthepartialfactorforitssubscript,andsubscriptsdandkrespectivelystandforthedesignvalueandthecharacteristicvalue.Intheexaminationforthestabilityoftheslabanchorage,whencalculatingthereactionatthetiememberinstallationpointusingthepartialfactorassociatedwiththeverificationofsheetpilestressinTable 2.3.3,thepartialfactorcanbesetat2.1whenthestructuralanalysisfactorisatpermanentsituationand2.0whenitisatvariablesituationinrespectofLevel1earthquakegroundmotion.

(2.3.24)

Page 64: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–739–

where EP :resultantpassiveearthpressureactingonslabanchorage(N/m) AP :reactionatthetiememberinstallationpointcalculatedaccordingto(3) Flexural Moment of

Sheet Pile and Reaction at Tie Member Installation Point above,using thepartial factorassociatedwiththeverificationofsheetpilestressinTable 2.3.3(N/m)

EA :resultantactiveearthpressureactingonslabanchorage(N/m) γa :structuralanalysisfactor

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.However,forcalculatingtheearthpressureactingonaslabanchored,normallyitisassumedthatthesurchargeactasshowninFig. 2.3.18,withactiveearthpressureconsideredandpassiveearthpressurenotconsidered.

=1.2(Permanentsituations),1.0(VariablesituationsinrespectofLevel1earthquakegroundmotion)

=1.0(Permanentsituations,variablesituationsinrespectofLevel1earthquakegroundmotion)

= 1.0 (Permanent situations, variable situations in respect of Level 1 earthquake groundmotion) (2.3.25)

KpKA

EA

Ap

Ep

q: Surcharge

Residual water level

Fig. 2.3.18 Forces Acting on Slab Anchorage

(b)Thewallsurfacefrictionangleusedincalculatingtheearthpressureisnormallyassumedtobe15°inthecaseofactiveearthpressureand0°inthecaseofpassiveearthpressure.However,inthecaseofadeadmananchor,anupwardactingtensionforceactsontheanchored,sothewallsurfacefrictionforceactsupwards,which is theoppositeof thenormalcaseofpassiveearthpressure,and thepassiveearthpressurewillbereduced.Inthiscasethewallsurfacefrictionangleisnormallyassumedtobe15°.

(c)When theactive failureplaneof the sheetpile and thepassive failureplaneof the slabanchoragedrawnin accordance with① Location of anchorage work above intersect below the ground surface level, itis preferable to consider the fact that the passive earth pressure acting on the vertical surface above theintersectionpointdoesnotfunctionasaresistanceforceasshowninFig. 2.3.19;itshouldbesubtractedfromthedesignvalueofEP ofequation(2.3.24).Whentheintersectionpointislocatedabovetheresidualwaterlevel,thepassiveearthpressuretobesubtractedmaybecalculatedusingequation(2.3.26)Inthefollowingequation,thesubscriptdindicatesthedesignvalue.

(2.3.26)where

w :weightofsoil(kN/m2) hf :depthfromthegroundsurfacetotheintersectionofthefailureplanes(m)

Page 65: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–740–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

KP :coefficientofpassiveearthpressure

Thedesignvaluewdfortheweightofsoilisexpressedastheproductofthedesignvaluefortheunitweightofthesoillayerunderreviewandthedepthhffromthegroundsurfacetotheintersectionofthefailureplanes.

Active

failur

e surf

acePassive failure surface

Passive failure surface

Passive earth pressureto be deducted( Ep)∆

Fig. 2.3.19 Earth Pressure to be subtracted from the Passive Earth Pressure that Acts on Anchorage Wall when the Active Failure Plane of Sheet Pile Wall and the Passive Failure Plane of Slab Anchorage Intersect

(d)CrosssectionofslabanchorageSlabanchorageshouldhavestabilityagainst theflexuralmomentcausedbytheearthpressureandthe tiemembertension.Ingeneral,themaximumflexuralmomentmaybecalculatedbyassumingthattheearthpressure isapproximatedtoanequallydistributedloadandtheslabanchorageisacontinuousslabin thehorizontaldirectionandacantileverslabfixedatthetiememberinstallationpointintheverticaldirection,andthenusingequation(2.3.27).Inthefollowingequation,thesubscriptdindicatesthedesignvalue.

(2.3.27)where

MH :horizontalmaximumflexuralmoment(N·m) MV :verticalmaximumflexuralmomentpermeterinlength(N·m/m) T :tiemembertensionaccordingto(5) Verification of Stress in Tie Members under Permanent

Situation and Variable Situation in respect of Level 1 earthquake ground motion (N) :tiememberinterval(m) h :heightofslabanchorage(m)

ThelayoutofthereinforcingbarsforMH maybedeterminedontheassumptionthattheeffectivewidthoftheslabanchorageis2b withthetiememberinstallationpointasthecenter,whereb isthethicknessoftheslabanchorageatthetiememberinstallationpoint.

③ Examinationofstabilityofverticalpileanchorage

(a) Verticalpileanchoragemaybeverifiedforperformanceasverticalpilessubjectedtoahorizontalforceduetotiemembertension.

(b)Forthepartialfactorsusedintheperformanceverification,referto⑤ Partial factors.

④ Examinationofstabilityofcoupled-pileanchorage

(a) Coupled-pileanchoragemaybeverifiedforperformanceascoupledpilessubjectedtoahorizontalforceduetotiemembertension.

(b)Forthepartialfactorsusedintheperformanceverification,referto⑤ Partial factors.

⑤ PartialfactorsFor standard partial factors for use in the verification of the stability of vertical piles and coupled piles asanchorageforthepermanentsituationsandvariablesituationsinrespectofLevel1earthquakegroundmotion

Page 66: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–741–

adoptedforsheetpilequaywalls,refertothevaluesinTable 2.3.4.Partialfactorsaredeterminedtakingintoconsiderationthesettingofdesignmethodsofthepast.

Table 2.3.4 Standard Partial Factors(a) Permanent situations

AllfacilitiesPerformancerequirement Serviceability

γ α µ/X k V

Verticalpileanchorage Stress

γks , γkc Lateralresistancecoefficient 1.00 – – –γσy Steelyieldstrength 1.00 – – –γa Structuralanalysisfactor 1.35 – – –

Coupledpile

anchorage

Stress

γw Weightofsuperstructure 1.00 – – –γws Weightofsoilonsuperstructure 1.00 – – –γq Surcharge 1.00 – – –γkch Modulusofsubgradelateralreaction 1.00 – – –γσy Steelyieldstrength 1.00 – – –γa Structuralanalysisfactor 1.45 – – –

Axialresistanceforce

γc’ Cohesion 1.00 – – –γN N-value 1.00 – – –

γRu ResistanceforcePull-outpiles 0.40 – – –Push-inpiles 0.45 – – –

γa Structuralanalysisfactor 1.00 – – –

*1: Thedesignvalueof tie tensionforce iscalculatedfromthedesignvalueof tiemember installationpoint reactionobtainedfromtheverificationofstressesinthesheetpile.

*2:Thedesignvalueofthepileaxialforcesusedinanalysisofbearingforcesincoupled-pileanchorageisobtainedfromtheverificationofstressesinthecoupledpiles.

*3:TheN-valuesandcohesionwhencalculatingthecharacteristicvalueofresistanceforceusedinanalysisofbearingforcesincoupled–pileanchoragearecharacteristicvalues.

Table 2.3.4 Standard Partial Factors(b) Variable situations in respect of Level 1 earthquake ground motion

AllfacilitiesPerformancerequirement Serviceability

γ α µ/X k V

Verticalpileanchorage

Stress

γks,γkc Lateralresistancecoefficient 1.00 – – –γσy Yieldstrengthofsteel 1.00 – – –γa Structuralanalysisfactor 1.12 – – –

Coupledpileanchorage

Stress

γw Weightofsuperstructure 1.00 – – –γws Weightofsoilonsuperstructure 1.00 – – –γq Surcharge 1.00 – – –γkch Modulusofsubgradelateralreaction 1.00 – – –γσy Yieldstrengthofsteel 1.00 – – –γa Structuralanalysisfactor 1.12 – – –

Bearingforces

γc’ Cohesion 1.00 – – –γN N-value 1.00 – – –

γRuResistanceforce

Pull-outpiles 0.40 – – –

Push-inpiles

Endbearingpiles 0.66 – – –Frictionpiles 0.50 – – –

γa Structuralanalysisfactor 1.00 – – –

*1: Thedesignvalueof tie tensionforce iscalculatedfromthedesignvalueof tiemember installationpoint reactionobtainedfromtheverificationofstressesinthesheetpile.

*2:Thedesignvalueofthepileaxialforcesusedinanalysisofbearingforcesinanchoredcoupledpilesisobtainedfromtheverificationofstressesinthecoupledpiles.

*3:TheN-valuesandcohesionwhencalculatingthecharacteristicvalueofresistanceforceusedinanalysisofbearingforcesincoupledpileanchoragearecharacteristicvalues.

Page 67: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–742–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

⑥ Examinationofstabilityofsheetpileanchorage

(a)Whenthesheetpileanchoragebelowthetiememberinstallationpointislongenoughtoberegardedasalongpile,thecrosssectionofthesheetpileanchoragemaybedeterminedinaccordancewith③ Examination of stability of vertical pile anchorageabove.

(b)Sheetpilesanchoragethatcannotberegardedasalongpilemaybeverifiedinaccordancewith② Examination of stability of slab anchorageaboveontheassumptionthattheearthpressureactsonarangedowntom1/2pointbelowthetiememberinstallationpoint,asshowninFig. 2.3.30.Thelengthm1istheverticaldistancefromthetiememberinstallationpointtothefirstzeropointoftheflexuralmomentofsheetpilesassumingthatthesheetpileanchorageisalongpile.

Fig. 2.3.20 Virtual Earth Pressure for Short Sheet Pile Anchorage

(10) VerificationofGroundMotionsbyDynamicAnalysisMethods

① Forperformanceverificationofsheetpilequaywallsforgroundmotionsbydynamicanalysismethods,referto(9) Performance Verification for Ground Motions(detailed methods)in2.2 Gravity-type Quaywalls,2.2.3 Performance Verification. However,forsheetpilequaywallsthestressdistributioninthesoilvariesdependingontheconstructionprocess,soitisnecessarytoselectananalysismethodcapableofreproducingthestressdistributioninthesoilbeforetheearthquake.

② FortheaccidentalsituationsinrespectofLevel2earthquakegroundmotion,thestandardlimitvalueswhencarryingouttheperformanceverificationfortheamountofdeformationmaybeappropriatelycalculatedbyreferenceto1.4 Standard Concept of Allowable Deformation of High Earthquake-resistance Facilities for Level 2 earthquake ground motion.

(11) PerformanceVerificationofSuperstructures

① Superstructuremaybeverifiedasacantileverbeamthatisfixedatthetopofthesheetpileandsubjectedtotheearthpressureasanaction.However,itisnecessarytoconsiderthetractiveforcesofshipsandtheactiveearthpressurebehindthewallforthepartsonwhichbollardsareinstalledandthefenderreactionforceandthepassiveearthpressurebehindthewallforthepartsonwhichfendersareinstalled.Theonlyfactorthatshouldbeconsideredwithregardtoconditionsduringanearthquakeistheactiveearthpressure.

② ThetractiveforcesofshipsandfenderreactionsmaybeappliedasshowninFig. 2.3.21assumedtobeactingoverawidthbofthesuperstructureasshowninFig. 2.3.21(b).Inthiscase,normallywhenconsideringthetractiveforces,asurchargeshallbeconsideredintheactiveearthpressurecalculation,andwhenapplyingthefenderreactionsthepassiveearthpressuresurchargeshallnotbeconsidered.Thewallsurfacefrictionanglemaybetakentobe15°foractiveearthpressureand0°forpassiveearthpressure.Fortractiveforcesofshipsandfenderreactions,refertoPart II, Chapter 8, 2 Actions Caused by Ships.

Page 68: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–743–

b=4l

(a)(a)

P P/b

(b)

Permanent states ofactive earth pressure

b : width of action of tractive force (m) l : tie member interval (m)P : tractive force of ship (N)

Fig. 2.3.21 Tractive Forces of Ships Acting on the Superstructure

2.3.5 Structural Details

(1) InstallationofSheetPiles,Ties,andWaling

①Walingisnormallyinstalledsandwichingtiemembers,andfixedtothesheetpilewithboltsorsimilar.Ifwalingisinstalledtotherearofthesheetpile,thecross-sectionofthefasteningboltscanbedeterminedfromequation(2.3.28). However,ifnotembeddedinthecoping,it isnecessarytoconsideracorrosionallowance. Inthefollowingequation,thesymbolγisthepartialfactorforthesubscript,andthesubscriptdindicatesthedesignvalue.

(2.3.28)where,

A :boltcross-sectionalarea(cm2) Ap :reactionattiememberinstallationpointobtainedfromtheabove2.3.4(3) Flexural Moment of

Sheet Piles and Reaction at Tie Member Installation Point(N/m) w :spacingofsheetpile fastened to thewaling(m),when installedatoneposition intermediate

betweentiemembers,equivalenttoahalfofthetiememberspacing n :numberofboltsatonelocation(No.) σy :tensileyieldstressofbolt(N/cm2) γa :structuralanalysisfactor

In the equation, all the partial factors except the structural analysis factormaybe taken to be 1.0. Ifintermediateboltsareused,thestructuralanalysisfactormaybetakentobe2.5forpermanentsituations,and1.67forvariablesituationsinrespectoftheLevel1earthquakegroundmotion.Also,equation(2.3.18)maybeusedtocalculatethedesignvalueofthetensileyieldstressofthesteelmaterial.

(2)TieMemberTiemembertensionforceobtainedin2.3.4 (5) ② Tension force of tie member mustbetransmittedsafelytotheanchoragework.Whenbendingstresscausedbythesettlementofbackfillsoilisanticipated,thisshouldbetakenintoconsideration.

(3)InstallationofAnchoragesandTieMembers

① Acontinuousbeamalongthefacelineofquaywallisusuallyconstructedontopoftheanchoragepiles,andthetiemembersareattachedtothebeam.Thisbeammaybeverifiedforperformanceasacontinuousbeamsubjectedtothetiemembertensionforceandthereactionforceofthepiles.

Page 69: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–744–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2.4 Cantilevered Sheet Pile QuaywallsPublic NoticePerformance Criteria of Sheet Pile Quaywalls

Article 502Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofcantileveredsheetpilesshallbesuchthattheriskinwhichtheamountofdeformationofthetopofthepilemayexceedtheallowable limit of deformation is equal toor less than the threshold level under thepermanent actionsituationsinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships.

[Technical Note]

2.4.1 Fundamentals of Performance Verification

(1)Theperformanceverificationmethodsdescribedhereapplytosheetpilewallsdrivenintosandysoilground,andarenotapplicabletocohesivesoilground.

(2)Anexampleof thesequenceofperformanceverificationofcantileveredsheetpilequaywalls isshowninFig. 2.4.1.

Page 70: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–745–

Verification of deformation of top of sheet pile by simple method

Verification of stresses in sheet pile wall

Determination of embedment length of sheet pile

Examination of circular slips failure, settlementPermanent situations

Examination of deformation by dynamic analysis, etc.

Accidental state in respect ofLevel 2 earthquake ground motion

Setting of design conditions

Determination of cross-sectional dimensions

Verification of structural members

*1

*2

*3

Assumption of cross-section dimensions

Evaluation of actions including seismic coefficient for verification

Verification of deformation and stresses by dynamic analysis

Performance verificationPerformance verificationPermanent situations, variable situations of Level 1

earthquake ground motion and action of ships

Permanent situations,variable situations of action of ships

Permanent situations, variable situations in respectof Level 1 earthquake ground motion and

action of ships

Variable situations in respect ofLevel 1 earthquake ground motion

*1:Evaluationoftheeffectofliquefactionisnotshown,soitisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. For high earthquake-resistance facilities, it is preferable that examination of the amount of deformation be carried out by dynamic

analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.4.1 Example of Sequence of Performance Verification for Cantilevered Sheet Pile Quaywalls

Page 71: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–746–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(3)Fig. 2.4.2showsanexampleofacross-sectionofacantileveredsheetpilequaywall.

H.W.L.

L.W.L.

Rubber fender

(Crest height of steel pipe pile)

Curbing Bollard

Original ground level

Pavement curb

Backfill rock

Steel pipe pile

Design water depth

Backfill soil

Apron

Fig. 2.4.2 Example of Cross-section of Cantilevered Sheet Pile Quaywall

2.4.2 Actions

(1)Forcesactingonacantileveredsheetpilewallcanreferto2.3 Sheet Pile Quaywalls.

(2)Wheretheseabedgroundisofsandysoil,avirtualbottomsurfaceisassumedattheelevationwherethesumoftheactiveearthpressureandresidualwaterpressureisequaltothepassiveearthpressure.Itisassumedthattheearthpressureandresidualwaterpressurewillactonthepartofcantileveredsheetpilewallabovesuchthevirtualbottomsurface,asillustratedinFig. 2.4.3.

L.W.L Residual water level

Sea bottom

Passive earth pressure

Active earth pressure +residual water pressure

Virtualbottom surface

Difference between(active earth pressure +residual water pressure)and (passive earth pressure)

Fig. 2.4.3 Determination of Virtual Bottom Surface

(3)Thecharacteristicvalueoftheseismiccoefficientforverificationusedintheperformanceverificationofcantileveredsheet piled quaywalls under the variable situations in respect of Level 1 earthquake groundmotion shall beappropriatelycalculated taking thestructuralcharacteristics intoaccount. Forconvenience, thecharacteristicvalueoftheseismiccoefficientforverificationofcantileveredsheetpiledquaywallsmaybecalculatedasthesheetpiledquaywallswithverticalpileanchorage,in2.3 Sheet Pile Quaywalls,2.3.2(9) Seismic Coefficient used in Performance Verification of Sheet Pile Quaywalls with Pile Anchorage for Variable Situations in respect of Level 1 earthquake ground motion.

Page 72: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–747–

2.4.3 Performance Verification

(1)PerformanceVerificationofSheetPileWalls

① Themaximumflexuralmoment in a sheet pilewall shall be calculated appropriately by using an analysismethodcorrespondingtothemechanicalbehaviorcharacteristicsofthewall.ThemaximumflexuralmomentinasheetpilewallisnormallycalculatedbythePHRImethodconcerningthelateralresistanceofpiles.

② Thelateralresistanceofpilecanbecalculatedinaccordancewith2.4.5[4] Estimation of Pile Behavior using Analytical Methods in this Part, Chapter 2, 2.4 Pile Foundations.

③Whensteelpipesareusedassheetpiles,thesecondarystressoftendevelopsinsteelpipesofasheetpilewallduetothedeformationofthesteelpipecrosssection(i.e.acircularcrosssectionisdeformedintoanellipticone)thatiscausedbytheearthandresidualwaterpressure.Cantileveredsheetpilewallsarethestructurestendtoexperiencelargedisplacement,andthereisariskaboutsuchwallsthatarelativelyhighsecondarystressmaydevelopintheareasaroundthepointwheretheflexuralmomentbecomesmaximum.Thelargerthediameterofthesteelpipe,thehigherthelevelofsecondarystressbecomes.Insuchacase,therefore,itispreferabletoperformexaminationofstrengthagainstthesecondarystress.Thesecondarystressofasteelpipeiscalculatedusingequation(2.4.1).

(2.4.1)where

σt :secondarystress(N/mm2) p :earthpressureandresidualwaterpressureactingonthesheetpilewall(kN/m2) D :diameterofpipe(mm) t :platethicknessofpipe(mm) α :coefficient

Thecoefficientα in theequationmaybedefinedbyreferencetoFig. 2.4.4, takingintoconsiderationthewidthofaction,foundationconditionsandconstraintconditions.Inthisfigure,“Sliding”and“Fixed”indicatethedisplacementconditionsofthejointsofthesteelpipepile,inaccordancewiththegroundconditionsandconstraintconditionsofthesheetpiling.

0.25

0.20

0.15

0.10

0.05

0.000 30 60 90 120 150 180

2θLoad

SlidingSliding

Width of action θ (˚)Width of action θ (˚)

FixedFixedCoe

ffic

ient

α

Fig. 2.4.4 Coefficientα

Verificationmaybecarriedoutusingthefollowingequation(2.4.2),basedontheaxialstressσlinthepileobtainedinaccordancewith5.2 Open-Type Wharves on Vertical Piles,andthesecondarystressσtobtainedfromequation(2.4.1).Inthefollowing,thesymbolγisthepartialfactorcorrespondingtothesubscript,andthesubscriptskanddindicatethecharacteristicvalueandthedesignvalue,respectively.Thestructuralanalysisfactormaybe taken tobe1.2 forpermanent situations,and1.0 forvariablesituations in respectofLevel1earthquakegroundmotion.

(2.4.2)

where, σl :stressduetoaxialforcesinthepile(N/mm2)

Page 73: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–748–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

σt :secondarystressduetobendingmomentinthepile(N/mm2) fyd :designyieldstressofthepile(N/mm2),fyd = fyk /γm fyk :yieldstressofpile(N/mm2) γm :materialcoefficient(=1.05) γb :membercoefficient(=1.1) γa :structuralanalysisfactor

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.Also,thepartialfactorsmaybealltakentobe1.0.

(2.4.3)

(2)ExaminationofEmbeddedLengthsofSheetPilesTheembeddedlengthofsheetpilesshallbeequaltoorlongerthantheeffectivelengthofpilesthatiscalculatedinaccordancewith2.4.5 Static Maximum Lateral Resistance of PilesinPart II, Chapter 2, 2.4 Pile Foundations.Becauseacantileveredsheetpilewallretainstheearthbehindthewallinthemechanismsameaspilesdo,theembeddedlengthofthesheetpilemaybecalculatedinthesamewayasinthecaseofapile.InthePHRImethodforthelateralresistanceofpiles,therequiredembeddedlengthiscalculatedas1.5m1,wherem1representsthedepthoffirstzeropointoftheflexuralmomentofcantileveredpile.Itshouldbenotedthattheembeddedlengthcalculatedhere is thatmeasurednot from the seabottomsurface,but thatmeasured from thevirtualbottomsurface.

Page 74: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–749–

2.5 Sheet Pile Quaywalls with Raking Pile Anchorages2.5.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletotheperformanceverificationofmooringfacilitiesinwhichrakingpilesaredrivenbehindthesheetpilewall,andthetopsofthesheetpilewallandtherakingpilesareconnectedtosupportthesoilbehindthesheetpilewall.

(2)AnexampleofthesequenceofperformanceverificationofsheetpiledquaywallswithrakingpileanchoragesisshowninFig. 2.5.1.

(3)Anexampleofacross-sectionofsheetpilequaywallswithrakingpileanchoragesisshowninFig. 2.5.2.

Verification of stresses in sheet pile and raking anchorage piles

Verification of bearing capacity of raking piles

Determination of embedment length of sheet pile

Verification of circular slip failurePermanent situations

Examination of amount of deformation by dynamic analysis

Accidental state in respect of Level 2 earthquake ground motion

Setting of design conditions

Determine cross-sectional dimensions

Verification of structural members

*1

*2

*3

Assumption of cross-sectional dimensions

Evaluation of actions including seismic coefficient for verification

Verification of deformation and stresses by dynamic analysis

Performance verificationPerformance verificationPermanent situations, variable situations in respect

of Level 1 earthquake ground motion

Permanent situations, variable situations in respectof Level 1 earthquake ground motion

and action of ships

Permanent situations, variable situations in respectof Level 1 earthquake ground motion

and action of ships

Variable situations in respect of Level 1 earthquake ground motion

*1:Theevaluationoftheeffectofliquefactionisnotshown,itisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. Forhighearthquake-resistancefacilities,itispreferablethattheexaminationoftheamountofdeformationbecarriedoutbydynamic analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-presistancefacilities.

Fig 2.5.1 Example of Sequence of Performance Verification of Sheet Pile Quaywalls with Raking Pile Anchorages

Page 75: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–750–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Sheet pile Raking anchorage pile

L.W.L.H.W.L.

Fig. 2.5.2 Example of Cross-section of Sheet Pile Quaywall with Raking Pile Anchorage

2.5.2 Actions

(1)Fortheactiononsheetpiledwallswithrakingpileanchorages,referto2.3 Sheet Pile Quaywalls.

(2)ThecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofsheetpilequaywallswithrakingpileanchoragesforthevariablesituationsinrespectofLevel1earthquakegroundmotionshallbeappropriatelycalculated taking thestructuralcharacteristics intoconsideration. Forconvenience, thecharacteristicvalueoftheseismiccoefficientforverificationofsheetpilequaywallswithrakingpileanchoragesmaybecalculatedasthesheetpilequaywallsverticalpileanchorage, in2.3.2(9) Seismic Coefficient used in Performance Verification of Sheet Pile Quaywalls with Pile Anchorage for Variable Situations in respect of Level 1 earthquake ground motion.

2.5.3 Performance Verification

(2)VerificationofStressesinSheetPileandRakingAnchoragePiles

① Forsheetpilequaywallswithrakingpileanchorages,verificationmaybecarriedoutfortheresistanceofthesheetpileandthepiles,againsttheactionsinthehorizontalandverticaldirectionattheconnectionpoint,earthpressureandresidualwaterpressure.

② Thehorizontalandverticalforcesactingontheconnectionpointbetweenasheetpileandarakingpilecanbecalculatedbyassumingthattheconnectionisapinstructure.

(3)DeterminationofEmbeddedLengthsofSheetPileandRakingPileTheembeddedlengthofthesheetpileorrakinganchoragepilethatisrequiredtoresisttheforcesactingintheaxialdirectionaswellasthedirectionperpendiculartotheaxiscanbecalculatedinaccordancewithPart II, Chapter, 2.4 Pile Foundations.However,itispreferabletoexaminethebearingcapacityintheaxialdirectionofthesheetpileandthatoftherakinganchoragepilethroughloadingandpullingtests.

2.5.4 Performance Verification of Structural Members

Performanceverificationofsheetpiledquaywallswithrakingpileanchoragescanapplythatofsheetpiledquaywallsandopentypewharvesonverticalpiles.Referto2.3.4 Performance Verifi cation,and5.2.5 Performance Verification of Structural Members.

Page 76: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–751–

2.6 Open-type Quaywall with Sheet Pile Wall Anchored by Forward Batter Piles2.6.1 Fundamentals of Performance Verification

(1)Theprovisionsinthissectionshallbeappliedtotheperformanceverificationofsheetpilequaywallsthatarebuiltbycouplingthesheetpileheadswiththerakinganchoragepilesdriveninthegroundinfrontofthesheetpilesthatretaintheearthintheback.

(2)Open-typequaywallwith sheetpilewall anchoredby forewardbatterpiles arenormallyconstructedwith anopen–typewharfbuiltinfrontofthesheetpilewall.Theopen–typewharfmayormaynotbeintegratedintothesheetpilewall,butthissectionprovidesguidelinesforthecasesinwhichtheopen–typewharfandsheetpilewallareintegrated.Forthecasesinwhichtheopen–typewharfisnotintegratedintothesheetpilewall,referto2.3 Sheet Pile Quaywalls,5.2 Open–Type Wharves on Vertical Piles,and5.3 Open–Type Wharves on Coupled Raking Piles.Theperformanceverificationmethoddescribedinthissectionisbasedonthesheetpileperformanceverificationwiththeequivalentbeammethod.Therefore,thestructuraltypescoveredbythissectionaresteelsheetpilewallsdrivenintoasandysoilgroundorahardclayeysoilground.

(3)AnexampleofthesequenceofperformanceverificationofOpen-typeQuaywallwithSheetPileWallAnchoredbyForwardBatterPilesisshowninFig. 2.6.1.

(4)Here,amethodofcarryingouttheperformanceverificationofthesheetpilesandtheperformanceverificationof theotherpiles in threestages isdescribed,asamethodofsimpleverification. Performanceverificationofthesheetpilescanbecarriedoutinaccordancewiththemethodsofperformanceverificationofsheetpile,byconsidering the connectionpoints between the raking support piles and the sheet pile to be fulcrums. Next,thereactionat theconnectionpointsbetweentherakingsupportpilesandthesheetpile isconsidered tobeahorizontalforceactingonthepiledpiersuperstructure,andtheaxialforcesactinginthesheetpileandthepilesarecalculatedinaccordancewiththeperformanceverificationofopentypewharvesonrakingpiles.Then,thesheetpileandtherakingsupportpilesareconsideredtobearigidframestructurefixedatavirtualfixingpoint,andthemomentsinthetopconnectionpointsduetoearthpressureandotherhorizontalforcesarecalculated.

(5)Anexampleofcross-sectionofopen-typequaywallwithsheetpilewallanchoredbyforwardbatterpilesisshowninFig. 2.6.2.

Page 77: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–752–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Verification of circular slip failurePermanent situations

Setting of design conditions

Determination of cross-sectional dimensions

Verification of structural members

*1

*2

*3

Assumption of cross-sectional dimensions

Evaluation of actions including seismic coefficient for verification

Performance verificationPerformance verificationPermanent situations, variable situations in respect

of Level 1 earthquake ground motion

Variable situations in respect of action of ships,surcharge, and Level 1 earthquake ground motion

Variable situations in respect ofLevel 1 earthquake ground motion

Accidental state in respect of Level 2 earthquake ground motion

Verification of stresses in piles

Verification of bearing capacity of piles

Determination of embedment length of sheet pile

Verification of stresses in sheet pile wall

Examination of amount of deformation by dynamic analysis

Verification of deformation andpiled pier damage by dynamic analysis

Verification of bearing capacity of piles

*1:Theevaluationoftheeffectofliquefactionisnotshown,itisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationbydynamicanalysiscanbecarriedoutfortheLevel1earthquakeground

motion. Forhighearthquake-resistancefacilities,itispreferablethattheexaminationoftheamountofdeformationbecarriedoutbydynamic analysis.*3:VerificationinrespectofLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.6.1 Example of Sequence of Performance Verification ofOpen-type Quaywall with Sheet Pile Wall Anchored by Forward Batter Piles

Page 78: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–753–

Bollard

Fenders

Backfill rocks

Steel pipe pile

Steel sheet pipe pile

Steel pipe pile

Design water depth

Fig. 2.6.2 Example of Cross-section of Open-type Quaywall with Sheet Pile Wall Anchored by Forward Batter Piles

2.6.2 Actions

(1)Fortheactiononthepiledpierpart,referto5.2 Open-Type Wharves on Vertical Piles.

(2)Fortheactionofthesheetpile,referto2.3 Sheet Pile Quaywalls.

(3)Theselfweightofreinforcedconcreteof thesuperstructureofopen–typewharfcanbecalculatedwithaunitweightof21kN/m2intheperformanceverificationoftheverticalandrakingpilesandsheetpilesinaccordancewith5.3 Open-Type Wharves on Coupled Raking Piles.

(4)Thefenderreactionforcecanbecalculatedusingcalculationmethodsdescribedin5.2 Open-Type Wharves on Vertical Piles.

(5)Thecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofopen-typequaywallwithsheetpilewallanchoredbyforewardbatterpilesforthevariablesituationsinrespectofLevel1earthquakegroundmotionshallbeappropriatelycalculatedtakingthestructuralcharacteristicsintoconsideration.Forconvenience,thecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofopen-typequaywallwithsheetpilewallanchoredbyforewardbatterpilesmaybecalculatedinaccordancewith5.2 Open Type Wharf on Vertical Piles, 5.2.3(10) Ground Motion used in Performance Verification of Seismic–resistant.

2.6.3 Layout and Dimensions

(1)Refertothesizeofdeckblockandlayoutofpilesdescribedin 5.2 Open-Type Wharves on Vertical Piles forthesizeofoneblockofthesuperstructureandlayoutofpiles.

(2)Itispreferablethatlayoutandinclinationoftherakingpilesaredeterminedinconsiderationoftheirpositionalrelationshipwithotherpilesandconstructionwork–relatedconstraintssuchasthoseconcerningthecapacityofpiledrivingequipment.Apileinclinationofabout20ºisnormallyusedforrakingpiles.

(3)Forthedimensionsofthesuperstructure,refertodimensionsofsuperstructurein5.2 Open-Type Wharves on Vertical Piles.

2.6.4 Performance Verification

(1)Performanceverificationofthesheetpilewallmaybecarriedoutconsideringtheconnectionpointbetweentherakingsupportpileandthesheetpileasfulcrums.Referto2.3 Sheet Pile Quaywalls.

Page 79: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–754–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)Fortheearthpressureandresidualwaterpressureactingonthesheetpile,theconnectionpointbetweentherakingsupportpileandthesheetpilemaybeconsideredtobeafulcrumreaction.

(3)If it is necessary to carry out verification of rotation of the piled pier block, this shall be appropriatelyconsidered.

(4)PerformanceVerificationofthePiledPierPart

① Fortheperformanceverificationofthepiledpierpart,referto5.2 Open-type Wharves on Vertical Piles,and5.3 Open-type Wharves on Coupled Raking Piles.

② Forassumptionsregardingtheseabed,refertoassumptionsregardingtheseabedin5.2 Open–type Wharves on Vertical Piles.Forthehorizontalresistanceofpiles,estimationofthebehaviorofthepilesmaybecarriedoutusingthemethodofY.L.Chang.

③ The vertical loads distributed to the pile heads can be calculated as the fulcrum reaction forces under theassumptionthatthesuperstructureofopen–typewharfisasimplebeamsupportedatthepositionsofpileheads.Theaxialforcesontherakingpileandsheetpileshouldbecalculatedaccordingtoequation(2.4.60)in2.4.5[6] Lateral Bearing Capacity of Coupled PilesinPart III,Chapter 2, 2.4 Pile Foundations usingthehorizontalforceonthequaywallandtheverticalloaddistributedtopileheads.Fortheaxialforceofaverticalpile,theverticalloaddistributedtothepileheadmaybeused.

④ Theflexuralmomentattheconnectionoftherakingpileandthesheetpilemaybecalculatedasthemomentduetotheearthpressure,residualwaterpressureandotherhorizontalforces,byassumingthattherakingandsheetpilesconstitutearigidframefixedatthevirtualfixedpoint.

(5)Examinationofembeddedlengthwithrespecttotheaxialforce,andexaminationoftheembeddedlengthwithrespecttothelateralresistancecanbemadeinaccordancewith5.2 Open-type Wharves on Vertical Piles.

2.6.5 Performance Verification of Structural Members

(1)Theperformanceverificationforstructuralmembersofsheetpilewallanchoredbyforwordbatterpilescanbemadebyreferringtotheprovisionsin2.3 Sheet Pile Quaywalls and5.2 Open-type Wharves on Vertical Piles.

(2)Theconnectingpointofthesheetpilewallandrakingpileneedtobestructuredsothattheloadtransmissionfunctionsadequately.

(3)The superstructure of open–type wharf shall be structured so that it fully withstands the flexural momenttransmittedfromthesheetpilewall.

(4)Theconnectingpointbetween thesheetpilewallandrakingpilemusthavesufficient reinforcement,becausebreakageordamageattheconnectingpointcouldleadtothecollapseoftheentirequaywall.Theflexuralmomentgeneratedintheheadofthesheetpileistransmittedtothesuperstructureofopen–typewharf.Therefore,thisflexuralmomentneedtobetakenintoconsiderationintheperformanceverificationofthesuperstructure.

Page 80: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–755–

2.7 Double Sheet Pile QuaywallsPublic NoticePerformance Criteria of Double Sheet Pile Quaywalls

Article 503Inadditiontotheprovisionsinthefirstparagraph,theperformancecriteriaofdoublesheetpilestructuresshallbeasspecifiedinthesubsequentitems(1)Theriskofoccurrenceofslidingofthestructuralbodyshallbeequaltoorlessthanthethresholdlevel

underthepermanentactionsituationsinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(2)Theriskthatthedeformationofthetopofthefrontorrearsheetpilemayexceedtheallowablelimitofdeformationshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhich thedominantaction isearthpressureandunder thevariableactionsituation inwhich thedominantactionisLevel1earthquakegroundmotions.

(3)Theriskoflosingthestabilityduetosheardeformationofthestructuralbodyshallbeequaltoorlessthanthe threshold levelunder thepermanentactionsituationinwhichthedominantactionisearthpressure.

[Technical Note]

2.7.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletotheperformanceverificationofmooringfacilitiesthatuseadoublesheetpilestructure.

(2)Adoublesheetpilequaywallisamooringfacilityinwhichtworowsofsheetpilewallsaredrivenandconnectedbytiemembersorsimilar,thenthespacebetweenthetwowallsisbackfilledwithsoilsothatanearthretainingstructureisformed.

(3)Anexampleofthecross-sectionofadoublesheetpilequaywallisshowninFig. 2.7.1.(4)AnexampleofthesequenceofperformanceverificationofdoublesheetpilequaywallsisshowninFig.

2.7.2.

Waling

Paint coatingSteel pipe sheet pile

Design water depth

Quaywall face line

Apron

Sand filling

Replacement sand

High tensile steel tie rod

Waling

Filling

Steel pipe sheet pile

Fig. 2.7.1 Example of the Cross-section of a Double Sheet Pile Quaywall

Page 81: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–756–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Analysis of the amount of deformation by dynamic analysis

Verification of bearing capacity of piles

Permanent situations, variable situations ofLevel 1 earthquake ground motion

Permanent situations, and variable situations of Level 1 earthquake ground motion

and action of ships

Permanent situations, and variable situations of Level 1 earthquake ground motion

Variable situations of Level 1earthquake ground motion

Accidental states of Level 2earthquake ground motion

Permanent situation

Determination of cross-sectional dimensions

Verification of structural members

Verification of circular slip failure and settlementPermanent situations

Permanent situation, and variable situation of Level 1 earthquake ground motion

Provisional assumption of cross-sectional dimensions

Evaluation of actionsPerformance verificationPerformance verification

*1

*2

*3

Verification of shear deformation of double sheet pile wall structure

Determination of embedment length of sheet pile

Verification of stresses in sheet pile wall

Verification of stresses in tie members

Verification of stresses in waling

Verification of sliding of double sheet pile wall structure

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.

Fig. 2.7.2 Example of the Sequence of Performance Verification of Double Sheet Pile Quaywalls

Page 82: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–757–

(5)Intheperformanceverificationofdoublesheetpilequaywalls,theperformanceverificationmethodsforsteelsheetpilecellular-bulkheadquaywallsorsheetpilequaywallswithsheetpileanchoragehaveconventionallybeenapplied.Therefore,whenverifyingtheperformanceofadoublesheetpilequaywallwiththeconditionsthataresimilartothoseusedinexistingquaywalls,performanceverificationmethodsdescribedinthissectionmaybeused.

2.7.2 Actions

(1)For the action on double sheet pile quaywalls, refer to 2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(2)ThecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofdoublesheetpilequaywallsforthevariablesituationsofLevel1earthquakegroundmotionshallbeappropriatelycalculatedtakingintoconsiderationthestructuralcharacteristics.Forconvenience,thecharacteristicvalueoftheseismiccoefficientforverificationofdoublesheetpilequaywallsmaybecalculatedinaccordancewiththatforanchoredverticalpile typesheetpiledquaywalls, in2.3.2(9) Performance Verification of Anchorages for Sheet Pile Quaywalls on Variable Situation in respect of Level 1 Earthquake Ground Motion.

2.7.3 Performance Verification

(1)Theexaminationtodeterminethewidthbetweentwosheetpilewallstoachievetherequiredstrengthagainstsheardeformationcanbemadeinaccordancewith2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(2)Thecalculationofthedeformationmomentcanbemadeinaccordancewith2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(3)Thecalculationof theresistancemomentcanbemadeinaccordancewith2.9 Cellular-bulkhead Quaywalls with Embedded Sections.However,theresistancemomentduetothefrictionsatthejointsbetweensheetpilesofthepartitionwallsisnotconsiderednormally.

(4)Theembeddedlengthofsheetpilesisdeterminedasthelongeroneofeitherthatcalculatedbythemethodforsheetpileshavingordinaryanchoragereferringtoexaminationofembeddedlengthsofsheetpilesin2.3 Sheet Pile Quaywallsorthatsatisfyingtheallowablelimitforhorizontaldisplacementrequirementreferringtoexaminationof stability ofwall body as awhole and examination of displacement ofwall top in2.9 Cellular-bulkhead Quaywalls with Embedded Sections

(5)Adouble sheetpilequaywall canbeconsideredasakindofgravitywall. Thus it isnecessary toverify thestabilityagainstslidingofthequaywallandtheoverallslopestabilityincludingthewallstructure,asinthecaseofacellular-bulkheadtypequaywall.Intheperformanceverificationreferencecanbemadeinaccordancewiththeperformanceverificationdescribedin2.2 Gravity-type Quaywalls.Slidingisusuallyexaminedeitheratthevirtualbottomsurfacewhichistakenattheseabottomorthehorizontalplaneatthetoeofthesheetpilewall.Intheformercase,theresistanceofthesheetpilewallbelowtheseabottomshouldbeignored.Intheexaminationoftheoverallslopestabilityincludingthedoublesheetpilequaywall,theembeddedlengthofthedoublesheetpilequaywallmustbecomparedwiththerequiredembeddedlengthcalculatedforacorrespondingsinglesheetpilequaywallwithanchorage.Iftheformerisfoundlongerthanthelatter,theresistanceoftheportionofsheetpilesbelowthecalculatedtoeofthelattersheetpilesshouldbeignoredagainstthecircularslipplanepassingthelevelbelowthetoe.

(6)Performanceverificationoftheslabanduprightsectionofthesuperstructurecanbemadeinaccordancewiththeperformanceverificationofrelievingplatformin2.8 Quaywalls with Relieving Platforms.Foundationpilesaresometimesdrivenintothefillingmaterialtosupportthesuperstructure.Thesepilesshouldhavesufficientsafetyagainstthehorizontalandverticalforcestransmittedfromthesuperstructure.Hereitisassumedthattheverticalforcetransmittedfromthesuperstructureisentirelybornebythepiles,andtheverticalbearingcapacityofthepileiscalculatedbyignoringtheskinfrictionbetweenthepileandthefillingmaterial.Thehorizontalforcethatactsonthesuperstructureistransmittedtothedoublesheetpilequaywallpartlythroughthepilesandpartlythroughthesheetpiles.Thereforeitisnecessarytodetermineappropriateburdenshearingofthehorizontalforcebythetwosections.

(7)Whendoublesheetpiledwallstructuresareused,theamountofdeformationmaybeevaluatedbyastaticmethodusingSawaguchi’smethod72)orOhori’smethod.73)

Page 83: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–758–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2.8 Quaywalls with Relieving PlatformsPublic NoticePerformance Criteria of Quaywalls with Relieving Platforms

Article 51 The performance criteria of quaywallswith relieving platforms shall be as specified in the subsequentitems:(1)Sheetpilesshallhavetheembedmentlengthasnecessaryforstructuralstabilityandcontainthedegree

ofriskthatthestressesinthesheetpilesmayexceedtheyieldstressatthelevelequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(2)TheriskofoccurrenceofslidingoroverturningtothestructuralbodyshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.

(3)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominantactionisselfweight:(a)Theriskthattheaxialforcesactingintherelievingplatformpilesmayexceedtheresistanceforce

basedonfailureofthesoilsshallbeequaltoorlessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersoftherelievingplatformshallbeequaltoorless

thanthethresholdlevel.(4)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominant

actionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships:(a)Theriskthattheaxialforcesactingontherelievingplatformpilesmayexceedtheresistanceforce

basedonfailureofthesoilsshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthatthestressactingontherelievingplatformpilesmayexceedtheyieldstressshallbe

equaltoorlessthanthethresholdlevel.(c)Theriskofimpairingtheintegrityofthemembersoftherelievingplatformshallbeequaltoorless

thanthethresholdlevel.(5)Theriskofoccurrenceofaslipfailureinthegroundthatpassesbelowthebottomendofthesheet

pilingshallbeequaltoorlessthanthethresholdlevelunderthepermanentactionsituationinwhichthedominantactionisselfweight.

[Commentary]

(1)PerformanceCriteriaofQuaywallswithRelievingPlatforms①Theperformancecriteriaofquaywallswithrelievingplatformsshallusethefollowinginaccordance

withthedesignsituationsandthestructuremembers. Besidestheserequirements,whennecessarythesettingsofthePublic Notice Article 22 Paragraph 3(ScouringandWashingOut)shallbeapplied.

②SheetpileandStructuralStability(a)The setting for sheet pile and structural stability of the performance criteria of quaywallswith

relievingplatformsandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 37.

Page 84: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–759–

Attached Table 37 Setting for the Performance Criteria of Sheet Pile and Structural Stability of Quaywalls with Relieving Platforms and the Design Situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 51 1 1 Serviceability Permanent Earthpressure Waterpressure,surcharges

Necessaryembedmentlength

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–3)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

Yieldingofsheetpile

Variable L1earthquakegroundmotion

Earthpressure,waterpressure,surcharges

Necessaryembedmentlength

Allowableamountofdeformationoftopofquaywall:applysheetpilequaywallsYieldingofsheetpiling

2 Permanent Earthpressure Selfweight,waterpressure,surcharge

Sliding/overturningofwallstructure

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–3)(Otherthanhighearthquake-resistancefacilityPf=4.0×10–3)

Variable L1earthquakegroundmotion

Selfweightearthpressure,waterpressure,surcharge

Sliding/overturningofwallstructure

LimitvalueforslidingLimitvalueforoverturning(Allowableamountofdeformationoftopofquaywall:applygravity-typequaywalls)

5 Permanent Selfweight Waterpressure,surcharge

Circularslipfailureofground

Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Highearthquake-resistancefacilityPf=1.7×10–3)(Otherthanhighearthquake-resistancefacilityPf =4.0×10–3)

(b)PerformancecriteriaofsheetpileOfthesettingsfortheperformancecriteriaforrelievingplatformquaywallsandthedesignsituations,thoseapplicabletothesheetpileshallcomplywiththesettingsinaccordancewiththePublic Notice Article 50 Paragraph 1(PerformanceCriteriaforSheetPiledQuaywalls).

(c)PerformanceCriteriaofWallStructuresIntheverificationofthestabilityofthestructureofquaywallswithrelievingplatforms,thewallstructureisequivalenttothewallstructureinthecaseofagravity-typequaywall.ThewallstructureshallcomplywiththesettingofthePublic Notice Article 49(PerformanceCriteriaofGravity-typeQuaywalls).

(d)PerformanceCriteriaofCircularSlipsintheGroundThe setting for circular slips in the ground shall complywith the settings of thePublic Notice Article 50 Paragraph 1(PerformanceCriteriaofSheetPileQuaywalls).

③RelievingPlatformandRelievingPlatformPiles(a) Thesettings for relievingplatformsand relievingplatformpilesshallbeasshown inAttached

Table 38.

Page 85: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–760–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 38 Settings for the Performance Criteria for the Relieving Platform and Relieving Platform Piles of Quaywalls with Relieving Platforms and the Design situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 51 1 3a Serviceability Permanent Selfweight Surcharging,waterpressure

Axialforcesonrelievingplatformpiles

Resistancecapacitybasedonfailureoftheground(pushing,pulling)

3b Earthpressure,waterpressure,surcharge

Serviceabilityofcross-sectionofrelievingplatform

Limitvalueofbendingcompressivestress(serviceabilitylimitstate)

4a Variable Earthpressure Selfweight,waterpressure,surcharge

Axialforcesactingontherelievingplatformpiles

Resistancecapacitybasedonfailureoftheground(pushing,pulling)

L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Tractionofships

4b Permanent Earthpressure Waterpressure,surcharge

Yieldingofrelievingplatform

Designyieldstress

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surchargeTractionof

ships4c Permanent Earthpressure Waterpressure,

surchargeServiceabilityofcross-sectionofrelievingplatform

Limitingvalueofbendingcompressivestress(serviceabilitylimitstate)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Failureofcross-sectionofrelievingplatform

Designcross-sectionalresistanceforce(ultimatelimitstate)

Tractionofships

(b)AxialForcesActingontheRelievingPlatformPilesVerificationoftheaxialforcesactingontherelievingplatformpilesistoverifytheriskthattheaxialforcesactingontherelievingplatformpileswillexceedtheresistanceforcebasedonfailureofthegroundisequaltoorlessthanthelimitingvalue.

(c)YieldingofRelievingPlatformPilesVerificationofyieldingintherelievingplatformpilesistoverifytheriskthatthestressesactingontherelievingplatformpileswillexceedtheyieldstressisequaltoorlessthanthelimitingvalue.

(d)ServiceabilityoftheCross-sectionoftheRelievingPlatformVerificationofserviceabilityoftherelievingplatformistoverifytheriskthatthedesignbendingcompressivestressesintherelievingplatformwillexceedthelimitingvalueofcompressivestressisequaltoorlessthanthelimitingvalue.

(e)Cross-sectionalFailureoftheRelievingPlatformVerificationofcross-sectionalfailureoftherelievingplatformistoverifytheriskthatthedesigncross-sectionalforcesintherelievingplatformwillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitingvalue.

[Technical Note]

2.8.1 Principles of Performance Verification

(1)Theprovisionsinthischaptermaybeappliedtotheperformanceverificationofquaywallwithrelievingplatformthatcomprisesarelievingplatform,asheetpilewallinfrontoftherelievingplatform,andrelievingplatformpiles.

(2)Sheetpilequaywallwitharelievingplatformnormallycomprisearelievingplatform,asheetpilewallinfrontof the relieving platform, and relieving platform piles. The relieving platform is inmany cases constructedasanL-shapedstructureofcast-in-placereinforcedconcreteandisusuallyburiedunderlandfillmaterial,butsometimesaboxshapeplatformisusedtoreducetheweightoftheplatformandtheearthquakeforcesthatactonitseeFig. 2.8.1 and2.8.2.

Page 86: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–761–

(3)Theperformanceverificationofaquaywallwitharelievingplatformcanbemadeseparatelyforthesheetpiles,therelievingplatform,andtherelievingplatformpiles.

Sheet pile wall

Relieving platform

Relieving platform piles

W.L.

Fig. 2.8.1 Structure of Quaywall with Relieving Platform (L-Shaped Platform)

W.L.

Relieving platform

Void

Fig. 2.8.2 Structure of Quaywall with Relieving Platform (Box Shape Platform)

(4)AnexampleofthesequenceofperformanceverificationofaquaywallwithrelievingplatformisshowninFig. 2.8.3.

Page 87: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–762–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Permanent situation, variable situations of Level 1 earthquake ground motion

Permanent situation

Permanent situation, and variable situations of Level 1 earthquake ground motion

and action of ships

Accidental situations of Level 2 earthquake ground motion

Determination of cross-sectional dimensions

Verification of structural members (verification of relieving platform, etc.)

Permanent situation

Permanent situation, and variable situations of Level 1 earthquake ground motion

Variable situations of Level 1 earthquake ground motion

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-sectional dimensions

Performance verificationPerformance verification

*1

*2

*3

Determination of embedment length of sheet pile

Analysis of stresses in sheet pile wall

Determination of dimensions of sheet pile

Provisional layout of relieving platform

Verification of axial forces on relieving platform piles

Verification of stresses in relieving platform piles

Verification of sliding and overturning as a gravity wall

Analysis of the amount of deformation by dynamic analysis

Verification of deformation and stress by dynamic analysis

Verification of circular slips failure and settlement

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.

Fig. 2.8.3 Example of the Sequence of Performance Verification of a Quaywall with Relieving Platform

Page 88: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–763–

2.8.2 Actions

(1)The earth pressure and residual water pressure acting on sheet piles vary greatly according to structuralcharacteristics.Therefore,theyshallbecalculatedappropriatelyinconsiderationoftheheightandwidthoftherelievingplatformaswellassupportconditions.

(2)When the active failure surface of backfill soil from the intersection between the sea bottomand sheet pilesintersectstherelievingplatform,theactiveearthpressureactingonthesheetpilewallcanbecalculatedontheassumptionthatthebottomoftherelievingplatformisthevirtualgroundsurfaceandnosurchargeisonitasshowninFig. 2.8.4.

(3)Theresidualwaterpressureactingonthesheetpilewallshouldbeconsideredthesameasthatofthecasewithoutarelievingplatform.Theforcetobeadoptedshouldbetheresidualwaterpressureactingontherangebelowthebottomlevelofrelievingplatform,seeFig. 2.8.4.

(4)Asforpassiveearthpressureinfrontoftheembeddedsectionofsheetpile,2.3 Sheet Pile Quaywallscanbereferred.

Design water level(L.W.L) Residual water level

Passiveearth pressure

Activeearth pressure

Res

idua

l wat

er p

ress

ure

Fig. 2.8.4 Earth Pressure and Residual Water Pressure Acting on Sheet Pile Wall

(5)ThecharacteristicvalueofseismiccoefficientforverificationusedintheperformanceverificationofquaywallswithrelievingplatformsforthevariablesituationsassociatedwithLevel1earthquakegroundmotionshallbecalculatedtakingthestructuralcharacteristicsintoconsideration.Forconvenience,thecharacteristicvalueofseismiccoefficientforverificationofquaywallswithrelievingplatformsmaybecalculatedbyreferencetothe2.2.2(1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of Foundations Ground in Variable Situations in Respect of Level 1 Earthquake Ground Motion,complyingwithgravity-typequaywalls.

(6)Itisnotdesirablethatthewidthoftherelievingplatformbeshortenedtotherangewhereitdoesnotintersectwiththeactivefailuresurfaceextendingfromtheseabedsurface.However,iftheuseofashortrelievingplatformisunavoidable,thefollowingmethodcanbeusedasthemethodofcalculatingtheactiveearthpressureactingonthesheetpile. AsshowninFig. 2.8.5, theearthpressureactingonthesheetpilewalliscalculatedastheearthpressureactinginthecasethatthereisnorelievingplatformbelowtheintersectionpointoftheactivefailuresurfacedrawnfromtherearendoftherelievingplatformandthesheetpile,andastheearthpressureactingin(2)above,abovethepointofintersectionofthenaturalfailuresurfaceduringLevel1earthquakegroundmotiondrawnfromtherearendoftherelievingplatformandthesheetpile.Betweenthesetwo,itmaybeassumedthattheearthpressurevarieslinearly. Thedesignvalueof the angleα formedbetween thenatural failure surface and thehorizontalduring anearthquakecangenerallybeobtainedfromequation(2.8.1).Inthefollowingequation,thesubscriptdindicatesthedesignvalue.

(2.8.1)

where, φ :angleofshearingresistanceofthesoil(°) kh' :apparentseismiccoefficient

Thedesignvaluesintheequationmaybecalculatedfromthefollowingequation.Intheequation,thesymbolγisthepartialfactorcorrespondingtoitssubscript,andthesubscriptskanddindicatethecharacteristicvalueand

Page 89: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–764–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

thedesignvalue,respectively.Also,thepartialfactorsmayallbeassumedtobe1.0.

(2.8.2)

Active failure surface

Design tide level(L.W.L.)

α= -tan-1k'φα= -tan-1k'φ

Fig. 2.8.5 Earth Pressure Acting on Sheet Pile with Narrow Relieving Platform

(7)Thehorizontalforcetransmittedfromthesheetpilewallmaybecalculatedwiththesamemethodasthatforthereaction forceat the tie rodsettingpointobtained inaccordancewith2.3.4 Performance Verificationof2.3 Sheet Pile Quaywalls byregardingthebottomelevationofrelievingplatformasatierodsettingpoint.

(8) Thetractiveforceofshipsandfenderreactionforcealsoactontherelievingplatform. Theseexternalforcesshouldbeconsideredasnecessary.

(9) Theexternalforcestransmittedfromthesheetpilewalltotherelievingplatformincludethehorizontalforceandflexuralmoment.However,thetransmissionoftheflexuralmomentisignoredforthesakeofsafety,becausethefixingofthesheetpilestotherelievingplatformmaynotberigidenough.

(10)TheearthpressureandresidualwaterpressureactingonthebackoftherelievingplatformcanbecalculatedinaccordancewithPart II, Chapter 5, 1 Earth Pressure andPart II, Chapter 5, 2.1 Residual Water Pressure.Inthecalculationofearthpressure,surchargeshouldbetakenintoconsideration.Inthepartbelowthebottomofrelievingplatform,thedifferencebetweenactionearthpressureactingontherearandthepassiveearthpressureactingonthefrontactsastheactiveearthpressuredowntothedepthwherethetwopressuresarebalanced.ThisshouldbeaddedasshowninFig. 2.8.6.Thefrictionangleofthewallmaybetakentobe15°foractiveearthpressure,and–15°forpassiveearthpressure.

pp pa

pa

pa- pp

Force transmittedfrom sheet piling Residual water level

Residual water pressureDesign tide level(L.W.L)

Fig. 2.8.6 External Forces to be Considered for Performance Verification of Relieving Platform

2.8.3 Performance Verification

(1)PerformanceVerificationofSheetPileWall

① Theembeddedlengthofsheetpilescanbeexaminedbyassumingthatthejointbetweenthesheetpilewallandrelievingplatformisahingesupport,replacingthebottomoftherelievingplatformwithatierodsettingpointandapplying2.3 Sheet Pile Quaywalls.

② Verificationofstressesinthesheetpilewallmaybecarriedoutinaccordancewith2.3 Sheet Piled Quaywalls,replacingtherelievingplatformbottomsurfacewiththetieinstallationpoint.

③ Inadditiontotheflexuralmomentduetoearthpressure, theflexuralmomentandverticalforcetransmittedfromtherelievingplatformactonthesheetpilesofasheetpilewall.Normallytheflexuralmomenttransmittedfromtherelievingplatformisnottakenintoconsideration,becauseitusuallyactsinadirectionoppositetothat

Page 90: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–765–

ofthemaximumflexuralmomentthatactsonthesheetpilesandthusreducesthemaximumflexuralmoment.Furthermore,theverticalforcetransmittedfromtherelievingplatformtothesheetpilewallisnormallynottakenintoconsiderationwhenthefrontrowofrelievingplatformpilesisdriveninasclosetothesheetpilewallaspossibleandthissignificantlyreducestheverticalforceactingonthesheetpiles.

(2)PerformanceVerificationoftheRelievingPlatform

Arelievingplatformshouldbeverifiedforperformanceasacontinuousbeamforboththedirectionofquaywallalignmentandthedirectionperpendiculartothealignment(seeFig. 2.8.7).Loadsshouldnotbedistributedinthetwodirections.WhentherelievingplatformisanL–shapedstructure,theuprightsectionshouldbeverifiedforperformanceasacantileverbeamsupportedattheslabsection.

Coupled piles +

+M0Ap

M0

Ap

w wd

w wd

Vertical pile

Bending moment

Bending moment due to surcharge

Bending moment transmitted from upright part

Tensile force

M0 : Maximum bending moment of upright partAp : Force transmitted from sheet pileW : Surchargewd : Load due to deadweight and soil

Fig. 2.8.7 Continuous Beam Assumed in Performance Verification of Relieving Platform

(3)PerformanceVerificationoftheRelievingPlatformPiles

① Performance of relieving platform piles can be verified in accordance with Part II, Chapter 2, 2.4 Pile Foundations.

② Inprinciple,relievingplatformpilesshouldconsistofacombinationofcoupledpilesandverticalpiles.Thehorizontalexternalforcemaybebornebythecoupledpilesonly,andtheverticalexternalforcemaybebornebytheverticalpilesonly.Itmaybeassumedthateachofthecoupledpilesburdensthehorizontalforceequally.

③ Inthedesignofrelievingplatformpiles,assessmentshouldbemadeforthemostdangerousstateofeachpilebyvaryingthesurcharge,directionofseismicforces,andsealevelwithinthedesignconditionranges.

④ Incalculatingtheaxialloadresistanceofeachoftherelievingplatformpiles,itisdesirabletoassumethatinthegroundabovethesheetpileactivefailuresurfacedrawnfromtheseabedsurface,theskinfrictiondoesnotcontributeastheresistanceforceoftherelievingplatformpiles.

⑤ Ifitisunavoidablethattherelievingplatformpilesareallcomposedbyverticalpiles,whendistributingthehorizontalforcetotheverticalpiles,normallyitisassumedincalculatingtheresistanceforcenormaltotheiraxesthatthereisnosoilabovethesheetpileactivefailuresurfacedrawnfromtheseabedsurface.

(4)AnalysisoftheStabilityasGravity-typeWallStructures

① Theexaminationofthestabilityofaquaywallwithrelievingplatformasawholecanbemadebyassumingthatthequaywallwithrelievingplatformisakindofgravity-typewall.

Page 91: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–766–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

② Foranalyzingthestabilityoftheassumedgravity-typewallstructure,referto2.2 Gravity-type Quaywalls.Inthiscase,thepassiveearthpressuretothefrontofthesheetpileisconsidered.

③ Aquaywallwithrelievingplatformmaybeconsideredasarectangularshapegravity-typewalldefinedbyaverticalplanecontainingtherearfaceoftherelievingplatformandahorizontalplanecontainingthebottomendsofthefrontsidebatterpilesofthecoupledpiles,asshowninFig. 2.8.8.

W.L.

Fig. 2.8.8 Virtual Wall as Gravity-type Wall

(5)VerificationofCircularSlipFailureForanalysisofcircularslipfailure,refertoChapter 2, 3 Stability of Slopes.Inthiscaseanalysisiscarriedoutforcircularslipfailurepassingunderthebottomendofthesheetpile.Also,forsettingthetidelevel,refertoPart II, Chapter 2, 3 Tide Levels.

Page 92: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–767–

2.9 Cellular-bulkhead Quaywalls with Embedded SectionsPublic NoticePerformance Criteria of Cellular-bulkhead Quaywalls with Embedded Sections

Article 52 1Theperformancecriteriaofcellular-bulkheadquaywallswithembeddedsectionsshallbeasspecifiedinthesubsequentitems:(1)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationsinwhichthedominant

actionisearthpressure:(a)Theriskoflosingthestabilityduetosheardeformationofthestructuralbodyshallbeequaltoor

lessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersofthecellular-bulkheadquaywallswithembedded

sectionsshallbeequaltoorlessthanthethresholdlevel.(2)Thefollowingcriteriashallbesatisfiedunderthepermanentactionsituationinwhichthedominant

actionisearthpressureandunderthevariableactionsituationinwhichthedominantactionisLevel1earthquakegroundmotions.(a)Theriskofoccurrenceofslidingofthestructuralbodyorfailureduetoinsufficientbearingcapacity

ofthefoundationshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthattheamountofdeformationofthetopofthecellsmayexceedtheallowablelimitof

deformationshallbeequaltoorlessthanthethresholdlevel.(3)Theriskofoccurrenceofslipfailureinthegroundshallbeequaltoorlessthanthethresholdlevel

underthepermanentactionsituationinwhichthedominantactionisselfweight.(4)The following criteria shall be satisfied by the superstructure of cellular-bulkhead quaywallswith

embeddedsectionsunderthepermanentactionsituationinwhichthedominantactionisearthpressureandunderthevariableactionsituationinwhichthedominantactionsareLevel1earthquakegroundmotions,shipberthing,andtractionbyships.(a)Theriskthattheaxialforceactinginapilemayexceedtheresistanceforcebasedonfailureofthe

groundshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthatthestressesinthepilesmayexceedtheyieldstressshallbeequaltoorlessthanthe

thresholdlevel.(c)Theriskofimpairingtheintegrityofthemembersshallbeequaltoorlessthanthethresholdlevel.

2Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofplacementtypecellular-bulkheadquaywallswithembeddedsectionsshallbesuchthattheriskofoccurrenceofoverturningunderthevariableactionsituation,inwhichthedominantactionisLevel1earthquakegroundmotions,isequaltoorlessthanthethresholdlevel.

[Commentary]

①Cellular-bulkheadQuaywallwithEmbeddedSections(serviceability)(a)The performance criteria of cellular-bulkhead quaywall with embedded sections shall be used in

accordancewiththedesignsituationsandtheconstituentmembers.Besidesthisrequirement,whennecessarythesettingsofPublic Notice 22 Paragraph 3(ScouringandWashingOut)andArticle 28 Performance Criteria of Armor Stones and Blocksshallbeapplied.

(b)StabilityoftheCellStructureandIntegrityofMembers1) ThestabilityofthecellstructureandtheintegrityofmembersshallbeinaccordancewithAttached

Table 39.

Page 93: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–768–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 39 Setting of Performance Criteria for Structural Stability of the Cells and the Integrity of the Members of Cellular-bulkhead Quaywall with Embedded Sections and the Design Situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 52 1 1a Serviceability Permanent Earthpressure Waterpressure,surcharges

Sheardeformationofwall

Resistancemoment

1b Yieldingofallbody Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Pf=4.0×10–15)

Arcyielding Systemfailureprobabilityunderpermanentsituationsofselfweightandearthpressure(Pf=3.1×10–15)

Yieldingofpoints Designyieldstress2a Permanent Earthpressure Selfweight,

waterpressure,surcharges

Wallsliding,bearingcapacityoffoundationground

Systemfailureprobabilityunderpermanentsituationsofearthpressure(Highearthquake-resistancefacilities:Pf=1.0×10–3)(Otherthanhighearthquake-resistancefacilities:Pf=4.0×10–3)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

– LimitvalueforslidingLimitvalueforbearingcapacity(Allowableamountofdeformation:applygravity-typequaywalls)

2b Permanent Earthpressure Waterpressure,surcharges

Deformationofcelltop Limitvalueofdeformation

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharges

3 Permanent Selfweight Waterpressure,surcharges

Circularslipfailureofground

Systemfailureprobabilityunderpermanentsituationsofearthpressure(Highearthquake-resistancefacilities:Pf=1.0×10–3)(Otherthanhighearthquake-resistancefacilities:Pf=4.0×10–3)

2)ShearDeformationofWallStructuresVerificationofthesheardeformationofwallstructuresistoverifythattheriskthatthedeformationmomentforsheardeformationofthewallstructurewillexceedtheresistancemomentisequaltoorlessthanthelimitingvalue.

3)YieldingofConnectionsVerificationofyieldingofjointsistoverifythattheriskthatthetensilestressinthejointsbetweenthecellstructureandthearcwillexceedtheyieldstressisequaltoorlessthanthelimitingvalue.Inthecaseofsteelsheetpilecellular-bulkheadstructures,verificationshallalsobecarriedoutforthetensilestrengthofthejointsofflattypesteelsheetpile.

4)SlidingofWallStructures,BearingCapacityofFoundationGroundVerificationofslidingofwallstructuresistoverifythattheriskoffailureduetoslidingofawallstructureisequaltoorlessthanthelimitvalue.Verificationofbearingcapacityoffoundationsoilsistoverifythattheriskoffailureduetoinsufficientbearingcapacityofthefoundationgroundisequaltoorlessthanthelimitvalue. The setting for sliding of wall structures and bearing capacity of foundation in permanentsituationswheredominatingactionistheearthpressureandvariablesituationswheredominatingaction isLevel1 earthquakegroundmotion, shall complywith the settingof thePublic Notice

Page 94: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–769–

Article 49 Performance Criteria of Gravity-type Quaywalls.5)DeformationoftheCellTops

ThelimitvalueoftheamountofdeformationofthecelltopsunderthepermanentsituationswheredominatingactionistheearthpressureandthevariablesituationswheredominatingactionisLevel1earthquakegroundmotionshallbeappropriatelysetbasedontheenvisagedconditionsofuseofthefacility,etc.

6)CircularSlipFailureoftheGroundThesettingforcircularslipfailureofthegroundshallcomplywiththesettingofthePublic Notice Article 49 Performance Criteria of Gravity-type Quaywalls.

(b)Superstructures1)ThesettingforsuperstructuresshallbeinaccordancewithAttached Table 40.

Attached Table 40 Setting for the Performance Criteria of the Superstructures of Cellular-bulkhead Quaywall with Embedded Sections and Design Situations excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 52 1 4a Serviceability Permanent Earthpressure Selfweight,waterpressure,surcharge

Axialforcesactingonsuperstructurepiles*1)

Resistancecapacitybasedonfailureoftheground(pushing,pulling)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surchargeTractionof

ships4b Permanent Earthpressure Waterpressure,

surchargeYieldingofsuperstructurepiles*1)

Designyieldstress

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

– –

4c Permanent Earthpressure Waterpressure,surcharge

Serviceabilityofsuperstructurecross-section

Limitvalueofbendingcompressivestress(serviceabilitylimitstate)

Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Cross-sectionalfailureofsuperstructure

Designcross-sectionalresistance(ultimatelimitstate)

Berthingandtractionofships

*1)Onlyforstructureshavingsuperstructuresupportingpiles

2) AxialForcesActinginthePilesoftheSuperstructureVerificationofaxialforcesactingonthepilesofthesuperstructureistoverifythattheriskthattheaxialforcesactinginthepilesofthesuperstructurewillexceedtheresistanceloadbasedonfailureofthegroundisequaltoorlessthanthelimitvalue.

3) YieldingofPilesoftheSuperstructureVerificationofyieldinginthepilesofthesuperstructureistoverifythattheriskthatthestressinthepilesofthesuperstructurewillexceedtheyieldstressisequaltoorlessthanthelimitvalue.

4)ServiceabilityoftheCross-sectionofSuperstructuresVerificationofserviceabilityof thecross-sectionofsuperstructures is toverify that the risk thatthe design compressive bending stress in the superstructure will exceed the limit value of thecompressivestressisequaltoorlessthanthelimitvalue.

5)Cross-sectionalFailureofSuperstructuresVerificationof cross-sectional failure of superstructures is to verify that the risk that thedesigncross-sectionalforceinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalue.

②PlacementTypeCellular-bulkheadQuaywalls(Serviceability)

Page 95: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–770–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(a)Performance criteria of placement type cellular-bulkhead quaywalls shall comply with theperformance criteria of the cellular-bulkhead quaywall with embedded sections, excluding theverificationitemsfordeformationofthetopofcells,andinadditionwithAttached Table 41.

Attached Table 41 Setting for the Performance Criteria of Placement Type Cellular-bulkhead Quaywalls and the Design Conditions excluding Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon–

dominatingaction

26 1 2 52 2 – Serviceability Variable L1earthquakegroundmotion

Selfweight,earthpressure,waterpressure,surcharge

Overturningofwallbody

Limitvalueforoverturning(allowableamountofdeformationoftopofquaywall:applygravity-typequaywalls)

(b)OverturningofWallBodyThesettingregardingoverturningofwallbodyundervariablesituationswheredominatingactionisLevel1earthquakegroundmotionshallcomplywiththesettingofthePublic Notice Article 49 Performance Criteria of Gravity-type Quaywalls.

[Technical Note]

2.9.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletotheperformanceverificationofquaywallsusingasteelcellular-bulkheadstructure,hereinafterreferredtoassteelcellular-bulkheadquaywalls,andquaywallshavingacellular-bulkheadstructurewithembeddedsections,hereinafterreferredtoasthesteelcellular-bulkheadquaywallswithembeddedsections.

(2)Theperformanceverificationmethoddescribedinthischapterisbasedontheresultsofcellular-bulkheadmodeltests 78), 79), 80), 81)conductedon a sandy soil groundwith an embedded length ratio of 0 to 1.5 and a ratio ofequivalentwallwidthtowallheightof1to2.5.Forthecaseswheretheembeddedlengthratioisverysmall,lessthan1/8,theequivalentwallwidthisverysmallrelativetothewallheight,orthequaywallistobeconstructedonacohesivesoilgroundorgroundimprovedbythesandcompactionpiles,etc.,furtherexaminationssuchasadynamicanalysistakingintoconsiderationnonlinearcharacteristicsofthegroundshouldbemadeasrequiredinadditiontotheexaminationusingtheperformanceverificationmethoddescribedinthissectionbecausethesecasesinvolvefactorsthatcannotbefullyclarifiedwiththemethoddescribedhere.

(3)Examplesofthecross-sectionofasteelcellular-bulkheadquaywallandanembedded–typesteelcellular-bulkheadquaywallareshowninFig. 2.9.1(a), (b).

(4)Theapproachin2.9.2 Action,and2.9.4 Performance Verificationmaybeusedforsimpleverification,butitisnecessarytobecarefulwhenadoptingtheseapproaches.

(5)Anexampleofthesequenceofperformanceverificationofthecellular-bulkheadquaywallwithembeddedsectionsisshowninFig. 2.9.2.

Page 96: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–771–

H.W.L

Steel sheet pile cell

Soil filling

Steel pipe piles

L.W.L

H.W.L

Steel sheet pile cellSoil filling

Replacement soil

Steel pipe pile

Steel pipe pile

V-type rubber fender

L.W.L

(a) Embedded-type steel cellular-bulkhead quaywall

(b) Embedded-type steel cellular-bulkhead quaywall

Steel pipe pileSteel pipe pile

Front placed soilFront placed soil

Fig. 2.9.1 Examples of the Cross-section Cellular-bulkhead Quaywalls with Embedded Sections

Page 97: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–772–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Verification of wall shear deformation, sliding,bearing capacity of foundation soils, and deformation of cell top

Verification of wall sliding, bearing capacity offoundation ground, and deformation of cell top

Permanent situations

Accidental situations of Level 2 earthquake ground motion

Verification of structural members

Permanent situations

Variable situations of the Level 1 earthquake ground motion

Determination of cell layout

Analysis of stresses in cell units, arcs, and joints

Determination of cross-sectional dimensions

Steel plate cellular-bulkhead quaywalls

Steel sheet pile cellular-bulkhead quaywalls

Permanent situations

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-sectional dimensions

Verification of stresses in joints of flat type sheet pile

Performance verificationPerformance verification

*1

*2

*3

Analysis on amount of deformation by dynamic analysis

Verification of deformation by dynamic analysis

Verification of circular slip failure, settlement

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.

Fig. 2.9.2 Example of the Sequence of Performance Verification of the Cellular-bulkhead Quaywalls with Embedded Sections

(6)Itisrecommendedthatthefillingmaterialincellsisasufficientdensitysandorgravelofgoodquality.Itisnotdesirabletouseaclayeysoilasthefillingmaterial.Whenclayeysoilistoremaininthecells,itisnecessarytomakeaseparateexaminationbecausethedeformationofthecellsmaybecomesignificantlylarge.

(7)Whenafoundationforacrane,shed,orwarehouseistobebuiltwithinacell,itisdesirabletousefoundationpilestotransmittheloadtothebearingstratum.

Page 98: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–773–

2.9.2 Actions

(1)For calculating the action to be considered in the performance verification of embedded–type steel cellular-bulkheadquaywallswithembeddedsections,refertoPart II, Chapter 4, 2 Seismic Action,Part II, Chapter 5, 1 Earth Pressure,Part II, Chapter 5, 2 Water Pressure,andPart II, Chapter 10 Self weight and Surcharges.

(2)Therearofthewallmaybesubjectedtoactiveearthpressureintheexaminationofsheardeformationofthecellwallbody(seeFig. 2.9.3).Accordingtothemodeltests,itcanbeunderstoodthattheembeddedsectionofthecellissubjectedtotheactioncorrespondingtotheearthpressureatrestbecausethedeformationoftheembeddedsectionofthecellissmall.Accordingtotheresultsofshakingtabletests,theearthpressureactingonthispartworksasaresistingforceagainstoverturningofthewallbutactingforces.Intheexaminingthestabilityoftheentiresystem,therefore,theearthpressureactingontherearofthewallisnormallyactiveearthpressureabovetheseabedsurface,andearthpressurethatisgeneratedbysurchargesuchasbackfillingundertheseabedsurface.Thecharacteristicvalueoftheearthpressurethatisgeneratedbysurchargesuchasbackfillingduringpermanentsituationcannormallybecalculatedusingequation(2.9.1)(seeFig. 2.9.4).

(2.9.1)where

pac :earthpressureactingontherearofwallbelowtheseabottom(kN/m2) k : coefficientofearthpressure,k =0.5canbeadopted w :unitweightofeachlayerofbackfilling(kN/m3) h :thicknessofeachlayerofbackfilling(m) q :surcharge(kN/m2)

L.W.L. R.W.L.

Surcharge

Seabed surface

Wall body Backfill

Active earth pressure

Active earth pressure

Fig. 2.9.3 Earth Pressure Acting on the Rear of Wall Body for Examination of Shear Deformation

L.W.L. R.W.L.

Surcharge

Wall body

Seabed surface

Backfill

Active earth pressure

Earth pressure below seabed surface by equation (2.9.1)

Fig. 2.9.4 Earth Pressure Acting on the Rear of Wall Body for Examination of the Stability as Gravity-type Wall

(3)Inprinciple, theresidualwaterlevelofthebackfillingcanbetakenattheelevationwiththeheightequivalentto two thirds of the tidal range above themeanmonthly–lowestwater level, LWL. However,when using abackfillingwithlowpermeability,theresidualwaterlevelmaybecomehigherthanthisandthusitisdesirabletodeterminetheresidualwaterlevelbasedonresultsofinvestigationsofsimilarstructures.Theresidualwaterlevelinthefillingmaterialinthecellsmaybesettothesamelevelasthatofthebackfillingforthewallbody.

(4)Seismiccoefficientforverificationusedinperformanceverificationofthesteelcellular-bulkheadquaywallswithembeddedsections Thecharacteristicvalueoftheseismiccoefficientforverificationusedinperformanceverificationofthesteelcellular-bulkheadquaywallswithembeddedsectionsundervariablesituationsassociatedwithLevel1earthquakegroundmotionandtheallowablevalueoftheamountofdeformationsetcorrespondingtotheseismiccoefficient

Page 99: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–774–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

for verification shall be appropriately calculated taking the structural characteristics into consideration. Forthepurposeofconvenience,thecharacteristicvalueoftheseismiccoefficientforverificationandtheallowablevalueoftheamountofdeformationforsteelcellular-bulkheadquaywallswithembeddedsectionsmaybesettocomplywith2.2 Gravity-type Quaywalls, 2.2.2 (1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of Foundation Ground in Variable Situations in respect of Level 1 earthquake ground motion and⑧ (b) Setting of allowable deformation, Da=10cm. However,itisnecessarytobeawarethatthemethoddescribedinthisdocumentdoesnotnecessarilyevaluatesufficientlytheeffectoftheembedmentofthesteelcellular-bulkheadquaywallwithembeddedsectionsontheseismic–resistantperformance.Fordetails,refertoSection 2.9.4 (2) ③ (f).

(5)Fortheseabedandabove,theseismiccoefficienttobeusedinthecalculationoftheseismicinertiaforcethatactsonthefillingmaterialshallbetheseismiccoefficientforverification.Forthepartbelowtheseabottom,thisvalueisreducedlinearlyinsuchawaythatitbecomeszeroat10mbelowtheseabed.Inprinciple,theseismicinertiaforceisnotconsideredforthepartdeeperthanthatlevel,seeFig. 2.9.5.

10m

Seismic coefficient for verification

Seabed surface

Fig 2.9.5 Inertia Force Acting on Filling

2.9.3 Setting of the Equivalent Wall Width

(1)Equivalentwallwidthmaybeusedforverifyingperformance.Theequivalentwallwidth,inthiscase,shallbethewidthofarectangularvirtualwallsubstitutedthecombinationofcellsandarcsections. Theequivalentwallwidthisthewidthofarectangularvirtualwallbodythatisusedinplaceofthewallbodycombinedwithcellsandarcsectionstosimplifydesigncalculations,seeFig. 2.9.6.Thevirtualwallisdefinedinsuchawaythattheareaofthehorizontalcrosssectionofthevirtualwallbodybecomesthesameasthatofthecombinedcellsandarcsections

θ

θ

r

2L

2S B

r

120°

120°

L

BSθ r

2L

2S B

θr

(a) Circular cells

(b) Diaphragm Type Cells (c) Clover Leaf Type Cells

B=S/LB : equivalent wall width (m)L : effective length of one set of cell (m)S : area of set of cell (m2)

Fig. 2.9.6 Plan View of Cellular-bulkhead Structure and Equivalent Wall Width B

(2)Theequivalentwallwidth isnormallydetermined tosatisfy theanalysisof thesheardeformationof thewallstructure.

Page 100: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–775–

2.9.4 Performance Verification

(1)AnalysisoftheShearDeformationoftheWallStructure

① Thecellshellandfillingofthecellular-bulkheadquaywallusuallyactasanintegratedstructurebecausethefillingisconstrainedinthecellshell.Thereforethedeformationofthecellwallbodymaybeignoredrelativetoitsdisplacementandtheoverallbehaviorofthecellwallbodymaybeconsideredthesameasthatofarigidbody.Thishasbeenverifiedbymodeltestsinwhichthecellwallbodydidnotshowsignificantdeformationunder loadsmuch larger than the external forces that are expected to act on the cellwall bodybothunderpermanentsituationandvariablesituationassociatedwithLevel1earthquakegroundmotion.Inthecaseofnormalgroundandfillingsoil,therefore,itcanbeunderstoodthatshearfailuredoesnotoccurinthefilling.However,whenthediameterofthecellisverysmallorthestrengthofthefillingmaterialisextremelylow,itmaynotbepossibletosatisfytheassumptionthatthecellwallbodyisarigidbody.Thereforeitisnecessarytomakeexaminationofthestrengthofthefillingagainstsheardeformationduetotheloadsunderpermanentsituationinordertoremainthedeformationofthecellwallbodytoanegligiblelevel.

②Normally,itispossibletoanalyzethesheardeformationofthesteelcellular-bulkheadquaywallswithequations(2.9.2)and(2.9.3),usingtheresistancemomentandthedeformationmomentofthecellbottomsurface,andtheresistancemomentandthedeformationmomentofthesoilwithinthecellsat theseabedsurface. Also,analysisof thesheardeformationof thesteelcellular-bulkheadquaywallscanbecarriedoutusingequation(2.9.3).Thesubscriptdintheequationsindicatesthedesignvalue.Forcalculationofthedesignvalues,referto③ Calculation of deformation moment, ④ Calculation of the resistance moment at the bottom of cell,and⑤ Resistance moment of the filling with respect to the seabed,below.Anappropriatevalueof1.2orhighermaybeusedasthestructuralanalysisfactorγa.

(2.9.2)

(2.9.3)where,

Mr :resistancemomentofthecellbottomsurface(kN·m/m) Md :deformationmomentofthecellbottomsurface(kN·m/m) M'r :resistancemomentoffillingsoilattheseabedsurface(kN·m/m) M'd :deformationmomentattheseabedsurface(kN·m/m) γa :structuralanalysisfactor

③ Calculationofdeformationmoment

(a) The deformationmoment to be used in the performance verification of steel sheet pile cellular-bulkheadquaywallsshallbethemomentatthebottomofthecellortheseabedduetoexternalforcessuchasactiveandpassiveearthpressuresandresidualwaterpressureabovethecellbottomortheseabed.Thedeformationmomentforsteelcellular-bulkheadquaywallsshallbethemomentattheseabedduetoexternalforcessuchasactiveandpassiveearthpressuresandresidualwaterpressureabovetheseabed.

(b)In the calculation of deformation moment, earth pressure is considered only in terms of the horizontalcomponent.Theverticalcomponentisnottakenintoconsideration.Theverticalforceofthesurchargeisnottakenintoconsiderationinthecalculationofdeformationmoment.However,thesurchargeistakenintoconsiderationinthecalculationofactiveearthpressure,seeFig. 2.9.7.

L.W.L. R.W.L.Mr

Surchargeing

Backfill

Activeearthpressure

ActiveearthpressurePassive earth pressure

Residual water pressure

Seabed surface

Fig. 2.9.7 Loads and Resisting Forces to be taken into consideration in the Examination of Shear Deformation

Page 101: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–776–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

④ Calculationofresistancemomentatthebottomofcell

(a) Theresistancemomentatthebottomofcellshallbecalculatedappropriatelyinconsiderationofthestructuralcharacteristicsofthecellanddeformationofthewall.

(b) The result ofmodel tests 78) shows that the resistancemomentwith respect to thewall bottommay beincreasedbyincreasingtheembeddedlengthratioD/H,seeFig. 2.9.8.Thiscanbecalculatedusingequation(2.9.4).

Def

orm

atio

n m

omen

t obt

aine

d by

exp

erim

ent M

d

Embedded length ratio (D/H)

Note : Plotted values are mean values of individual cases.Note : Plotted values are mean values of individual cases.

Group AGroup BGroup CGroup DGroup E

Case No.

Shea

r res

ista

nce

mom

ent a

ccor

ding

to th

e m

odifi

ed fo

rmul

a of

Kita

jima M

r

Fig. 2.9.8 Relationship between Resistance Moment and Embedded Length Ratio

(2.9.4)where

Mr : resistancemomentwithrespecttocellbottom(kN·m/m) Mr0 : resistancemomentofthefillingwithrespecttocellbottom(kN·m/m) Mrs : resistancemoment due to the friction force of sheet pile joints,with respect to cell bottom

(kN·m/m) D : embeddedlength(m) H : heightfromwallbottomtowalltop(m)(seeFig. 2.9.9) α : requiredadditionalrateagainsttheembeddedlengthratio(D/H)

Fortherequiredadditionalrateα,itisrecommendedtouse1.0,whichisclosetothelowestvaluefoundinthetestresultsshowninFig. 2.9.8,becausetheequationgivenabovehasbeenderivedbasedontestsandnotfullyclarifiedtheoretically.

Page 102: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–777–

L.W.L.

B

H

Dd

Pa Pp

ξaξp

x

0

Fig. 2.9.9 Assumed shear surface of filling soil

(c) EquationforCalculatingtheResistancemomentofFillingInthedeterminationoftheresistancemomentoffillingatthebottomofthecell,itisassumedthatanactivefailuresurfaceisgeneratedfromthefrontofthebottomofthecellandapassivefailuresurfaceisgeneratedfromtherear,andthattheactiveandpassiveearthpressuresactontherespectivefailuresurfaces,asshowninFig. 2.9.9.TheactiveandpassivefailureanglesaswellastheactiveandpassiveearthpressuresmaybecalculatedusingthefollowingRankine’sequations.Thesubscriptdintheequationindicatesthedesignvalue.

activefailuresurface

passivefailuresurface

activeearthpressure ,

passiveearthpressure , (2.9.5)

where φ :angleofshearresistanceoffilling(º) w :unitweightofsoil(kN/m3) h :thicknessofsoillayer(m)

Thedesignvaluesinequation(2.9.5)maybecalculatedusingtheequationbelow.

(2.9.6)

Themomentcausedbytheearthpressureactingontheshearsurfacemaybecalculatedbyusingequation(2.9.7) seeFig. 2.9.9.

(2.9.7)

Whenthegeotechnicalconstantsofthegroundandthoseofthefillingdiffer,equation(2.9.7)becomescomplexasthefailureangleandtheearthpressurelevelvaryfromonesoillayertoanother.However,whenthereisnosignificantdifferenceintheinternalfrictionanglebetweenthegroundandfilling,orwhentheembeddedlengthratioislargeandthefailuresurfacesdonotreachthefillingportion,thefollowingsimplifiedequationmaybeused.Intheequationsbelow,subscriptdstandsforthedesignvalue.

(2.9.8)

(2.9.9)where

w0 :equivalentunitweightoffilling,unitweightofthefillingwhichassumesthattheunitweightis

Page 103: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–778–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

uniformthroughoutthefilling;normallyw0k=10kN/m3isused. H0d :equivalentwallheightmeasuredfromthebottomofcell.Theequivalentwallheightisemployed

tocalculatetheresistancemomentduetothefillingbyusingtheequivalentunitweightofthefilling.Itiscalculatedbyequation(2.9.10).

(2.9.10)

wi : unitweightofthei–thlayeroffilling(kN/m3)hi : thicknessofthei–thlayer,fromcellbottomtotopofquaywall(m)

B :equivalentwallwidth(m)

Thedesignvaluesintheequationmaybeobtainedusingthefollowingequation.

(2.9.11)

Allthepartialfactorsusedincalculatingtheresistancemomentofthefillingsoilmaybetakentobe1.0.

(d)EquationforCalculatingResistancemomentduetoFrictionForceofJointsofSheetPilesTheresistancemomentduetofrictionforceofjointsiscalculatedasfollows.Intheequationsbelow,subscriptdstandsforthedesignvalue.

(2.9.12)

(2.9.13)where

Hs :The equivalentwall height employed to calculate the resistancemoment due to the frictionforcebetweenthesheetpilejointswhentheequivalentunitweightofthefillingisused.Itisevaluatedusingequation(2.9.14) sothattheresultantforceofthedistributedearthpressureindiagram(a)becomesequaltothatof(b)inFig. 2.9.10.Inthiscalculation,0.5tanφ canbeusedasthecoefficientofearthpressureofthefilling.

(2.9.14)

Pi :resultantearthpressureofthei–thlayeroffilling(kN/m)

inthiscase,surchargeisignored.

w0 :equivalentunitweightoffilling(kN/m3) φ :angleofshearresistanceoffilling(º)

νsd=B/Hsd

B :equivalentwallwidth(m) f :coefficientoffrictionbetweensheetpilejoints;usually0.3isused.

Thedesignvalueintheequationcanbecalculatedusingthefollowingequation:

(2.9.15)

Notethatallpartialfactorsusedintheequationforcalculatingresistancemomentduetofrictionforceofthejointscanbesetat1.00.

Page 104: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–779–

L.W.L.H.W.L. γ1

γ2

γ3

h1

h2

h3

P1

P2

P3

Hs

P

γΗstanφ1

(a) Earth pressure distribution diagram

(b) Converted earth pressure distribution diagram

Fig. 2.9.10 Equivalent Wall Height

⑤ Resistancemomentofthefillingwithrespecttotheseabed

(a) Theresistancemomentwithrespecttotheseabedshouldbecalculatedappropriatelytakingintoconsiderationthestructuralcharacteristicsofthecellandthedeformationofthewall.

(b)Inthecalculationoftheresistancemomentofthefillingwithrespecttotheseabed,equations(2.9.16)and(2.9.17)maybeused.

(2.9.16)

(2.9.17)

where Mr' :resistancemomentofsheetpilecellwithrespecttoseabed(kN·m/m) H0' :equivalentwallheightisemployedtocalculatetheresistancemomentduetothefillingbyusing

theequivalentunitweightofthefilling.Itisevaluatedbymeansofequation(2.9.18).

(2.9.18)

w'i :unitweightofthefillingofthei–thlayeraboveseabottom(kN/m3) h'i :thicknessofthei–thlayeraboveseabedbetweenseabedandtopofquaywall(m)

ν0'=B/H0'

φ' :angleofshearresistanceofthefillingaboveseabed(º)

Thedesignvalueintheequationcanbecalculatedusingthefollowingequation:

(2.9.19)

Note thatallpartial factorsused in theequation forcalculating resistingof thefillingwith respect to theseabedcanbesetat1.00.

⑥Increasingthestrengthofthefillingenhancestherigidityofthecellwall. Therefore,improvementworkoffillingiseffectiveinincreasingthestabilityofthecellwall.

(2)CalculationoftheamountofdeformationofwallstructuresunderpermanentsituationsandvariablesituationsassociatedwithLevel1earthquakegroundmotionmaybecarriedoutbasedonthefollowingitems.

① General

(a) Intheexaminationofthestabilityofthewallasawhole,thesubgradereactiongeneratedagainsttheloadandthedisplacementofthewallarecalculatedbyconsideringthewallasarigidbodyelasticallysupportedbytheground.

(b)Withintheelasticrangeoftheground,thesubgradereactionforceiscalculatedastheproductofthemodulusofsubgradereactionandthedisplacement.Hereitisconsideredthatthestabilityofthewallasagravitywallisobtainedwhenthesubgradereactionforceandthedisplacementofthewalldonotexceedtherespective

Page 105: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–780–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

allowablelimits.

②Modulusofsubgradereaction

(a) Themodulus of subgrade reaction includes themodulus of horizontal subgrade reaction, themodulus ofverticalsubgradereaction,andthehorizontalshearmodulusatthebottomofcell.

(b)Themodulusofsubgradereactionmaybecalculatedasbelow,basedontheresultsofsoilinvestigation:

1) ModulusofhorizontalsubgradereactionModulusofhorizontalsubgradereactionmaybecalculatedbyreferringtoYokoyama’sdiagram82)shownin2.4.5 Static Maximum Lateral Resistance of Piles in Chapter 2, 2.4 Pile Foundations.

(2.9.23)where

kCH :horizontalsubgradereactioncoefficient(N/cm3) N :N-value

Whenthegroundconsistsofthestrataofdifferentcharacteristics, themodulusofhorizontalsubgradereactionshouldbecalculatedforeachstratum.

2) ModulusofverticalsubgradereactionFor the modulus of vertical subgrade reaction at the cell bottom, the same value as the modulus ofhorizontalsubgradereactionatthecellbottomcanbeused.Whenthegroundconsistsofthestrataofdifferentcharacteristics,themodulusofverticalsubgradereactionshallcorrespondtothestratumatthecellbottom.However,whenthereisanextremelysoftstratumbelowthecellbottom,itisnecessarytogivecarefulconsiderationtoitseffects.

3) HorizontalshearmodulusThehorizontalshearmodulusatthewallbottommaybecalculatedbyequation(2.9.24)usingthemodulusofverticalsubgradereaction.

(2.9.24)

where ks : horizontalshearmodulus(N/cm3) λ : ratioofthehorizontalshearmodulustothemodulusofverticalsubgradereaction kv : modulusofverticalsubgradereaction(N/cm3)

Paststudiessuggesttheuseofλvaluesintherangeof1/2to1/583),84).Inthecaseofsteelsheetpilecellularbulkheadhowever,itisconsideredthatthevalueofλmaybesetasabout1/3.

③Calculationofsubgradereactionandwalldisplacement

(a) The subgrade reaction acting on the embedded part of steel sheet pile cellular-bulkhead and the walldisplacementcanbecalculatedontheassumptionthatthewallsubjecttotheexternalforcesissupportedbythehorizontalsubgradereaction,verticalsubgradereactionandhorizontalshearreactionat thebottomofwall,andverticalfrictionalforcealongthefrontandrearofthewall.

(b)Subgradereaction

1)HorizontalsubgradereactionHorizontalsubgradereactionmaybecalculatedbyequation(2.9.25),butthisshouldnotexceedthepassiveearthpressureintensitycalculatedinaccordancewithPart II, Chapter 5, 1 Earth Pressure topreventtheyieldingoftheground.Theangleofwallfrictionusedtocalculatepassiveearthpressurecanbasicallybetakenat–15º.Fig.2.9.12 illustratesthedistributionofsubgradereactionofasamplecaseinwhichthesubgradereactionreachesthepassiveearthpressureuptoacertaindepth.

Page 106: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–781–

Cell

MV

H

Portion where subgrade reaction reachesthe passive earth pressure intensity

Portion where subgrade reaction force doesnot reach the passive earth pressure intensity

Passive earth pressure intensityPassive earth pressure intensity

Backfilling soil

Cellembedmentportion

Horizontal subgrade reaction due to the displacement of the cell

Seabed

Fig. 2.9.12 Example of Distribution of Horizontal Subgrade Reaction

2)VerticalsubgradereactionTheverticalsubgradereactionatthecellbottomactsinatrapezoidalortriangulardistribution.Itshouldbeassumedthatnotensilestressisgenerated.

(c)VerticalfrictionalforceItshouldbeassumedthatverticalfrictionalforceactsonthefrontandrearofthewallandiscalculatedastheproductofthehorizontalearthpressureorsubgradereactionforceandtanδ,whereδdenotestheangleofwallfriction.

(d)DistributionofexternalforcesFig.2.9.13 showsstandarddistributionpatternsoftheexternalforcesactingonsteelsheetpilecellular-bulkheadquaywall.

L.W.L. R.W.L.

Dynamic water pressure

Horizontal subgrade reaction

Deadweight

Surcharge

Activeearthpressure

Residualwaterpressure

Shear reaction at the bottom surface

Vertical subgrade reaction force

(Trapezoidal distribution)

(Triangular distribution)

Seabed

Hor

izon

tal

subg

rade

reac

tion ×tanδ

Earth

pre

ssur

eac

ting

on th

e pa

rtbe

low

the

grou

ndsu

rfac

e ×tanδ

Hor

izon

tal c

ompo

nent

of

act

ive

earth

pre

ssur

e×tanδ

Seis

mic

forc

es a

ctin

gon

the

wal

lSe

ism

ic fo

rces

act

ing

on th

e w

all

Earth pressure acting on thepart below the ground surface

Fig. 2.9.13 Distribution Patterns of External Forces Acting on Steel Sheet Pile Cellular-bulkhead Quaywall

(e)DisplacementmodesofcellAs shown inFig. 2.9.14, it is assumed that the cellwall rotates around its centerof rotationO,which ishorizontallyawayfromthecenteraxisofthecellbythedistancee andverticallyawayfromtheseabedbythedepthh.Whenthecenterofrotationislocatedinsidethecell,thehorizontalsubgradereactionisgeneratedintherearofthewallforthepartbelowthecenterofrotation.

Page 107: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–782–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

θ

e

h

o

θ eh

o

Cen

ter a

xis

Cen

ter a

xis

(a) When the center of rotation is located outside the cell body

(b) When the center of rotation is located inside the cell body

Fig. 2.9.14 Displacement Modes of Cell

(f)EquationforcalculatingsubgradereactionandwalldisplacementFigure 2.9.15 showsacalculationmodel foracase inwhichhorizontal force,vertical force,andmomentactattheintersectionofthegroundsurfaceandthecenteraxisofthecellwallandthegroundcomprisesn layersofsoil.EquationsforcalculatingthesubgradereactionandcellwalldisplacementofthemodelshowninFig. 2.9.15 areasfollows:Thismethoddoesnotnecessarilyaccuratelycalculatethedisplacementduringanearthquake,socautionisneeded.Inotherwords,iftheembedmentlengthisincreasedtoimprovetheseismic–resistant performance, it has been pointed out that the followingmethods can over–evaluate thedeformationinseismicresponseanalysis.

z

Seabed surface

Cell

Q pn2

D h

eo

θ

d1

d2

d3

didn

q1

q1

q2

p22p31 p32

pi1

p21p12

VM

H

Backfill

nth straum

Vertical subgrade reaction

Trapezoidal distribution

Horizontal ground reactionShearing reaction

Triangular distribution

1st stratum

2nd stratum

3rd stratum

ith stratum

Fig. 2.9.15 Calculation Model

Page 108: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–783–

1) Whentheverticalsubgradereactionactsinatrapezoidaldistribution

i) Horizontalsubgradereaction(kN/m2)

(2.9.25)

ii.)Verticalsubgradereaction(kN/m2)

(2.9.26)iii)Shearreactionforcethatactsatthewallbottom(kN/m)

(2.9.27)iv)Horizontaldisplacementofthewall(m)

(2.9.28)v)Angleofwallrotation(º)

(2.9.29)vi)Depthofthecenterofwallrotation(m)

(2.9.30)

vii)Distancefromthewallcenteraxistothecenterofrotationofthewall(m)

(2.9.31)where

Page 109: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–784–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Theangleofwallfrictionδ isnegativeforstratawhosehorizontalsubgradereactionforceactsonthefrontofthewall,andpositiveforstratawhosehorizontalsubgradereactionforceactsontherearofthewall.

2) WhentheverticalsubgradereactionactsinatriangulardistributionThehorizontalsubgradereaction,horizontalwalldisplacement,angleofrotation,anddepthofthecenterofrotationareexpressedinthesameformasthosein1).

i)Verticalsubgradereaction(kN/m2)

(2.9.32)

ii)Shearreactionthatactsatthewallbottom(kN/m)

(2.9.33)where

iii)Distancebetweenthewallcenteraxisandthecenterofrotationofthewall(m)

(2.9.34)where

Theangleofwallfrictionδ shouldbenegativeforstratawhosehorizontalsubgradereactionactsonthefrontofthewall,andpositiveforstratawhosehorizontalsubgradereactionactsontherearofthewall.Thenotationsusedinequationsin1)and2)areasfollows:

V :verticalforceactingonthewall(kN/m) H :horizontalforceactingonthewall(kN/m) M :momentactingonthecenterofthewallatthelevelofgroundsurface(kN·m/m)

Providedexternalforcesthatactonthewallarethosefortheunitlengthinthedirectionalongthefacelineofwall

D :embeddedlength(m) di :thicknessofeachsoillayeroftheembeddedground(m) B :equivalentwidth(m) kCHi :modulusofhorizontalsubgradereactionofeachlayeroftheembeddedground(kN/m3) kv :modulusofverticalsubgradereactionatwallbottom(kN/m3) ks :horizontalshearmodulusatwallbottom(kN/m3) A :areaofwallbottomperunitlengthofthewallinthedirectionfaceline(m2/m) A' :areaofwallbottomperunitlengthofthewallinthedirectionoffaceline,whenthevalueof

verticalsubgradereactionispositive(m2/m)

④ Verificationoftheamountofdeformation,tiltangleofwallstructuresTheallowablevalueoftheamountofdeformation,tiltangle,ofwallstructuresissetbyreferencetorelationshipsbetweentheamountofdeformationofthetopsandtheamountofdamageobtainedfromearthquakedamage

Page 110: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–785–

reportsfromthepast.87)Itisverifiedthattheamountofdeformationofthewallstructure,tiltangle,calculatedbythemethoddescribedaboveisequaltoorlessthantheallowablevalue.Itisnecessarytobeawarethattheallowableamountofdeformationofthewallstructureindicatedhereisdifferentfromtheallowableamountofdeformationindicatedin2.9.2(4) Seismic Coefficient for Verification used in Performance Verification of the Steel Cellular-bulkhead Quaywalls with Embedded Section.Inotherwords,theallowableamountofdeformationindicatedin2.9.2(4)isavaluethatincludesthedeformationofthecellwallstructureandthedeformationofthesoilsbelowthecellwallstructure.However,theamountofdeformationandtiltangleofthewallstructureindicatedhereistheamountofdeformationbasedonthetiltingofthecellwallstructure,andisaseparatelycalculatedvaluefromtheviewpointofberthingperformance.

(3)AnalysisofBearingCapacityofGroundsFortheanalysisoftheverticalbearingcapacityofthegroundsatthepositionofthebottomsurfaceofthewallstructure, refer toChapter 2, 2.2 Shallow Spread Foundations, 2.2.5 Bearing Capacity for Eccentric and Inclined Actions.

(4)ExaminationagainstSlidingofWall

① Fortheexaminationofwallstabilityagainstsliding,refertotheexaminationonwallslidingin2.2 Gravity-type Quaywalls.

② Slidingcanbeexaminedusingequation(2.9.35).Inthisequation,γrepresentsthepartialfactorforitssubscript,andsubscriptsd andkrespectivelystandforthedesignvalueandthecharacteristicvalue.

(2.9.35)where

W :weightofthewall(kN/m) Pv :verticalcomponentofearthpressureactingonthefrontandrearofthewall(kN/m) φ :angleofshearresistanceofthesoilatwallbottom(º) ks :horizontalshearmodulusatcellbottom(kN/m2) δ :cellbottomdisplacement(m) b :distributionofverticalsubgradereaction(m) γa :structuralanalysisfactor

Thedesignvaluesintheequationcanbecalculatedusingequationsbelow:

(2.9.36)

③Theverticalcomponentsoftheearthpressureactingonthefrontandrearofthewallthatshouldbetakenintoconsiderationinclude(a)theverticalcomponentoftheactiveearthpressure,(b)thefrictionforceduetotheearthpressurebelowthegroundsurface,(c)theverticalcomponentofthepassiveearthpressure,and(d)theverticalcomponentofsubgradereaction. Theverticalcomponentofearthpressure isconsideredapositiveforcewhenitactsinthesamedirectionasthatofthewallweight.

④Whentheinternalfrictionangleofthesoilabovethewallbottomisdifferentfromthatbelowthewallbottom,itisrecommendedtousethesmallervalueastheinternalfrictionangleatthewallbottom.

(5)VerificationofStabilityagainstCircularSlipFailureWhenthegroundissoft,examinationofstabilityagainstcircularslipfailureshallbemadeasnecessary.Whentheangleofshearresistanceofthesoilbehindthewallandthegroundis30ºorlarger,theexaminationofstabilityagainstcircularslipfailureisoftenomitted.Inthecaseofcellular-bulkheadquaywalls,itmaybeassumedthatthewallisarigidbodyandthusthecircularslipsurfacedoesnotgothroughtheinsideofthewall.

(6)LayoutofCellsThecellsshallbearrangedtomaketheareaequaltotheareaofthewallwiththeequivalentwidthobtainedin(1)and(2)above.

(a)Cellsshouldbearrangedevenlyalongthetotallengthofthefacelineofthequaywallwhereverpossible.Ingeneral,itisadvisabletosetthecellcenterinterval10to15%longerthanthecelldiameter.

(b)Arcsshouldbearrangedinsuchawaythattheyareconnectedperpendicularlytothewallofcellshell.Theradiusofthearcshouldbemadesmallerthanthatofthecellshell.

(c)Ingeneral,fronttipsofarcstendtoshiftforwardduringand/orafterthefillingwork.Thereforeitisadvisabletoarrangearcsinsuchawaythattheirfrontsurfacearelocatedabout100to150cminsidethefrontfacelineofcellwalls.Itisalsoadvisabletoarrangecellsinsuchawaythattheirfrontfacelineislocatedabout30cm

Page 111: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–786–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

insidethedesignfacelineofthequaywall.

(7)AnalysisofPlateThickness89)

① Analysisoftheplatethicknessofthecellunitsandthearcsisnormallycarriedoutusingequation(2.9.38).Inthefollowingequation,γisthepartialfactorcorrespondingtoitssubscript,andthesubscriptskanddindicatethecharacteristicvalueanddesignvaluerespectively.

(2.9.38)where,

T :tensionforceactingonthecell(N/mm) σy : yieldstressofthecellmaterialandthearcmaterial( N/mm2) t :platethicknessofthecellandthearc(mm)

Also,thetensileforceactingonthecellmaybecalculatingusingequation(2.9.39).

(2.9.39)

where, T :tensileforceactingonthecell(kN/m) Ki :earthpressurecoefficientoffilling w0 :convertedweightperunitvolumeoffilling(kN/m3) ρ0ghw :buoyancy forcedue to thedifference inwater levelwithin thecell andon the front surface

(kN/m) H0' :convertedwallheight(m) R :radiusofcell(m) q :surcharge(kN/m2)

Thedesignvaluesintheequationcanbecalculatedfromthefollowingequation.Forthepartialfactorsintheequation,refertoTable 2.9.1.

(2.9.40)where,

RWL :residualwaterlevel(m)LWL :meanmonthlylowestwaterlevel(m)HWL:meanmonthlyhighestwaterlevel(m)

② TheequivalentwallheightH0'canbecalculatedusingequation(2.9.18) in(1) above.

③Whenmaterialssuchasgravelwithlargeangleofshearresistanceareusedforthefillingorwhennocompactionisperformed, thecharacteristicvalueof thecoefficientoffillingearthpressure canbenormally set as0.6.Whenthefillingistobecompacted,tanφcanbeusedasthecharacteristicvalueofcoefficientoffillingearthpressure,becausetheinternalpressureofthecellandtheangleofshearresistanceofthefillingbecomelarger.Thecharacteristicvalueofthefillingearthpressurecoefficientforthearcsectionscanbetakenat1/2tanφ.

④ In determining the plate thickness of the cells and the arcs of the steel cellular-bulkhead quaywalls withembeddedsections,fabrication,construction,andmaintenanceaspectsmustbeconsideredsufficiently. Ifacorrosionallowance isconsideredfor thecellsandarcs, thecorrosionallowanceshallbeaddedto theplatethicknessobtainedfromequation(2.9.38)togivetheplatethickness.Equation(2.9.41)hasbeenproposedasamethodofobtainingtheplatethicknessofthecellsnecessaryforthestressesduringdriving,fromtestsonbucklingofcylindricalcellsandfromconstructionexperienceofthepast.91)

(2.9.41)

where, t :platethicknessofthecell(mm) E :young’smodulusofthesteelmaterial(kN/mm2) R :radiusofthecell(cm) N :averageNvalueofthesoilsintowhichthecellisdriven D' :depthofdriveofthecell(cm)

Page 112: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–787–

Also,theminimumplatethicknessofthecellforwhichthereisexperienceofdrivinginthepastis8mm,soitisdesirablethattheminimumplatethicknessisabout8mm.

(8)VerificationofT-shapedSheetPilesoftheSteelCellular-bulkheadQuaywallswithEmbeddedSections

① Normally,cellsandarcsareconnectedbyusingT-shapedsheetpiles.T-shapedsheetpileisasheetpilewithaspecialcrosssectiontojointhecelltoarcs,seeFig. 2.9.16.

Fig. 2.9.16 T–Shaped Sheet Pile

② ThestructureofT-shapedsheetpileshallhavesufficientsafetyagainstthetensileforcesactingonthesheetpileofcellsandarcs.ThestandardstructuresofT-shapedsheetpileareshowninFigs. 2.9.17 and2.9.18.

60 75 75 60

270400

60

75

200

230×14(SM-490A equivalent material)

Rivet φ25(SV-400)

(SY-295)t=12.7mm

14 14

14

14

12.7

12.7

PL

Rivet spacing 85mm

Flat-type steel sheet pile28

270×14 SM-490A equivalent material)PL

(Units ; mm)

Fig. 2.9.17 Standard Cross Section of T-shaped Sheet Pile for Rivet Connection with Rivet Intervals

400200 200

12.7

1212 912.7

24200

200×12(SM-490A)PL

Flat-type steel sheet pile (SY-295)t =12.7mm

(Units;mm)

Fig. 2.9.18 Standard Cross Section of T-shaped Sheet Pile for Welding Connection

③ StrengthofthecrosssectionsshowninFigs. 2.9.17 and2.9.18 hasbeenconfirmedbyabreakingtestwherethetensilestrengthofthejointofthesheetpileinacellis3,900kN/mandthearcdiameteris2/3orlessofthecell,tensilestrength=2,600kN/m.Therivetandweldingjointsfortestsweremadeinaworkshop.

(9)PartialFactorsForstandardpartialfactorsforuseinanalysisofsheardeformationunderpermanentsituations,slidingunderpermanentsituationsandvariablesituationsassociatedwithLevel1earthquakegroundmotion,and theplatethicknessunderpermanentsituationswheredominatingactionisearthpressure,refertothevaluesinTable 2.9.1. ThepartialfactorsshowninTable 2.9.1weredeterminedfromprobabilistictheorybasedontheaveragelevelofsafetyofdesignmethodsofthepast,forthememberswhoseprobabilitydistributionoftheparameterswas

Page 113: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–788–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

knownsuchasplatethicknessofcellsandplatethicknessofarcs.Inotherwords,thesystemfailureprobabilitybasedonequilibriumofforceswasobtainedfromtheindexexpressingtheriskthatthetensilestressinthecellandarcunitswillexceedtheyieldstress,assumingastandardlimitingvalueofPf=4.0×10–15forthecellunitsandPf=3.1×10–15forthearcunits.Theotherpartialfactorsweredeterminedtakingthesettingsofthedesignmethodsofthepastintoconsideration.

Table 2.9.1 Standard Partial Factors

(a) Permanent situationsAllfacilities

γ α µ/Xk V

Sheardeformation

γtanφ Tangentofangleofshearresistance 1.00 – – –γc Cohesion 1.00 – – –γw,γwi Unitweight 1.00 – – –γw0 Unitweightoffillingsoil 1.00 – – –γPa,γPp, γP1, γP2, γP3

Resultantearthpressure 1.00 – – –

γa Structuralanalysisfactor 1.20 – – –

Sliding

γW Weightofwallstructure 1.00 – – –γPv Resultantearthpressure 1.00 – – –γtanφ Tangentofangleofshearresistance 1.00 – – –γks HorizontalshearModulus 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

Cellshellplate

thickness

TargetreliabilityindexβT 7.77Targetreliabilityindexusedincalculatingγ βT’ 7.6γσy Steelyieldstrength 0.65 0.805 1.26 0.073γKi Fillingearthpressurecoefficient 1.15 –0.593 0.60 0.20γw0 Convertedunitweightoffillingsoil 1.00 – – –γq Surcharge 1.00 – – –γRWL Residualwaterlevel 1.05 –0.012 1.00 0.05

Arcplatethickness TargetreliabilityindexβT 7.8

Targetreliabilityindexusedincalculatingγ βT’ 7.8γσy Steelyieldstrength 0.65 0.817 1.26 0.073γKi Fillingearthpressurecoefficient 1.15 –0.576 0.60 0.20γw0 Convertedunitweightoffillingsoil 1.00 – – –γq Surcharge 1.00 – – –γRWL Residualwaterlevel 1.05 –0.023 1.00 0.05

*1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Coefficientofvariation.

(b) Variable situations of Level 1 earthquake ground motionAllfacilities

γ α µ/Xk V

Sliding

γW Weightofwallstructure 1.00 – – –γPv Resultantearthpressure 1.00 – – –γtanφ Tangentofangleofshearresistance 1.00 – – –γks Horizontalshearmodulus 1.00 – – –γδ Wallsurfacefrictionangle 1.00 – – –γq Surcharge 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γa Structuralanalysisfactor 1.00 – – –

*1: α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Coefficientofvariation.

Page 114: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–789–

2.10 Placement-type Steel Cellular-bulkhead Quaywalls Public NoticePerformance Criteria of Cellular-bulkhead Quaywalls with Embedded Sections

Article 522Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaofplacementtypecellular-bulkheadquaywallswithembeddedsectionsshallbesuchthattheriskofoccurrenceofoverturningunderthevariableactionsituation,inwhichthedominantactionisLevel1earthquakegroundmotions,isequaltoorlessthanthethresholdlevel.

[Technical Note]

2.10.1 Fundamentals of Performance Verification

(1)The following is applicable to the performance verification of placement-type cellular-bulkheadquaywalls.Theperformanceverificationmethoddescribedheremayalsobeappliedtotheperformanceverificationofseawallsusingthisstructure.

(2) Placement-type cellular-bulkhead quaywalls are cellular-bulkhead quaywalls without an embeddedsection. Inmanycases thesequaywallsareconstructedonstrongfoundationsubsoilwhosebearingcapacity is considered sufficiently large or on the subsoil that has been improved to have sufficientbearingcapacity.

(3)Anexampleofthesequenceofperformanceverificationofplacement-typecellular-bulkheadquaywallsisshowninFig. 2.10.1.

(4)In theperformanceverificationofplacement-typecellular-bulkheadquaywalls,normallyanalysisofsheardeformationofcellsiscarriedoutforpermanentsituations,andanalysisofoverturningofcellsiscarriedoutforvariablesituationsassociatedwithLevel1earthquakegroundmotion.

(5)Forthefillingofcells,itisdesirablethatgoodqualitysandorgravelisused,compactedtoasufficientdensity.

2.10.2 Actions

For the action on placement-type cellular-bulkhead quaywalls, refer to 2.9 Cellular-bulkhead Quaywalls with Embedded Sections.Thecharacteristicvalueofseismiccoefficientforverificationusedintheperformanceverificationofplacement-typecellular-bulkheadquaywallsundervariablesituationsassociatedwithLevel1earthquakegroundmotion shall be appropriately calculated taking into consideration the structural characteristics. For the purposeof convenience, thecharacteristicvalueof seismiccoefficient forverificationofplacement-typecellular-bulkheadquaywalls may be calculated in accordance with 2.2 Gravity-type Quaywall, 2.2.2(1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of Foundation Ground in Variable Situations in respect of Level 1 earthquake ground motion.

Page 115: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–790–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Verification of shear deformation and sliding of wall,bearing capacity of foundation soils

Verification of sliding and overturning of wall, and bearing capacity of foundation soils

Permanent situations

Accidental situations of Level 2 earthquake ground motion

Verification of structural members

Permanent situations

Variable situations of Level 1 earthquake ground motion

Determination of cell layout

Analysis of stresses in cell, arcs, and connections between cell and arcs

Determination of cross-sectional dimensions

Steel plate cellular-bulkhead quaywalls

Steel sheet pile cellular-bulkhead quaywalls

Permanent situations

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-section dimensions

Analysis of stresses in connections of flat-type sheet pile

Performance verificationPerformance verification

*1

*2

*3

4

Analysis of amount of deformation by dynamic analysis

Verification of deformation by dynamic analysis

Verification of circular slip failure and settlement

*1:Theevaluationoftheeffectofliquefactionisnotshown,sothismustbeseparatelyconsidered.*2:AnalysisoftheamountofdeformationduetoLevel1earthquakegroundmotionmaybecarriedoutbydynamicanalysiswhennecessary. Forhighearthquake-resistancefacilities,analysisoftheamountofdeformationbydynamicanalysisisdesirable.*3:Forhighearthquake-resistancefacilities,verificationiscarriedoutforLevel2earthquakegroundmotion.*4:Forsteelsheetpilecellular-bulkheadquaywalls,verificationiscarriedoutfortheconnectionsofflat-typesheetpile.

Fig. 2.10.1 Example of the Sequence of Performance Verification of Placement-type Cellular-bulkhead Quaywalls

2.10.3 Setting of Cross-sectional Dimensions

Thewidth of thewall structure used in performance verificationmay be the equivalentwallwidth,which is animaginarywallwidthobtainedbyreplacingthecellandarcpartswitharectangularwallstructure.Fortheconvertedwallstructurewidth,referto2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

Page 116: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–791–

2.10.4 Performance Verification

(1)ExaminationofShearDeformationofWall

① Examinationof the shear deformationof thewall body shall bemade in accordancewith the performanceverificationmethodsdescribedin2.9 Cellular-bulkhead Quaywalls with Embedded Sections. Theresistancemoment shall be calculated appropriately in consideration of the structural characteristics of the cellular-bulkheadandthedeformationofthewall.Thedeformationmomenttobeusedintheverificationshallbethemomentattheseabottomduetoexternalforcesactingonthewallbodyabovetheseabottom,includingactiveearthpressureandresidualwaterpressure.

②Whenthedeformationofthewallbodyisnotallowed,i.e.whenthehorizontaldisplacementofthecelltopisapproximatelylessthan0.5%ofthecellheight,theresistancemomentagainstdeformationcanbecalculatedusingequations(2.10.1)and(2.10.2).

(2.10.1)

(2.10.2)where

Mrd :resistancemomentofcell(kN・m/m) Hd' :equivalentwallheightusedintheexaminationofdeformationofcell(m) R :deformationresistancecoefficient w0 :equivalentunitweightoffilling(kN/m3) ν :ratioofequivalentwallwidthtoequivalent wallheightusedinexaminingcelldeformation

ν=B/Hd' φ :angleofshearresistanceoffillingmaterial(º)

Thedesignvaluesintheequationscanbecalculatedusingthefollowingequations.Here,thesymbolγrepresentsthepartialfactorforitssubscript,andsubscriptsd andkrespectivelystandforthedesignvalueandthecharacteristicvalue.

(2.10.3)

Allpartialfactorsusedincalculatingthecell'sresistancemomentcanbesetat1.00.

③ In thecalculationof resistancemoment, theequivalentwallheightof thecellHd' iscalculatedbymeansofequation(2.10.4).TheheightHd'isthatabovetheseabottom.

(2.10.4)where

Hd :heightfromseabottomtotopofquaywall(m) Hw :heightfromseabottomtoresidualwaterlevel(m) wt :wetunitweightoffillingaboveresidualwaterlevel(kN/m3) w' :submergedunitweightofsaturatedfilling(kN/m3) w0 :equivalentunitweightoffilling(kN/m3);normally,w0=10kN/m3

InthecalculationoftheequivalentwallheightHd',surchargemaybeignoredasinthecaseofresistancemomentcalculationdiscussedintheperformanceverificationof2.9 Cellular-bulkhead Quaywalls with Embedded Sections.Thedesignvaluesintheequationscanbecalculatedusingthefollowingequations.Here,thesymbolγrepresentsthepartialfactorforitssubscript,andsubscriptsk anddrespectivelystandforthecharacteristicvalueandthedesignvalue.RefertoTable 2.10.1forpartialfactorstobeusedfortheverification.

(2.10.5)

④Whenthefillingmaterialcanberegardedasuniform,theheightHd ofthequaywalltopabovetheseabottomcanbeusedinplaceoftheequivalentwallheightHd'ofequation(2.10.1).

Page 117: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–792–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)ExaminationofSlidingofWallStructureForexaminationofsliding,referto2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(3)ExaminationofOverturningofWall

① Inthecalculationstoexaminethestabilityofacellagainstoverturning,thestabilityofcellshallbeexaminedagainsttheexternalforcesactingabovethewallbottom,includingearthpressure,residualwaterpressure,andgroundmotion.

② Forperformanceverification foroverturning, normally equation (2.10.6) canbeused. In the equation, thesubscriptskanddindicatethecharacteristicanddesignvaluesrespectively.Forverificationofoverturningofcellstructures,thestructuralanalysisfactorshallbeanappropriatevalue1.10orhigher,andallotherpartialfactorscanbe1.00.

(2.10.6)where,

Mrd :resistancemomentagainstoverturningofsteelcell(kN·m/m) Md :deformationmomentofcellbottomsurface(kN·m/m)

③ Theresistancemomentofcellagainstoverturningcanbecalculatedusingequations(2.10.7)and(2.10.8).

(2.10.7)

(2.10.8)

where Mrd :resistancemomentofsteelplatecellagainstoverturning(kN·m/m) H' :equivalentwallheightofthecelltoobtaintheresistancemomentagainstoverturning(m) Rt :overturningresistancecoefficient ν :rateofequivalentwallwidthtoequivalentwallheightofthecell,ν=B/H' B :equivalentwallwidthofthecell(m) δ :wallfrictionangleoffillingmaterial(º);normally,δ =15°isused. Ka :coefficientofactiveearthpressureoffillingmaterial

Forothersymbols,refertothoseusedinequations(2.10.1)and(2.10.2).Thedesignvaluesintheequationcanbecalculatedusingequationsbelow:

(2.10.9)

④ TheequivalentwallheightH'usedtocalculatetheresistancemomentagainstoverturningcanbecalculatedusingequation(2.10.10).

(2.10.10)where

H' :equivalentwallheightusedtocalculatetheresistancemomentagainstoverturning(m) Hd :distancefromthebottomofthecelltothetopofthequaywall(m) Hw :distancefromthebottomofthecelltotheresidualwaterlevel(m)

⑤ Ingeneral, thefillingof a cellusedas aquaywall isnotuniformbecause themajorportionof suchfillingisunder thewaterand thussubjected tobuoyancy. Therefore, theequivalentwallheight isusedhereas inthe calculationof the resistancemoment of the cell against deformation. When thefillingmaterial canbeconsideredasuniform,thetotalwallheightofthecellH maybeusedinthesamecalculationinplaceoftheequivalentwallheightH'ofequation(2.10.7). Althoughtheactionsofthefillingagainstoverturningisnotuniform,91)sincethemainpartofthefilling'sresistanceisthehangingeffect, themarginoferrorisminimalandsafetyissecuredevenwhentheratioofequivalentwallwidthtoequivalentwallheightνisusedasinequation(2.10.8).Inthiscase,surchargecanbeignored.

⑥ Theoverturningmomentisthemomentatthebottomofcellduetotheexternalforcesactingabovethebottom.TheequivalentwallheightofthecellH ' usedinthecalculationoftheresistancemomentshouldbeaheightabovethecellbottom.

Page 118: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–793–

(4)ExaminationofBearingCapacityonCellFrontToe

① Themaximumsubsoilreactionforcegeneratedatthefronttoeofthecellshallbecalculatedappropriatelyinconsiderationoftheeffectofthefillingmaterialactingonthefrontwallofthecell.

② Themaximumfronttoereactionforceonthecellfronttoemaybeobtainedfromequation(2.10.11).

(2.10.11)where,

Vt :maximumfronttoereactionforceonthecellfronttoe(kN/m) wd :unitweightoffillingsoil(kN/m3) H :totalwallheightofthecell(m) φ :angleofshearingresistanceoffillingsoil(°)

Thedesignvaluesintheequationmaybecalculatedusingthefollowingequation. Forcalculationofthemaximumfronttoereactionforceonthecellfronttoe,allpartialfactorsmaybetakentobe1.00.

wd = γwwk,tanφd =γtanφ tanφk (2.10.12)

Equation(2.10.11)isanequationgivingtheweightofthefillingsoilweighingdownonthefrontwall,withtheproductoftheearthpressurecoefficientofthefillingsoilandthewallsurfacefrictioncoefficientgivenbytan2φ.Therefore,whenthefillingisnotuniform,itisnecessarytocarryoutthecalculationforthesamedomainastheearthpressurecalculation.

③ ThewallheightH shouldnormallybeconsideredastheheightofthewalltopabovethewallbottom.However,whenthesuperstructureofthecellissupportedbyfoundationpiles,itmaybeconsideredastheheightofthebottomofthesuperstructureabovethewallbottom.

④ Equation(2.10.11)representsthecellfronttoereactionforcewhentheoverturningmomentisroughlyequalto theoverturningresistancemomentofequation(2.10.7). Withoutoccurrenceofoverturning, thereactionforceissmallerthanthevalueobtainedfromequation(2.10.11).Accordingtoamodeltest,themaximumfronttoe reaction forceVt is nearlyproportional to theoverturningmoment.92) Therefore reaction forcewithoutoccurrenceofoverturningshouldbecalculatedusingequation(2.10.12).

(2.10.13)where

V :fronttoereactionforceofthecellcorrespondingtooverturningmomentM (kN/m) M :overturningmoment(kN·m/m) Mr0 :resistancemomentagainstoverturning(kN·m/m)

Hence,useoflargercellradiusmakesthecellsaferagainstoverturningbyincreasingtheresistancemomentMr0,whilereducingthefronttoereactionforceV.

⑤ Forthebearingcapacityoftheground,refertothebearingcapacityin Chapter 2, 2.2 Bearing Shallow Spread Foundations.

(5)ExaminationofPlateThickness

① Examinationoftheplatethicknessofthecellsandarcsmaybecarriedoutinaccordancewiththeexaminationofplatethicknessgivenintheperformanceverificationin2.9 Performance Verification of Cellular-bulkhead Quaywalls with Embedded Sections.

② Fromthepointofviewofcellstiffnessandcorrosion,aminimumcellshellthicknessof6mmisnecessary.

(6)PartialFactorsForstandardpartialfactorsforuseinverificationofthepermanentsituationsandvariablesituationsinrespectofLevel1earthquakegroundmotion,refertothevaluesinTable 2.10.1.ThepartialfactorsinTable 2.10.1havebeendeterminedconsideringthesettingofdesignmethodsofthepast.

Page 119: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–794–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 2.10.1 Standard Partial Factors

(a) Permanent situationsHighearthquake-resistancefacilities,

normalγ α µ/Xk V

Sheardeformation γtanφ Tangentoftheangleofshearingresistance 1.00 – – –γw,γwi Unitweight 1.00 – – –γw0 Unitweightoffillingsoil 1.00 – – –γδ Wallsurfacefrictionangleoffillingsoil 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

*1: α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Variablefactor.

(b) Variable situations of Level 1 earthquake ground motionHighearthquake-resistancefacilities,

normalγ α µ/Xk V

Overturning γw Unitweightoffillingsoil 1.00 – – –γtanφ Tangentoftheangleofshearingresistance 1.00 – – –γPh Resultantearthpressure 1.00 – – –γPdw Resultantdynamicwaterpressure 1.00 – – –γkh Seismiccoefficientforverification 1.00 – – –γa Structuralanalysisfactor 1.10 – – –

*1: α:Sensitivityfactor,µ/Xk:Deviationofaveragevalues,averagevalue/characteristicvalue,V:Variablefactor.

2.10.5 Performance Verification of Structural Members

Fortheperformanceverificationofthestructuralmembersofplacement-typecellular-bulkheadquaywalls,refertotheperformanceverificationofthestructuralmembersin2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

Page 120: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–795–

2.11 Upright Wave-absorbing Type Quaywalls2.11.1 Fundamentals of Performance Verification

(1)Thefollowingisapplicabletouprightwave-absorbingtypequaywalls,butitmayalsobeappliedtotheperformanceverificationofseawalls.

(2)Theuprightwave-absorbingtypequaywallshallbestructuredsoastohavetherequiredcapabilityofwaveenergydissipationandshallbelocatedatstrategicpositionsforenhancingthecalmnesswithintheharbor.

(3)Waveswithinaharboraretheresultofsuperpositionofthewavesenteringtheharborthroughthebreakwateropenings, the transmittedwaves over the breakwaters, thewind generatedwaveswithin the harbor, and thereflectedwavesinsidetheharbor.Byusingquaywallsofwave-absorbingtype,thereflectioncoefficientcanbereducedto0.3to0.6fromthatof0.7to1.0ofsolidquaywalls.Toimprovetheharborcalmness,itisimportanttodesignthealignmentsofbreakwaters inacarefulmanner. Thesuppressionofreflectedwavesthroughtheprovisionofwave energy absorbing structureswithin the harbor is also an effectivemeansof improving thecalmness.

(4)DeterminationofStructuralType

① Quaywallsofwave-absorbingblocktypeareconstructedbystackinglayersofvariousshapeofconcreteblocks.Thistypeisnormallyusedtobuildrelativelysmallquaywalls.Thequaywallwidthisdeterminedbystabilitycalculationasagravity-typequaywall.

② Uprightwave-absorbing caisson type quaywalls include slit–wall caisson type and perforated–wall caissontype. This type is normally used to build large size quaywalls. Thewave-absorbing performance can beenhancedbyoptimizingtheaperturerateofthefrontslitwall,thewaterchamberwidth,andothersforthegivenwaveconditions.

③ Thereflectioncoefficientispreferablydeterminedbymeansofahydraulicmodeltestwheneverpossible,butitmay also be determined in accordancewithChapter 4, 3.5 Gravity-type Breakwater (Upright Wave-absorbing Block Type Breakwaters) and Chapter 4, 3.6 Gravity-type Breakwater (Wave-absorbing Caisson Type Breakwaters).

④ It is recommended that the crown elevation of thewave-absorbing section of awave-absorbing block typequaywallissetashighas0.5timesthesignificantwaveheightormoreabovemeanmonthly-highestwaterlevel,andthatthebottomelevationofthewave-absorbingsectionissetasdeepas2timesthesignificantwaveheightormorebelowmeanmonthlylowestwaterlevel.

2.11.2 Performance Verification

(1)Anexampleofthesequenceoftheperformanceverificationofuprightwave-absorbingtypequaywallsisshowninFig. 2.11.1.

(2)Thecharacteristicvalueof the seismic coefficient forverificationused inperformanceverificationofuprightwave-absorbing typequaywalls for thevariable situations associatedwithLevel1 earthquakegroundmotionshallbeappropriatelycalculated taking thestructuralcharacteristics intoconsideration. Forconvenience, thecharacteristicvalueof the seismiccoefficientofuprightwave-absorbing typequaywallsmaybecalculated inaccordancewiththatforgravity–typequaywallsshownin2.2.2(1) Seismic Coefficient for Verification used in Verification of Damage due to Sliding and Overturning of Wall Body and Insufficient Bearing Capacity of the Foundation Ground in Variable Situations in respect of Level 1 earthquake ground motion.

Page 121: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–796–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Setting of design conditions

Verification of sliding and overturning of wall,and bearing capacity of foundation soils

Verification of sliding and overturning of wall,and bearing capacity of foundation soils

Verification of circular slip failure and settlement

Determination of cross-sectional dimensions

Verification of structural members

Permanent situations

Variable situations of Level 1 earthquake ground motion

Accidental situations ofLevel 2 earthquake

ground motion

Permanent situations

Provisional assumption of layout

Analysis of harbor calmness within harbor

Evaluation of actions including seismic coefficient for verification

Provisional assumption of cross-sectional dimensions*1

*2

*3

Performance verificationPerformance verification

Analysis of amount of deformation by dynamic analysis

Verification of deformation by dynamic analysis

*1:Evaluationofliquefaction,settlement,etc.,arenotshown,soitisnecessarytoconsidertheseseparately.*2:Whennecessary,anexaminationoftheamountofdeformationusingdynamicanalysiscanbecarriedoutforLevel1 earthquakegroundmotion. Forhighearthquake-resistancefacilities,itisdesirablethatanexaminationoftheamountofdeformationbecarriedout usingdynamicanalysis.*3:VerificationforLevel2earthquakegroundmotioniscarriedoutforhighearthquake-resistancefacilities.

Fig. 2.11.1 Example of the Sequence of Performance Verification of Upright Wave-absorbing Type Quaywalls

References

1) Miyazaki,S.:PracticeofHydrographyimplementedinthecourseofportconstruction,NoticeofConstructionDivisionofPortandHarborsBureau,MinistryofTransport,No.61,1972

2) JapanPortAssociating:Handbookofdesignofportconstructionworks,pp.215,19593) Matsunaga,Y.,K.OikawaandT.Wako:Structurallimitofwharves,JournalofJSCE,Vol..36No.8,pp.26-27,19514) C. Zimmerman,H. Schwarze,N. Schulz, and S.Henkel: International Conference onCoastal and Port Engineering in

DevelopingCountries,25/29September,Rj,Brazil,pp.2437-2451,19955) Matsunaga,Y.,K.OikawaandT.Wako:DeformationoffoundationgroundofgravitytypeportfacilitiesduetoHanshin-

AwajiLargeDisaster,ProceedingsofAcademicPapersonHanshin-AwajiLargeDisaster,pp.383-390,19966) Nakahara,T.,Kohama,E.andSugano,T.:Modelshaketabletestontheseismicperformanceofgravitytypequaywallwith

Page 122: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–797–

differentfoundationgroundproperties,13WCEE,20047) Kishitani,K.,Y.Kunishige,T.HiranoandM.Yamashita:Designmethodofcaissontypewharfwithslopingbottomandits

characteristics,Proceedingsof53thAnnualConferenceofJSCE,19988) Morishita,T.,G.Kimura,K.ShiramizuandH.Tanaka:Discussiononbehaviorofcaissontypewharveswithslopingbottom

underearthquake,Proceedingsof53thAnnualConferenceofJSCE,19989) Nagao,T.,N.Iwata,K.Fujimura,M.Morishita,H.SatoandR.Ozaki:Seismiccoeffiectsofgravitytypeandsheetpiletype

quaywallagainstthelevel-oneearthquakegroundmotion,TechnicalNoteofNationalInstituteforLandandInfrastructureManagementNo.310,2006

10) Nagao,T.andN.Iwata:MethodologyofthedeterminationofSeismiccoeffiectsfortheperformanceverificationofgravitytypeandsheetpiletypequaywallagainstthelevel-oneearthquakemotion,ProceedingsofStructuralEngineering,JSCE,2007

11) FURUDOI,T.andTakeoKATAYAMA:Fieldobservationofresidualwaterlevel,TechnicalNoteofPHRINo.115,197112) CoastalDevelopmentInstituteofTechnology:TechnicalManualforL-sapewharves,200613) Kohama,E.,Miura,K.,Yoshida,N.,Ohtsuka,N.andKurita,S.:InstabilityofGravityTypeQuaywalllnducedbyLiquefaction

ofBackfillduringEarthquake,SoilsandFoundations,Vol.38,No.4,PP.71-84,199814) Tsuchida,T.,Y.Kikuchi,T.Fukuhara,T.WakoandK.YAMAMURA:SliceMethodforEarthPressureAnalysisandits

ApplicationtoLight-WeightFill,TechnicalNoteofPHRINo.924,199915) Kitajima,S.,H.SAKAMOTO,S.KISHI,T.NAKANOandS.KAKIZAKI:OnSomeProblemsBeingConcernedwith

PreparationfortheDesignStandardson`PortandHarbourStructures,TechnicalNoteofPHRINo.30,pp.32-43,196716) Nagao,t.,R.ShibazakiandR.Ozaki:OrdinaryLevel-onereliabilitydesignmethodofportfacilitiesbasedonminimum

expected total cost considering economic losses, Proceedings of Structural Engineering, JSCE,Vol. 51A, pp. 389-400,2005

17) Lysmar,J,,Udaka,T.,Tsai,C.F.andSeed,H.B.:FLUSH-AComputerprogramforearthquakeresponseanalysisofhorizontallylayeredsite,ReportNo.EERC72-12,CollegeofEngineering,UniversityofCalifornia,Berkeley,1972

18) IAI,S.,YasuoMATSUNAGAandTomohiroKAMEOKA:StrainSpacePrasticityModelforCyclicMobility,Rept.ofPHRIVol.29No.4,pp.27-56,1990

19) SusumuIAl,KojiICHII,HangbngLIUandToshikazuMORITA:Effectivestressanalysesofportstructures,SpecialIssueofSoilsandFoundations,JapaneseGeotechnicalSociety,pp.97-114,1998

20) ITASCA: FLAC- Fast Lagrangian Analysis of Contina, User’s Manua1, Itasca Consulting Group, Inc., Minneapolis,Minnesota,1995

21) Cundall,P.A.:Acomputermodelforsimulatingprogressive,largescalemovementinblockyrocksystem,Symp.ISRM,Nancy,France,Proc.,Vol.2,pp.129-136,1971

22) Kanatani,M.,Kawai,T.andTochigi,H.:Predictionmethodondeformationbehaviorofcaisson-typeseawallscoveredwitharmored embankment onman-made islands during earthquakes, Soil sandFoundations, JapaneseGeotechnical Society,Vol.41-6,2001

23) Takahashi,T.,H.SaiandK.UkaiProposalofsafetyexaminationmethodagainst liquefactionofdikesbyFiniteElementMethod,Proceedingsof40thConferenceonGeotechnicalEngineering,205

24) Iai,S.:Similitudeforshakingtabletestsonsoil-structure-fluidmodelinggravitationalfield,,Rept.ofPHRIVol.27No.3,pp.3-24,1988

25) Sugano,T.:U-JapanSymposiumonearthquakeresistanceofportandCityfunction-PrototypeexperimentatTojkachiPort-DisasterPrevention,No.190,pp3-5,2003

26) Kotsutsumi,O.,S.Shiozaki,K.Kazui,S.IaiandH.Mori:Examinationoftheimprovementinthepresicenessoftheanalysisof2-Dimensionaleffectivestressprecisenessimprovement

27) IAI, S.,Koji ICHII andToshikazuMORITA:Mechanism ofDamage to Port Facilities during 1995Hyogo-KenNanbuEarthquake(Part7)EffectiveStressAnalysisonaCaissonTypeQuayWall,TechnicalNoteofPHRINo.813,1995

28) lshihara,K.,Yasuda,S.andNagase,H.:Soilcharacteristicsandgrounddamage,SpecialIssueofSoilsandFoundations,JapaneseGeotechnlcalSociety,pp.109-118,1996

29) ToshikazuMORITA, T., Susumu IAI, Hanlong LIU, Koji ICHI andYukihiro SATO: SimplifiedMethod to DetermineParameterofFLIP,TechnicalNoteofPHRINo.869,1997

30) HandbookofCountermeasureagainstLiquefactionofReclaimedLand(RevisedEdition),CDIT,1997.31) FLIPStudyGroup:SummaryoftheresultsofsensitivityanalysisofvariousFLIPparametersfordamagedcrosssectionof

RF3wharfatRokkoIsland,199932) FLIPStudyGroup:LecturenoteofFLIPutilizationmethod,200433) Kazui,Y.:UtilizationofFEMindesigningandorientation,SoilandFoundation,VoL53No.8Ser.No.571,pp.10-12,200534) Kazui,K.,H.Takahashi,T.NakamotoandY.Akakura:Evaluationofallowabledamagedeformationofgravitytypewharf

duringearthquake,Proceedingsof10thSymposiumofJapaneseearthquakeEngineering,K-4,199835) KojiIchii,SusumuIai,YukihiroSatoandHanlongLiu:Seismicperformanceevaluationchartsforgravitytypequaywalls,

StructuralEng./EarthquakeEng.,JSCE,Vol.19,No.1,21s-31s,200236) KASUGAI,Y.,KenichiroMINAMI andHiroyuki TANAKA:The Prediction of the Lateral Flow of Port andHarbour

Structures,TechnicalNoteofPHRINo.726,199237) Ishii,Y.(Translation):Tschbotarioff’sSoilMechanics(Vol.I),Giho-doPublishing,p.308,1964

Page 123: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–798–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

38) P.W.Rowe:Anchoredsheetpilewalls,Proc.OfL.C.E.,Vol.1Pt.1,195539) Arai,H.,S.YokoiandT.Furube:Studyonearthquake-resistanceperformanceofsheetpilewallsSecondReport,Proceedings

of2ndannualconferenceofPHRI,p.73,196440) Arai,H.andS.Yokoi:Studyonearthquake-resistanceperformanceofsheetpilewallsThirdReport,Proceedingsof3rd

annualconferenceofPHRI,p.100,196541) Sawada,G.:Calculationmethodofpassiveearthpressureofembeddedportionofsheetpilesintheslopedground,Technical

NoteofPHRI,No.9,196442) Nagao,T.,N.Iwata,K.Fujimura,M.Morishita,H.SatouandR.Ozaki:Seismiccoeffiectsofcaissontypeandsheetpiletype

quaywallagainstthelevel-oneearthquakegroundmotion,TechnicalNoteofNationalInstituteforLandandInfrastructureManagementNo.310,2006

43) Nagao,T.andR.Ozaki:StudyonperformancespecificationofsheetpilewharfwithverticalpileanchorageagainstLevel-oneearthquakemotion,ProceedingsofEarthquakeEngineering,JSCE,2005

44) Ishii,Y.(Translation):Tschbotarioff’sSoilMechanics(Vol.II),Giho-doPublishing,p.192,196445) Suzuki,M:PortEngineering,KazamaShotenPublishing,p.474,195546) R.W.Rowel:Atheoreticalandexperimentalanalysisofsheet-pilewalls,Proc.ofL.C.E.,Vol.4.Pt.1,195547) Ishiguro,K.,M.ShiraishiandH.Umiwa:SteelpilemethodVol.1,Sanka-doPublishing,p,95,198248) Takahashi,K.,Y.KikuchiandK.Ishiguro:AnalysisofdynamicbehaviorofTie-rodtypesheetpilewall,Proceedingsof

StructuralEngineering,JSCE,Vol.42A,P.ll95,199649) Takahashi,K.,Y.KikuchiandY.AsakiAnalysisofFlexuralBehaviorofAnchoredSheetPileWalls,TechnicalNoteofPHRI

No,756,199350) Takahashi, K. and K. Ishiguro: Resolution of piles and sheet piles as vertical beam under transverse loads, Sankaido

Publishing,pp.177-183,199251) Terzaghi:EvaluationofcoefficientsofsubgradeReaction,Geotechnique,Vol.5,pp.297-326,195552) Tschbotarioff:Largescaleearthpressuretestswithmodelflexiblebulkheads,PrincetonUniv.,194953) TerzaghiandPeck(TranslatedbyHoshi):SoilMechanics(Application),MaruzenPublishing,p.192,197054) KUBO,K.,FujioSAIGUSAandAtsumiSUZUKI:LateralResistanceofVerticalAnchorPiles,Rept.ofPHRIVol.4No.2,

196555) NationalAssociationofDisasterPrevention:Designmanualfordisasterrestorationworks,200556) JapanRoadAssociation:Guidelineforconstructionoftemporarystructuresforearthworksforroads,pp.107-109,199957) AKATSUKA,Y. andKuniichiASAOKA: Experimental Studies onHigh Strength Tie Rod, Rept. of PHRIVol. 7No.

3,pp.135-167,196858) Nagao,t.,R.ShibazakiandR.Ozaki:OrdinaryLevel-onereliabilitydesignmethodofportfacilitiesbasedonminimum

expectedtotalcostconsideringeconomiclosses,ProceedingsofStructuralEngineering,JSCE,Vol.51A,pp.389-400,200559) Ozaki,R.andT.Nagao:Analysisofbehaviorofsheetpilewharvesduringearthquakeutilizingthelocationofcoupled-pile

anchorageasaparameter,Proceedingsof60thAnnualConferenceofJSCE,200560) Katayama, T., T. Nakano, T. Hasumi and K. Yamaguchi: Analysis of the Damage to Harbour Structures by the 1968

TOKACHI-OKIEarthquake,TechnicalNoteofPHRINo,93,pp.89-98,p.136,196961) PortandHarbourBureau,FirstPortConstructionBureauandPHRIMinistryofTransport:ReportofDamagesofPortsdue

toNiigataEarthquakePart1,.101,196462) MITSUHASHI,I.:Inferringthevalueofthe2-dimensionalk-value,TechnicalNoteofPHRINo.219,197563) Kotsutsumi,O.,S.Shiosaki,K.Kazui,S.IaiandH.Mori:Examinationofprescisionimprovementof2-dimensionaleffective

stressanalysis,ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.443-448,200464) Iai,S.,M.Tatsuta,O.Kotsutsumi,Y.Tame,Y.YamamotoandH.Mori:Analyticalexaminationofeffectofinitialstress

conditionsofgroundonthebehaviorofsheetpilewharfduringearthquake,Proceedingsof26thConferenceonEarthquakeEngineering,pp.809-812,2001

65) Okada,T.,S.Miwa,K.Ishikura,S.Hiraoka,E.MatsudaandN.Yoshida:Verificationofmodelingmethodofinitialstressstate foreffectivestressanalysisbasedon theexamplesof thedamagesofsteelsheetpilewharves,Proceedingsof26thConferenceonEarthquakeEngineering,pp.813-816,2001

66) Miwa,S.,O.Kotsutsumi,T.Ikeda,T.OkadaandS.Iai:Evaluationofearthquakedamageofsteelsheetpilewharvesbasedonstressanalysisconsideringinitialstressstates,ProceedingofStructuralEngineering,Vol.49A,pp.369-380,2003

67) Shiozaki,S.,T.SuganoandE.Kohama:Experimentandanalysisonearthquakeresistanceofsheetpilewharves,ProceedingsofOffshoreDevelopment,JSCE,pp.131-136,2004

68) JapanPortAssociation:Guidelineforconstructionofsteelsheetpiles,196369) Ishiguro,K.,N.ShiraishiandH.Umiwa:SteelSheetpilemethod(Vol.1).Sanakai-doPublishing,pp,297-328,198270) Ooshima,M.M.Sugiyama:Designmethodofsheetpilewallswithbatterpileanchorage,SoilandFoundation,Vol.13,No.

3,pp.11-18,196571) Ishiwata,T.,K.IshiguroandY.Higuchi:Sheetpilewallswithbatterpileanchorageandmeasurementof theirbehavior,

TechnicalReportofFujiSteelCorporation,Vol.13No.4,pp.73-87,196472) Sawaguchi,M.:LateralBehaviorofaDoubleSheetPileWallStructure,SoilsandFoundations,Vol.14No.1,pp.45-59,197473) OHORI,K., Yoshihiro SHOJI, Kunio TAKAHASHI, Hiroshi UEDA,MichihikoHARA,YutakaKAWAI andKeisuke

SHIOTA:StaticBehaviorofDoubleSheetPileWallStructure,Rept.ofPHRIVol.23No.1,pp.1O3-151,1984

Page 124: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–799–

74) TechnicalCommitteeofShoreProtectionFacilities:TechnicalStandardsandcommentaryofcoastalprotectionfacilities,JapanPortAssociation,2004

75) JapanRoadAssociation:Guidelineforconstructionoftemporarystructuresforearthworksforroads,pp.76-87,199976) G.R.Tschebotarioft,F.R,Ward:MeasurementswithWicgmannlnc1inometeronFiveSheetPileBulkheads,4thIntern,Conf.

SoilMech.AndFoundationEng.,Vol.2,195777) EditedbyG.A.Leonards:FoundationEngineering,McGrawHillBookCo.,PP.514,196278) TAKAHASHI,K., SetsuoNODA,KatsumiKANDA,SatoshiMIURA,TaisakuMIZUTANI andShigekiTERAZAKI:

HorizontalLoadingTestsonModelsofSteelSheetPileCellularBulkheads-Part2DynamicBehavior-79) TAKAHASHI,K., SetsuoNODA,KatsumiKANDA,SatoshiMIURA,TaisakuMIZUTANI andShigekiTERAZAKI:

Horizontal loadingTests onModels ofSteelSheet pile cellularBulkhead-Part 2DynamicBehavior-,TechnicalNoteofPHRI,No.639,1989

80) KITAJIMA,S.,SetsuoNODAandTanekiyoNAKAYAMA:AnExperimentalStudyontheStaticStabilityoftheSteelPlateCellularBulkheadswithembedment,TechnicalNoteofPHRI,No,375,1981

81) NODA,SD.,SosukeKITAZAWA,Takeshi IIDA,NobuoMORIandHiroshiTABUCHI:AnExperimentalStudyon theEarthquakeResistanceofSteelPlateCellularBulkheadswithEmbedment,Rept.ofPHRIVol.21No.2,1982

82) Yokoyama,Y.:Designandconstructionofsteelpiles,Sankai-doPublishing,pp.95-96,196383) Yoshida, I. and R. Yoshinaka: Engineering characteristics of Akashi and Kobe Layers, Report of Japan Institute of

ConstructionEngineering,Vol.129,196684) Yoshida,I.andY.Adachi:ExperimentalStudyonhorizontalbearingcapacityofcaissonfoundation,ReportofJapanInstitute

ofConstructionEngineering,Vol.139,pp,24-25,197085) Nagao, T. and T. Kitamura: Study on themethodology to determine optimum cross section of Cellular type wharves,

ProceedingsofOffshoreDevelopment,JSCE,Vol.20,pp.203-208,200486) Sumiya,K.andT.Nagao:Astudyontheeffectoftheembedmentofcellularbulkheadsontheseismicstability,Technical

NoteofNationalInstituteforLandandInfrastructureManagementNo.352,200687) NODA, S., SosukeKITAZAWA, Takeshi IIDA, NobuoMORI andHiroshi TABUCHI: An Experimental Study on the

EarthquakeResistanceofSteelPlateCellularBulkheadswithEmbedment,Rept.ofPHRIVol.21No.2,pp.147,198288) Sugano, T., T. Kitamura, T.Morita and Y. Yui: Study on behavior of steel plate cellular bulkhead during earthquake,

Proceedingsof10thSymposiumonEarthquakeEngineering、pp.1867-1872,1998.89) Nagao,T.andT.Kitamura:DesignmethodofcellularbulkheadagainstLevel-oneearthquake,ProceedingsofOffshore

Development,JSCE,Vol.21,pp.755-760,200590) Saimura,Y.,A.MorimotoandY.Takase:Resultsoffieldmeasurementsofsoilpressureoffillingofembeddedsteelplate

cellularblock,Proceedingsof36thAnnualConferenceofJSCE,Part3,pp.562-563,198191) Itou,Y.,O.Iimura,M.Gotou,T.ShiroeandT.Iida:Constructionofembeddedsteelplatecellularblock,SumitomoMetals,

Vol.34,No.2,pp.93-105,198292) PHRI,ThirdPortConstructionBureauandKawasakiSteelK.K.:ReportoftestsofSteelplatecellularblock,196693) Tokikawa,K.:Experimentalstudyonreflectioncoefficientofuprightwaveabsorbingseawall(FirstReport),Proceedingsof

21stConferenceonCoastalEngineering,JSCE,pp.409-415,197494) TANIMOTO,K.,SuketoHARANAKA,ShigeoTAKAHASHI,KazuhiroKOMATSU,MasahikoTODOROKIandMutsuo

OSATO:AnExperimentalInvestigationofWaveReflection,OvertoppingandWaveForcesforSeveraltypesofBreakwatersandSeaWalls,TechnicalNoteofPHRINo.246,p.38,1976

95) GODA,Y.andYasuharuKISHIRA:ExperimentsonirregularWaveOvertoppingCharacteristicsofSeawallsofLowCrestTypes,TechnicalNoteofPHRINo.242,p.28,1976

Page 125: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 800–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

3 Mooring BuoysMinisterial OrdinancePerformance Requirements for Mooring Buoys

Article 27 1 Theperformancerequirementsformooringbuoysshallbeasspecifiedinthesubsequentitems:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedtoenablethesafemooringofships.(2)Damageduetovariablewaves,waterflows,tractionbyships,orotherdamageshallnotimpairthe

functionofmooringbuoysnoraffecttheircontinueduse.2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancerequirementofmooringbuoysintheplacewherethereisariskofhavingaseriousimpactonhumanlives,property,and/orsocioeconomicactivitybythedamagetothemooringbuoysconcernedshallbesuchthatthestructuralstabilityofthemooringbuoyisnotseriouslyaffectedevenincaseswhenthefunctionofthemooringbuoysconcernedisimpairedbytsunamis,accidentalwaves,and/orotheractions.

Public NoticePerformance Criteria of Mooring Buoys

Article 53 1 Theperformancecriteriaofmooringbuoysshallbeasspecifiedinthesubsequentitems:(1)Thebuoyshallhavethenecessaryfreeboardinconsiderationoftheusageconditions.(2)Thebuoyshallhavethedimensionsrequiredforcontainmentoftheswingingareaofmooredships

withintheallowabledimensions.(3)The following criteria shall be satisfied under the variable action situation inwhich the dominant

actionsarevariablewaves,waterflow,andtractionbyships.(a)Theriskofimpairingtheintegrityoftheanchoringchains,groundchains,and/orsinkerchainsof

thefloatingbodyshallbeequaltoorlessthanthethresholdlevel.(b)Theriskoflosingthestabilityofthebuoyduetotractiveforcesactinginmooringanchorsshallbe

equaltoorlessthanthethresholdlevel.2 In addition to the requirements of the preceding paragraph, the performance criteria of themooringbuoys forwhich there is a riskof serious impactonhuman lives,property,or socioeconomicactivitybythedamagetothefacilitiesconcernedshallbesuchthatthedegreeofdamageundertheaccidentalactionsituation,inwhichthedominantactionistsunamisoraccidentalwaves,isequaltoorlessthanthethresholdlevel.

Page 126: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–801–

[Commentary]

(1)Performancecriteriaofmooringbuoys①Commonformooringbuoys(a)Freeboard(usability)

Insettingthefreeboardinperformanceverificationofmooringbuoys,theconditionsofuseofthespecifiedfacilityshallbeproperlyconsidered.

(b)Insettingthestructureandcross-sectiondimensionsforperformanceverification,theswingingofthefloatingbodyshallbeproperlyconsidered.

(c)Safetyofthefacility(serviceability)1) The setting for performance criteria of mooring buoys and the design situations excluding

accidentalsituationsshallbeinaccordancewithAttached Table 42.

Attached Table 42 Setting for Performance Criteria of Mooring Buoys and Design Situations (excluding accidental situation)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

27 1 2 53 1 3a Serviceability Variable Variablewaves(waterflow)(tractionbyships)

Selfweight,waterpressure,waterflow

Yieldofchainsoffloatingbodies,groundchains,orsinkerchains

Designyieldstress

2b Stabilityofmooringanchors,etc.

Resistanceforceofmooringanchors,etc.(horizontal,vertical)

2) Yieldofchainsoffloatingbodies,groundchains,orsinkerchainsVerificationofyieldofchainsoffloatingbodies,groundchains,or sinkerchains is such thattheriskofthedesignstresscorrespondingtoeachmemberinchainsoffloatingbodies,groundchains,orsinkerchainstoexceedthedesignyieldstressisequaltoorlessthanthelimitedvalues.

3) StabilityofmooringanchorsVerificationofthestabilityofmooringanchorsissuchthattheriskofthetractiveforceinthemooringanchorstoexceedtheresistanceforceisequaltoorlessthanthelimitedvalues.Mooringanchorisageneraltermfortheequipmentinstalledontheseabedforretainingafloatingbody,includingsinkers.

②Mooringbuoysoffacilitiesagainstaccidentalincident(safety)(a)Thesettingforperformancecriteriaofmooringbuoysoffacilitiesagainstaccidentalincidentandthe

designsituations(onlyaccidentalsituations)shallbeinaccordancewithAttached Table 43.

Attached Table 43 Setting for Performance Criteria of Mooring Buoys of Facilities against Accidental Incident and Design Situations only limited to Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

27 2 – 53 2 – Safety Accidental Tsunami Selfweight,waterpressure,waterflow

Stabilityofmooringsystem

–Wavesofextremelyrareevent

Page 127: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 802–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

[Technical Note]

3.1 Fundamentals of Performance Verification

(1)Themooringbuoyshallsecureappropriatestabilityunderthemooringmethod,thenaturalconditionsatthesite,andthedimensionsofthedesignships.

(2)Mooringbuoysarestructurallycategorizedintothreetypes;sinkertype,anchorchaintype,andsinkerandanchorchaintype.Thesinkertypemooringbuoycomprisesafloatingbody,anchoringchainoffloatingbody,andsinker.Itdoesnothaveamooringanchor,asshowninFig. 3.1.1 (a).Theanchorchaintypemooringbuoycomprisesafloatingbody,anchorchain,andmooringanchor.Itdoesnothaveasinker,asshowninFig. 3.1.1(b).Althoughtheconstructioncostofthistypeislowerthantheothertypes,itisnotsuitableforcaseswheretheareaofthemooringbasinislimited,becausetheradiusofship’sswingingmotionislarge.Thesinkerandanchorchaintypemooringbuoycomprisesafloatingbody,anchoringchain,groundchain,mooringanchor,andsinker,asshowninFig. 3.1.1(c). Thesinkerandanchorchaintypemooringbuoysarebeingusedwidelyinportsandharbors.Thistypeofbuoycouldbeusedevenwhentheareaofthemooringbasinislimited,becausetheradiusofship’sswingingmotioncouldbereducedbyincreasingtheweightofthesinker.

Floating body

Anchoring chainof floating body

Anchoring chainof floating body

Floating body Floating body

Anchor chain Ground chain

Mooringanchor

MooringanchorSinker

Sinker

Sinker chain

(a) Sinker Type (b) Anchor Chain Type (c) Sinker and Anchor Chain Type

Fig. 3.1.1 Types of Mooring Buoys

(3)TheprocedureforperformanceverificationofmooringbuoysisshowninFig. 3.1.2.

Setting of design conditions

Assumption of cross-sectional dimensions

Verification of stability of mooring system

Evaluation of actions

Determination of cross-sectional dimensions

Verification of transitional part

Verification of stresses in mooring system

Verification of stability of floating body

Variable states in respect of actions of ships

Variable states in respect ofactions of waves and ships

Performance verificationPerformance verification

Fig. 3.1.2 Example of Sequence for Performance Verification of Mooring Buoys

Page 128: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–803–

(4)Fig. 3.1.3 showsatypicalschematicfigureofmooringbuoy.

Lift chain

A

B

CD

K

Q

L

GF

EN

MH

OJP

Mooring rope

Fender

I

A; Harp shackle (mooring ring) or quick release hook

B; Anchor shackle

C; Swivel piece

D; Joining shackle

E; Mooring piece

F; Long ring

G; Joining shackle

H; Anchor shackle

I; Joining shackle

J; Anchor shackle

K; Chain

L; Main chain (Anchoring chain of floating body)

M; Sinker chain

N; Chain or ground chain

O; Sinker

P; Anchor or screw

Q; Buoy

1

1

1

1

1

2

2

1

2

2

1

1

1

4

1

1

1

Fig. 3.1.3 Typical Schematic Figure of Mooring Buoy

(5)The provisions in this sector can be applied to the performance verification of sinker and anchor chain typemooringbuoys. Since thesinker typeandanchorchain typebuoysaresimplifiedstructureof thesinkerandanchorchaintypebuoy,theprovisionsareapplicabletotheirperformanceverificationsaswell.

3.2 Actions

(1) Inprinciple,thetractiveforceactingonamooringbuoycanbecalculatedconsideringstructuralcharacteristicsofthemooringbuoyinaccordancewiththeprovisionsinPart II, Chapter 8, 2.4 Actions due to Traction by Ships.Whensettingthetractiveforce,considerationshouldbegiventotheeffectsofwinds,tidalcurrentsandwaves.However,itshouldbenotedthatthesearedynamicloads,andthustherearemanyuncertaintiesontheirrelationshipswiththetractiveforcesofships.

(2)Itispreferablethatthetractiveforceactingonamooringbuoybedeterminedconsideringtheactionsthatexertuponmooredshipssuchaswinds,tidalcurrents,andwavesandreferringtheexistingtractiveforcedataonthebuoysofthesimilartype.

(3)Whenthemotionsofbuoyduetowaveactionsarenotnegligible,theireffectofmotionsneedstobeconsideredinthecalculationofthewaveforceandtheresistanceforce.

(4)Inadynamicanalysisofafloatingbody,theresponsecharacteristicsofthefloatingbodyvarywidelydependingonthewaveperiod.Therefore,iftheanalysisismadebasedonmonochromaticwavesonly,theresultswouldbeeitherunderestimatedoroverestimated.Whenperformingadynamicanalysisofthemotionsofafloatingbody,therefore,itispreferabletoemployrandomwaveswithspectralcharacteristics.

(5)Table 3.2.1 showsexamplesofdesignconditionsandtractiveforcesonmooringbuoys.

Page 129: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 804–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 3.2.1 Examples of Design Conditions for Mooring Buoys

DesignshipDWT(t)

Mooringmethod

Windvelocity(m/s)

Tidalcurrent(m/s)

Waveheight(m)

Tractiveforce(kN)

1,0003,00015,00020,000130,000260,00030,000100,000

Singlebuoy

Dualbuoy6-points

5050152060251520

0.50.50.511.00.670.51——

2.04.00.7—10.03.0—1.5

1854092455891,3701,8401,4901,470

3.3 Performance Verification of Mooring Buoys

(1) MooringAnchor

① Thesizesandrequiredstrengthsofeachpartofamooringbuoy,includingthemooringanchor,sinker,sinkerchain,groundchain,mainchain,andfloatingbodyneedtobedeterminedappropriatelyinaccordancewiththerelevantprovisionsin6 Floating Piersandinconsiderationofthetractiveforcesofships,thestructureofmooringbuoy,andthemooringmethod.

② Normallythreemooringanchorsareattachedtoamooringbuoy.Inverifyingtheperformanceofamooringbuoy,however,itcangenerallybeassumedthatonlyoneofthethreeanchorsresiststhehorizontalforce.Itispreferableforthemooringanchorstobedesignedinsuchawaythatthebuoywillnotcapsizeevenwhenoneoftheanchorchainsisbrokendown.

③ It shouldbe assumed that thehorizontal force actingon themooringbuoy is resistedonlyby themooringanchors’ resistance. 6 Floating Piers may be referred to in calculating the holding power of themooringanchors.

(2) SinkerandSinkerChain

①Normallyasinkerchainof3to4minlengthisusedforamooringbuoy.Itispreferablenottouseanexcessivelylongsinkerchain,becauseitmakeslargerrangeoftheupwardmovementofthesinkerandincreasestheriskofthetanglingofthesinkerchainandthustheriskofabrasionandaccidentalbreakingofthechain.Thesinkerchainshouldbeofthesamediameterasthatofthemainchain.

② Theverticalandhorizontalforcesactingonthesinkercanbecalculatedbasedonthechaintensionoffloatingbody and the distance of horizontal movement of the floating body as calculated in accordance with (4) Anchoring Chain of Floating Body usingequation(3.3.1)below.5)Inthefollowingequations,symbolγshallrepresentthepartialfactorforitssuffixandsuffixeskanddshallrespectivelyrepresentcharacteristicvaluesanddesignvalues.

(3.3.1)where

PV,PH :verticalandhorizontalforcesactingonthesinker,respectively(kN) θ1 : anglethatmainchainmakeswiththehorizontalplaneatthesinkerattachmentpoint(º) TA : tensionofmainchainatthesinkerattachmentpoint(kN) TC : tensionofmainchainatthefloatingbodyattachmentpoint(kN) w : weightofthemainchainperunitlengthinwater(kN/m) ℓ : lengthofmainchain(m)

Thedesignvaluesintheequationcanbecalculatedusingthefollowingequation.Thepartialfactorcanbesetat1.0.

θ1maybeobtainedbysolvingthefollowingequations.

Page 130: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–805–

(3.3.2)

where∆K :distanceofhorizontalmovementofthefloatingbody(m) θ2 :anglethatmainchainmakeswiththehorizontalplaneatthefloatingbodyattachmentpoint(º)

Invariablesituationsinrespectofactionofships,thealignmentofthefloatingbodychaincanbeassumedasastraightlineandthusthefollowingapproximationcanbeused:

(3.3.3)

③ Theweightofasinkermostcommonlyusedfor5,000GTshipsand10,000GTshipsareabout50kNand80kN,respectively. Thesinkerweightcanbedeterminedusingthesevaluesasreferences. Thevaluesmentionedaboveindicatetheweightinwater.Sinkersmaybeofanyshapeandmaterialaslongastheysatisfytheweightrequirement,butinJapandisk-shapedcastironsinkersareusedcommonlyandconcreteisseldomused.Itissaidthatdisk-shapedcastironsinkerswithaslightlyconcavedbottomsurfaceimprovestheadhesionofthesinkertothesoftseabottomgroundsignificantly.

④Theroleofthesinkeristoabsorbtheimpactforceactingonthechainandtomakethemainchainshorter.Whenthemainchainistobeshortenedtoreducethedistanceofshipmovement,therefore,theweightofthesinkermustbeincreasedaccordingly.

⑤Incertaincases,buriedanchorsmaybeusedinsteadofsinkers.

(3) GroundChain

① Theanglethatthechainmakeswiththeseabottomatthemooringanchorattachmentpointisdesirablysmallerthan3ºbecausetheholdingpowerofthemooringanchordecreasessharplyastheangleincreasesbeyond3ºInmanycases,theweightofthegroundchainisdeterminedinsuchawaythatthegroundchainsatisfiestheabovementionedconditionwhenthetractiveforceactsonthebuoy.Whenthetractiveforceislarge,theattachmentanglethatthemooringanchormakeswiththegroundchainmaybemadesmallerusingagroundchainlongerthantheabove-mentionedvalue.Theinclinationangleθ1ofthegroundchainatthemooringanchorattachmentpoint can be calculated by equation (6.4.8) described in6.4. Performance Verification. The symbols inequation(6.4.8)areredefinedasfollows(seeFig. 3.3.1):

:lengthofthegroundchain(ginFig. 3.3.1)(m) h :verticaldistancebetweentheupperendofthegroundchainandtheseabottom,inotherwords

thesumofthelengthofthesinkerchain,heightofthesinker,andallowance(hginFig. 3.3.1)(m)

PH :horizontalcomponentofthetractiveforceactingonthefloatingbody(kN) w :weightofthegroundchainperunitlengthinwater(kN/m) θ2 :inclinationangleofthegroundchainattheupperendofthechain(º)

Inthiscalculation,thevalueofθ1iscalculatedbyassumingthevaluesofg,w,andhg;θ1isdesirablykeptat3ºorless.

② The maximum tension Tg of the ground chain can be calculated using equation (6.4.5) described in 6.4 Performance Verification.HerePH representsthehorizontalcomponentofthetractiveforceofshipactingonthebuoy,andθ2representstheinclinationangleofthegroundchainattheupperendofthechain.

③ Thetensileyieldstrengthofchaincanbesetbasedon6 Floating Piers.Inthecaseofmooringbuoys,however,thediameterofchainisusuallydeterminednotonlyonthebasisofstrength,butonthebasisofcomprehensiveanalysisthatelaboratingsuchmeasurestoreduceforcesactingonthechainastheuseofaheavierchaintoabsorbtheenergyofimpactforces,andasknownfromequation(6.4.8)in6.4 Performance Verificationtheuseofashorterchaintoreducetheradiusofthevessel’sswingingmotion.Ingeneral,thechaindiameterisdesignedinsuchawaythat themaximumtensiontobeexerteduponthechainisequal to1/5to1/8of themaximumstrength.

Page 131: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 806–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Fig. 3.3.1 Notation for Sinker and Anchor Chain Type Mooring Buoy

(4) AnchoringChainofFloatingBody

① Itispreferabletodeterminethelengthf oftheanchoringchainoffloatingbodyinsuchawaytolessenthetensionactingonboththeanchoringchainoffloatingbodyandthemooringhawseraswellastoreducetheradiusoftheship’sswingingmotion.Theratiooftheanchoringchainlengthtothewaterdepthmayaffectthedegreeofabrasionoftheanchoringchain,buttheirrelationshiphasnotbeenclarifiedyet.

② Itispreferablethatthetensionactingonthemainchainandthedisplacementofthefloatingbodybederivedbymeansofasimulationanalysis,buttheresultsundersimilarconditionsinthepastmayalsobeusedtodeterminethetensionanddisplacement.Orthesemaybecalculatedusingthemethoddescribedbelow.

③ Theweight of themain chain per unit length inwaterwf (kN/m) can be calculated using equation (6.4.8)describedin6.4 Performance Verification. Here, andh ofthisequationrepresentthelengthoftheanchoringchain(f inFig. 3.3.1)(m)andtheverticaldistancebetweentheupperandlowerendsoftheanchoringchain(hf inFig. 3.3.1)(m),respectively.Inotherwords,h istheverticaldistancebetweenthefloatingbodyattachmentpointandtheupperendofthesinkerchainwiththesinkerbeinglifteduptothepointwherethebottomofthesinkeriscompletelyseparatedfromtheseabottomsurface.TheforceP representsthehorizontalcomponent(kN)ofthetractiveforceactingonthebuoy,andθ2andθ1representtheinclinationangles(º)ofthemainchainattheupperandlowerends,respectively( θ2' andθ1'inFig. 3.3.1). Theinclinationangleθ1'oftheanchoringchainatthelowerendofthechaincanbecalculatedasshowninFig. 3.3.2 fromtheconditionsofbalanceamongtheanchoringchainlowerendtensionTfv,thegroundchainupperendtensionTg,andthesinkerchainupperendtensionTsv,whereTsv isequaltothesummationoftheweightofthesinkerandsinkerchaininwater.ThetensionTg anditsdirectionarecalculatedinaccordancewith(3) Ground Chain.

④Itispreferabletocalculatethetensionoftheanchoringchainattheupperendusingequation(6.4.8)describedin6.4 Performance Verification.Herethehorizontalcomponentofthetractiveforcecanbeusedasthehorizontalexternalforce. Theangleθ2that thefloatingbodychainmakeswiththehorizontalplaneatthefloatingbodyattachmentpointcanbecalculatedbyequation(6.4.8)describedin6.4 Performance Verification withthepreviouslycalculatedweightoftheanchoringchainperunitlengthinwater.Ingeneral,Thistensionisusedtoverifythestressontheanchoringchain.

Page 132: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–807–

Fig. 3.3.2 Schematic Chart for Tension of Anchoring Chain

⑤ ThehorizontaldisplacementΔK ofthefloatingbodycanbecalculatedbymeansofequation(6.4.9)describedin6.4 Performance Verification.Hereθ1'andθ2'oftheequationaredefinedbelow.

θ1 :anglethattheanchoringchainmakeswiththehorizontalplaneatitslowerend (θ1’inFig. 3.3.1)(º) θ2 :anglethattheanchoringchainmakeswiththehorizontalplaneatitsupperend (θ2’inFig. 3.3.1)(º)

Theresultantvalueofdisplacementshouldbeexaminedincomparisonwiththeareaofthemooringbasin.Ifitisfoundtoolarge,theanchoringchainneedtobeshortened,theweightofthesinkerneedtobeincreased,ortheunitlengthweightoftheanchoringchainneedtobeincreased.

(5) FloatingBodyInvariablesituationsinrespectoftheactionofships,thefloatingbodyshouldbedesignedinsuchawaythatitdoesnotsubmerge.Evenwhennoshipismoored,thefloatingbodyshouldbeafloatwithafreeboardequalto1/2to1/3ofitsheight.Itmustbeafloatthewatersurfaceundertheconditionthattheanchoringchain,andinsomecasespartofthegroundchainandsinkerchain,aresuspendedbeneathit.Itispreferabletosetthebuoyancytomeetthesetworequirements.Thefloatingbodybuoyancyrequiredtomeetthefirstrequirementcanbecalculatedbyequation(3.3.4).

(3.3.4)

where F :requiredbuoyancyofthefloatingbody(kN) Va :verticalforceactingonthefloatingbody(kN),thisiscalculatedbymeansofequation(6.4.6)

describedin6.4 Performance Verification. P :tractiveforce(kN) c :lengthofthemooringhawser(m) d :verticaldistancebetweentheship’shawserholeandthewatersurface(m)

However,thetotalbuoyancythatisactuallyrequiredisthesumofthebuoyancyrequiredtoresistthetractiveforceandtheselfweightofthefloatingbody.

References

1) Yoneda,K.:Wind tunnelexperimentondriftingmotionofbuoymooredship,Proceedingsof28thConferenceofJapanInstituteofNavigation,(mooringbuoy-processforstandardization-reference),1962

2) SUZUKI,Y.:StudyontheDesignofSinglePointBuoyMooring,TechnicalNoteofPHRINo.829,19963) HIRAISHI,Y.andYasuhiroTOMITA:ModelTestonCountermeasuretoImpulsiveTensionofMooringBuoy,Technical

NoteofPHRINo.816,p.18,19954) JSCEEdition:Commentaryofguidelinefordesignofoffshorestructure(Draft),19735) Dep.OftheNavyBureauofYards&Docks:MooringGuide,Vol.1,p.61,1954

Page 133: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 808–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

4 Mooring PilesMinisterial OrdinancePerformance Requirements for Mooring Piles

Article 28 Theperformancerequirementsformooringpilesshallbeasspecifiedinthesubsequentitems:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoastoenablethesafemooringofships.(2)Thedamageduetoberthing,tractionbyships,and/orotheractionsshallnotimpairthefunctionofthe

mooringpilesnoraffecttheircontinueduse.

Public NoticePerformance Criteria of Mooring Piles

Article 54 Theperformancecriteriaofmooringpilesshallbeasspecifiedinthesubsequentitems:(1)Themooringpilesshallhavethedimensionsrequiredfortheusageconditions.(2)Thefollowingcriteriashallbesatisfiedunderthevariableactionsituationinwhichthedominantaction

isshipberthingortractionbyships:(a)In the case ofmooring piles having a superstructure, the risk of impairing the integrity of the

superstructuremembersshallbeequaltoorlessthanthethresholdlevel.(b)Theriskthattheaxialforcesactingonthepilesmayexceedtheresistancecapacityduetofailureof

thegroundshallbeequaltoorlessthanthethresholdlevel.(c)Therisk that thestress in thepilesmayexceedtheyieldstressshallbeequal toor less thanthe

thresholdlevel.

[Commentary]

(1)PerformanceCriteriaofMooringPiles① Facilitystability(serviceability)(a)Thesettingforperformancecriteriaofmooringpilesandthedesignsituationsexcludingaccidental

situationsshallbeinaccordancewithAttached Table 44.

Attached Table 44 Setting for Performance Criteria of Mooring Piles and Design Situations (excluding accidental situations)

MinisterialOrdinance Publicnotice

Performancerequirement

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

28 1 2 54 1 2a Serviceability Variable Berthingandtractionbyships

Selfweight Failureofsuperstructure*1)

Designultimatecapacityofsection(ultimatelimitstate)

2b Axialforcesinpiles Resistancecapacitybasedonfailureoftheground(pushingforces,pullingforces)

2c Yieldingofpile Designyieldstress

*1)Onlyforstructureswithasuperstructure.

(b)FailureofthesuperstructureVerificationoffailureofthesuperstructureissuchthattheriskthatthedesigncross-sectionalforcesinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalues.

Page 134: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–809–

(c)AxialforcesinpilesVerificationofaxialforcesinpilesissuchthattheriskthattheaxialforceonapilewillexceedtheresistancecapacitybasedonthefailureofthegroundisequaltoorlessthanthelimitedvalues.

(d)YieldingofapileVerificationofpileyieldingissuchthattheriskthatthedesignstressinapilewillexceedthedesignyieldstressisequaltoorlessthanthelimitvalues.

Page 135: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 810–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5 Piled PiersMinisterial OrdinancePerformance Requirements for Piled Piers

Article 29 1Theperformancerequirementsforpiledpiersshallbeasspecifiedinthesubsequentitemsinconsiderationofthestructuretypes:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoas toenable thesafeandsmoothberthingofships,embarkationanddisembarkationofpeople,andhandlingofcargo.

(2)Damage to the piled pier due to self weight, earth pressure, Level 1 earthquake groundmotions,berthingandtractionbyships,imposedloadand/orotheractionsshallnotimpairthefunctionsofthepierconcernedandnotadverselyaffectitscontinueduse.

2 In addition to the provisions of the previous paragraph, the performance requirements for piled pierswhichareclassifiedashighearthquake-resistancefacilitiesshallbesuchthatthedamageduetoLevel2earthquakegroundmotionsandotheractionsdonotaffecttherestorationofthefunctionsrequiredofthepiersconcernedintheaftermathoftheoccurrenceofLevel2earthquakegroundmotions.Provided,however,thatasfortheperformancerequirementsforthepiledpierwhichrequiresfurtherimprovementinearthquake-resistantperformanceduetoenvironmentalconditions,socialorotherconditionstowhichthepierconcernedissubjected,thedamageduetosaidactionsshallnotadverselyaffecttherestorationthroughminorrepairworksofthefunctionsofthepierconcernedanditscontinueduse.

Public NoticePerformance Criteria of Piled Piers

Article 55 1TheprovisionsofArticle48shallbeappliedtotheperformancecriteriaofpiledpierswithmodificationasnecessary.

2Inadditiontotherequirementsoftheprecedingparagraph,theperformancecriteriaofpiledpiersshallbeasspecifiedinthesubsequentitems:(1)Theaccessbridgeofapiledpiershallsatisfythefollowingcriteria.(a)Itshallhavethedimensionsrequiredforenablingthesafeandsmoothloading,unloading,embarkation

anddisembarkation,andothersinconsiderationoftheusageconditions.(b)Itshallnottransmitthehorizontalloadstothesuperstructureofthepiledpier,anditshallnotfall

downevenwhenthepiledpierandtheearth-retainingpartaredisplacedowingtotheactionsofearthquakesorsimilarone.

(2)The following criteria shall be satisfied under the variable action situation inwhich the dominantactionsareLevel1earthquakegroundmotions,shipberthingandtractionbyships,andimposedload:(a)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(b)Theriskthattheaxialforcesactinginthepilesmayexceedtheresistancecapacityowingtofailure

ofthegroundshallbeequaltoorlessthanthethresholdlevel.(c)Therisk that thestress in thepilesmayexceedtheyieldstressshallbeequal toor less thanthe

thresholdlevel.(3)Thefollowingcriteriashallbesatisfiedunderthevariableactionsituationinwhichthedominantaction

isvariablewaves:(a)Theriskoflosingthestabilityoftheaccessbridgeduetoupliftactingontheaccessbridgeshallbe

equaltoorlessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(c)Theriskthattheaxialforcesactinginpilesmayexceedtheresistancecapacityowingtofailureof

Page 136: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–811–

thegroundshallbeequaltoorlessthanthethresholdlevel.(4)Inthecaseofstructureshavingstiffeningmembers,theriskofimpairingtheintegrityofthestiffening

membersandtheirconnectionpointsunderthevariableactionsituationinwhichthedominantactionsare variable waves, Level 1 earthquake groundmotions, ship berthing and traction by ships, andimposedloadshallbeequaltoorlessthanthethresholdlevel.

3TheprovisionsofArticle49 throughArticle52shallbeappliedwithmodificationasnecessary to theperformancecriteriaoftheearth-retainingpartsofpiledpiersinconsiderationofthestructuraltype.

[Commentary]

(1)PerformanceCriteriaofPiledPiers①Performancecriteriaofpiledpiers(a)Open-typewharvesonverticalpiles

1)Thesettingoftheperformancecriteriaofpiledpiersofearthquake-resistancefacilitiesofopen-typewharves on vertical piles and the design conditions only limited to accidental situationshall be in accordance withAttached Table 45. The restorability and serviceability of theperformancerequirementsinAttached Table 45variesdependingonthetypeofearthquake-resistancefacility.

Attached Table 45 Setting the Performance Criteria of Piled Piers of Earthquake-resistance Facilities and Design Situations only limited to Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

29 2 2 55 1 – Restorabilityand

Serviceability

Variable L2earthquakegroundmotion

Selfweight,surcharges

Deformationoffaceline Limitvalueofresidualdeformation

Cross-sectionalfailureofthesuperstructure

Designcross-sectionalresistance(ultimatelimitcondition)

Fullplasticityofpiles Fullyplasticstatemoment

Axialforcesinthepiles Theresistancecapacityduetofailureofthesoil(pushingandpulling)

2) Highearthquake-resistancefacilitiesspeciallydesignated(emergencysupplytransport)(serviceability)• Deformationoffaceline

The limitvalue for thedeformationof the face lineofquaysapplies to thoseofgravity-typemooringquays.

• Cross-sectionalfailureofthesuperstructureVerificationofcross-sectionalfailureofthesuperstructureissuchthattheriskthatthedesigncross-sectionalforcesinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalues.

• FullplasticityofpilesVerificationoffullplasticityofpilesissuchthatfullyplasticstateshallnotoccurattwoormorelocationsonapileamongthepilescomprisingthepiledpier.Attainmentoffullplasticityinapilemeanstheconditionwheretheflexuralmomentactingonapilereachesthemomenttocausefullyplastic.

• AxialforcesinthepilesVerificationoftheaxialforcesactinginthepilesissuchthattheriskthattheaxialforceactinginapilewillexceedtheresistancecapacityduetothefailureofthesoilisequaltoorlessthanthelimitedvalues.

3) Highearthquake-resistancefacilitiesspeciallydesignated(trunklinecargotransport)(restorability)The performance criteria of piled piers for high earthquake-resistance facilities (designated (for

Page 137: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 812–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

transportofmaincargo))ofopen-typewharvesonverticalpilesshallsatisfytheperformancecriteriaofhighearthquake-resistancefacilities(designated(fortransportofemergencygoods)).

4) Highearthquake-resistancefacilities(standard(fortransportofemergencygoods))(restorability)• Setting of the performance criteria for the piled piers of high earthquake-resistance facilities

(standard(emergencysupplytransport))ofopen-typewharvesonverticalpilesandthedesignconditions only limited to accidental situation shall comply with setting of the performancecriteriaof high earthquake-resistance facilities (designated (emergency supply transport)) andthedesignconditions,exceptforonlytheverificationitemsforfullplasticityofpiles.

• FullplasticityofpilesTheverificationoffullplasticityofpilesissuchthatfullplasticitydoesnotoccuratmorethantwopointsonapileamongthepilescomprisingthepiledpier. Thestateofreachingthefullplasticitymeans that theflexuralmomentactingonapile reaches themoment tocause fullyplasticstate.

(b)Open-typewharveswithacoupledrakingpilesTheperformancecriteriaofpiledpiersofhighearthquake-resistancefacilitiesofopen-typewharveswithcoupledrakingpilesshallapplytheperformancerequirementsofhighearthquake-resistancefacilitiesofopen-typewharvesonverticalpiles.Theperformancecriteriaofrakingpilesofopen-typewharveswithcoupledrakingpilesshallapplytheperformancecriteriaofpilesinopen-typewharvesonverticalpiles.

(c)StructureswithstiffeningmembersTheperformancecriteriaofpiledpiersofhighearthquake-resistancefacilitiesofstructureswithstiffeningmembersshallapplytheperformancecriteriaofhighearthquake-resistancefacilitiesofopen-typewharvesonverticalpiles.

②Mainstructureofpiledpiers(a)ThevariablesituationwheredominatingactionsaretheLevel1earthquakegroundmotion,berthing

andtractionbyshipsandsurcharges(serviceability)1) Thesettingfortheperformancecriteriaofpiledpiersanddesignconditionsexcludingaccidental

situationsshallbeasfollows,inaccordancewiththestructuretypeandthestructuralmembers.2) Opentypewharvesonverticalpilesi) Performancecriteriaofthesuperstructure・Theperformancecriteriaofthesuperstructureofopen-typewharvesonverticalpilesandthe

designconditionsexcludingaccidentalsituationsshallbeasshowninAttached Table 46.

Page 138: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–813–

Attached Table 46 Setting of Performance Criteria of Superstructure of Piled Piers and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

29 1 2 55 2 2a Serviceability Variable Berthingandtractionbyships

Selfweight,surcharges

Cross-sectionalfailureofsuperstructure

Designcross-sectionalresistance(ultimatelimitstate)

L1earthquakegroundmotion

Selfweight,surcharges

Surcharges(includingsurchargesduringcargohandling)

Selfweight,Windactingoncargohandlingequipmentandships

2b Surcharges(includingsurchargesduringcargohandling)

Selfweight,windactingoncargohandlingequipmentandships

Serviceabilityofsuperstructurecross-section

Limitvalueofbendingcrackwidth(serviceabilitylimitstate)

Repeatedlyappliedsurcharges

Selfweight Fatiguefailureofsuperstructure

Designfatiguestrength(Fatiguelimitstate)

3b Variablewaves Selfweight Cross-sectionalfailureofsuperstructure

Designcross-sectionalresistance(ultimatelimitstate)

・ Cross-sectionalfailureofthesuperstructureVerificationofcross-sectionalfailureofthesuperstructureissuchthattheriskthatthedesigncross-sectionalforcesinthesuperstructurewillexceedthedesigncross-sectionalresistanceisequaltoorlessthanthelimitvalue.

・Serviceabilityofthecross-sectionofthesuperstructureVerificationoftheserviceabilityofthecross-sectionofthesuperstructureissuchthattheriskthatwidthofbendingcracksinthesuperstructurewillexceedthelimitvalueofcrackwidthisequaltoorlessthanthelimitvalues.

・FatiguefailureofthesuperstructureVerificationof fatigue failureof the superstructure is such that the risk thedesignvariablecross-sectionalforcesinthesuperstructurewillexceedthedesignfatiguestrengthisequaltoorlessthanthelimitvalues.

ii)PerformancecriteriaofpilesThesettingoftheperformancecriteriaofthepilesofopen-typewharvesonverticalpilesandthedesignconditionsexcludingaccidentalsituationsshallbeasshowninAttached Table 47.

Page 139: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 814–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 47 Setting of Performance Criteria of Piles of Piled Piers and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-

dominatingaction

29 1 2 55 2 2b Serviceability Variable Berthing,tractionbyships

Selfweight,surcharges

Axialforcesinpiles

Loadresistanceduetosoilfailure(pushing,pulling)

L1earthquakegroundmotion

Selfweight,surcharges

Surcharges(includingsurchargesduringcargohandling)

Selfweight,windactingoncargohandlingequipmentandships

2c Berthingandtractionbyships

Selfweight,surcharges

Yieldingofpiles

Failureprobabilityofvariablesituationsofberthingandtractionbyships(seismicallyhighearthquake-resistancefacilities:P=9.1×10-4)(facilitiesotherthanhighearthquake-resistancefacilities:P=1.9×10-3)

L1earthquakegroundmotion

Selfweight,surcharges

Failureprobabilityofvariablesituationoflevel1earthquake(highearthquake-resistancefacilities(speciallydesignated):P=1.3×10-4)(highearthquake-resistancefacilities(standard):P=3.8×10-3)(facilitiesotherthanhighearthquake-resistancefacilities:P=1.4×10-2)

Surcharges(includingsurchargesduringcargohandling)

Selfweight,windactingoncargohandlingequipmentandships

Complieswithfailureprobabilityofvariablesituationconditionsofberthingandtractionbyships

3c Variablewaves Selfweight Axialforcesactinginpiles

Loadresistanceduetofailureofthesoil(pushingandpulling)

・AxialforcesactingonpilesVerificationoftheaxialforcesactingonapileissuchthattheriskthattheaxialforceactingonapilewillexceedtheresistanceforceduetofailureofthesoilisequaltoorlessthanthelimitvalues.

・YieldingofpilesVerificationofyieldinginpilesissuchthattheriskthatthedesignstressinapilewillexceedthedesignyieldstressisequaltoorlessthanthelimitvalues.

iii)Performancecriteriaofaccessbridges・ Thesettingof theperformancecriteriaofaccessbridgesofopen-typewharvesonvertical

pilesandthedesignconditionsexcludingaccidentalsituationsshallbeasshowninAttached Table 48.

Page 140: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–815–

Attached Table 48 Setting of Performance Criteria of Access Bridges of Open-type Wharves on Vertical Piles and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

action

Non-dominatingaction

29 1 2 55 2 3a Serviceability Variable Variablewaves Selfweight Upliftforceonaccessbridge

Designcross-sectionalresistance(ultimatelimitstate)

3) Open-typewharveswithcoupledrakingpilesPerformance criteria of open-typewharveswith coupled raking piles shall apply the performancecriteriaofopen-typewharvesonverticalpiles.

4) Piledpiersofstructureswithstiffeningmembersi) Performance criteria of piled piers of structures with stiffening members shall be as shown in

Attached Table 49,aswellascomplyingwiththeperformancecriteriaofopen-typewharvesonverticalpiles.Theitemswithinparenthesesinthecolumnof“Designsituation”inAttached Table 49maybeappliedindividually.

Attached Table 49 Setting of Performance Criteria of Piled Piers of Structures with Stiffening Members and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominatingaction Non-dominating

action

29 1 2 55 2 4 Serviceability Variable Berthingandtractionbyships

(L1earthquakegroundmotion)(Surcharges(includingsurchargesduringcargohandling))

Selfweight,surcharges(Selfweight,surcharges)(Selfweight,surcharges,andwindactingonships)

YieldingofstiffeningmembersFailureofconnectionsatjoints

DesignyieldstressDesignshearforceresistance

Punchingshearfailureatjoints

Designshearforceresistance

Punchingshearfailureatjoints

Designshearforceresistance

Repeatedlyactingsurcharges

Selfweight Fatiguefailureofjoints

Designfatiguestrength(fatiguelimitstate)

Variablewaves Selfweight Failureofconnectionsatjoints

Designshearforceresistance

ii) YieldingofstiffeningmembersVerificationofyieldingofthestiffeningmembersissuchthattheriskthatthestressinastiffeningmemberwillexceedtheyieldstressisequaltoorlessthanthelimitvalues.

iii)FailureoftheconnectionsatjointsVerificationoffailureoftheconnectionsatjointsissuchthattheriskthatthedesignshearforceatajointwillexceedthedesignshearstrengthisequaltoorlessthanthelimitvalue.

iv)PushthroughshearfailureofjointsVerificationofpushthroughshearfailureofjointsissuchthattheriskthatthepushthroughshearforceatajointwillexceedthedesignshearresistanceofajointisequaltoorlessthanthelimitvalue.

v) FatiguefailureofjointsVerificationoffatiguefailureofjointsissuchthattheriskthatthedesignfluctuatingcross-sectionalforceatajointwillexceedthedesignfatiguestrengthisequaltoorlessthanthelimitvalues.

Page 141: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 816–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

③Earth-retainingsectionsofpiledpiers(a)Compliancewiththeperformancecriteriaofquaywalls

SettingfortheperformancecriteriaforeachofthestructuraltypesofquaysinaccordancewithArticle49“performancecriteriaofgravity-typequaywalls” throughArticle52“performancecriteria of cell type quaywalls” shall complywith the setting for performance criteria of theearth-retainingsectionsofpiledpiers.

Page 142: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–817–

[Technical Note]

5.1 Common Items for Piled Piers

(1)Theperformanceverificationofpiledpiersincommonmaybeinaccordancewith2.1 Common Items for Quaywalls.

(2)Thestructuraltypesofpiledpiersincludeopen-typewharvesonverticalpiles,open-typewharvesoncoupledrakingpiles,jackettypepiersandstruttedframetypepier.

(3)AnexampleoftheprocedureoftheperformanceverificationofpiledpiersisshowninFig. 5.1.1.

(4) AccessBridgesInsettingthestructureandcross-sectionaldimensionsofaccessbridgesintheperformanceverificationofpiledpiers,itisnecessarytoappropriatelyconsidertheconditionsofuseoftheconcernedpiers,inorderthatthepiledpiercanbesafelyandefficientlyused.Also,insettingthestructureandcross-sectionaldimensionsofaccessbridgesintheperformanceverificationofpiledpiers,itisnecessarytoappropriatelyconsidertheamountofrelativedeformationbetweenthemainstructureof thepiledpier and theearth-retaining section, andalso theallowablehorizontaldisplacementof theaccessbridge.

Setting of design conditions

Verification of stability of earth-retaining section

Verification of pile stresses

Verification of bearing capacity of piles

Determination of cross-sectional dimensions

Verification of structural members (verification of superstructure, etc.)

-Setting of size of 1 block-Setting cross-section and layout of piles-Assumption of dimensions of superstructure-Layout of mooring posts, fenders-Assumptions regarding seabed soils

Permanent states

Permanent states,variable states ofLevel 1 earthquake ground motion

Variable states of the action of ships,surcharges, and Level 1 earthquake ground motion

Accidental states of Level 2 earthquake ground motion

Verification of amount of deformation fromdynamic analysis and damage to piled pier

Assumption of cross-sectional dimensions

Evaluation of actions including settingseismic coefficient for verification

*1

*2

Performance verificationPerformance verification

Verification of slope stability

*1: Evaluationoftheeffectofliquefactionandsettlementisnotshownonthediagram,soitisnecessarytoseparatelyintoconsider.*2: Verificationshallbecarriedoutforhighearthquake-resistancefacilitiesagainsttheLevel2earthquakegroundmotion.

Fig. 5.1.1 Example of the Sequence of Performance Verification of a Piled Pier

Page 143: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 818–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5.2 Open-type Wharves on Vertical Piles5.2.1 Fundamentals of Performance Verification

(1)Thefollowingreferstoopen-typewharvesonverticalpilesusingsteelpipepilesorsteelsections,butitmayalsobeappliedtosimilarfacilitiesprovidedthattheirdynamiccharacteristicsaretakenintoaccount.

(2)Fortheprocedureofperformanceverificationofopen-typewharvesonverticalpiles,itispossibletorefertoFig. 5.1.1of5.1 Common Items for Piled Piers.However,evaluationoftheeffectofliquefactionisnotshowninFig. 5.1.1,soitisnecessarytoappropriatelyinvestigatethepotentialforliquefactionandmeasuresagainstit,(refertoPart II, Chapter 6 Ground Liquefaction).

(3)In theperformanceverificationofopen-typewharvesonverticalpiles,normally thecross-section is setwithrespecttoactionsotherthanthatofLevel2earthquakegroundmotion,whiletheseismicperformanceisverifiedwithrespecttoLevel2earthquakegroundmotion.ThisisbecauseforverificationofvariablesituationinrespectoftheactionofshipsandLevel1earthquakegroundmotion,theperformanceverificationiscarriedoutbasedontheyieldstressforthesteelpipepiles,butforseismicperformanceverificationofseismic-resistantwithrespecttoLevel2earthquakegroundmotion,averificationmethodthattakestheextentofdamagetothepiledpierintoaccountisused.

(4)ForthevariablesituationinrespectofLevel1earthquakegroundmotion,itispossibletocarryoutverificationbyobtaining thenaturalperiodsof thepiledpierbasedona frameanalysis, and thencalculating the seismiccoefficientforverificationusingtheobtainednaturalperiodsandtheaccelerationresponsespectrum.However,forhighearthquake-resistancefacilities,verificationmaybecarriedoutusinganappropriatedynamicanalysismethod,suchasnonlinearseismicresponseanalysistakingintoaccountthe3-dimensionaldynamicinteractioneffectbetweenpilesandtheground.Foropen-typewharvesonverticalpilesotherthanhighearthquake-resistancefacilities,itispossibletoomittheverificationoftheaccidentalsituationforLevel2earthquakegroundmotion.

(5)Anexampleofcross-sectionofanopentypepiledpieronverticalpilesisshowninFig. 5.2.1.

(6)Whencargohandlingequipment,suchascontainercranes,istobeinstalledonanopen-typewharfonverticalpiles,itispreferabletoinstallitinsuchawaythatallofitsfeetarepositionedoneitherthepile-supportedsectionor earth-retaining section. If, for example,one footof a cargohandlingequipment ispositionedon thepile-supportedsectionandanotherontheearth-retainingsection,theequipmentbecomessusceptibletoadverseeffectsbyunevensettlementandgroundmotions,duetothedifferenceintheresponsecharacteristicsofthetwosections.When it is unavoidable to position one foot on the pile-supported section and another on the earth-retainingsection,sufficientfoundationworksuchasfoundationpilesshouldbeprovidedtopreventunevensettlementduetothesettlementontheearth-retainingsection.Inthiscase,ingeneral,thefixedfootofcargohandlingequipmentsuchasportalcraneshouldnotbeinstalled.Wheninstallingcargohandlingequipment,suchascontainercranes,seismic responseanalysis shouldbeperformed, taking into consideration the coupledoscillationof the cargohandlingequipmentandtheopen-typewharf.

H.W.L.

L.W.L.

Mortar lining

Steel pipe pile

Designwater depth Steel pipe pile

Steel pipe pile

SuperstructureBollard

Fender Access bridge

Backfilling stones

Rubble forfoundation

Earth-retaining section

Fig. 5.2.1 Example of Cross-section of an Open Type wharf on Vertical Piles

Page 144: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–819–

5.2.2 Setting of Basic Cross-section

(1)Thesizeofadeckblock,thedistancesbetweenpiles,andthenumberofpilerowsshallbedeterminedappropriatelyinconsiderationofthefollowing:

① apronwidth② locationofsheds③ seabed,especiallyslopestability④ existingrevetments⑤ mattersrelatedtoconstructionworksuchastheconcretecastingcapacity⑥ surcharges,especiallycranespecifications

(2)Insuchacasethatlargequaycranesforshipsof10,000tonclassaretobeinstalled,pilesareusuallydesignedtobeplacedby5mwith3-4pilerowsinthecross-section.

(3)The dimensions of the superstructure of open-type wharf shall be determined appropriately considering thefollowing

① distancesbetweenpiles,numberofpilerows,andtheshapeanddimensionsofpiles② constructionproblemofshatteringformsandscaffold③ groundconditions④ arrangementofmooringposts⑤ arrangement,shapeanddimensionsoffenders

(4)AssumptionsregardingtheSeabedCondition

① Determinationofgradientofslope

(a)Whenanearth-retainingstructureisprovidedbehindtheslope,thepositionoftheearth-retainingstructureshouldbeappropriatelydeterminedconsideringthestabilityoftheslope.

(b)Itisnecessarytoexaminethestabilityofslopewithrespecttocircularslipfailure.Whenanearth-retainingstructureisinstalledbehindtheslope,itispreferablethatthestructureisnotconstructedinfrontoftheslopesurfacefromthetoeoftheslopeattheslantangleindicatedbyequation(5.2.1)(seeFig. 5.2.2).

(5.2.1)where,

α :anglebetweentheslopeandthehorizontalsurface(°) φ :angleofshearresistanceofthemainmaterialformingtheslope(°)

ε =tan-1kh' kh' :apparenthorizontalseismiccoefficient

For the seismic coefficient for verification for calculating the apparent horizontal seismic coefficient,thevaluecalculated in theanalysisof theearth-retainingsectionmaybeused. Refer to(10)⑥belowforcalculationoftheseismiccoefficientforverificationfortheearth-retainingsection.Inaddition,whentheslopeiscomposedofahardmudstoneorrock,equation(5.2.1)maynotbeapplied.

Design water depth

Design gradient of slope

α=φ−ε

Fig. 5.2.2 Position of Earth Retaining Structure on the Slope

② VirtualGroundSurface

(a) Incalculationoflateralresistanceandbearingcapacityofpiles,avirtualgroundsurfaceshallbeassumedatanappropriateelevationforeachpile.

(b)Whentheinclinationoftheslopeisconsiderablysteep,thevirtualgroundsurfaceforeachpiletobeusedinthecalculationoflateralresistanceorbearingcapacitymaybesetatanelevationthatcorrespondsto1/2oftheverticaldistancebetweenthesurfaceoftheslopeatthepileaxisandtheseabedasshownin(Fig. 5.2.3).

Page 145: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 820–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Virtual ground surface

Fig. 5.2.3 Virtual Ground Surface

(5)CoefficientofLateralSubgradeReaction

① Inthecalculationofthelateralresistanceofpiles,itispreferabletoobtainthecoefficientoflateralsubgradereactionofthesubsoilthroughlateralloadingtestsofpilesin-situ.Incasethatnotestsareconducted,itmaybeestimatedbymeansofappropriateanalyticalmethodsderivedfromlateralresistancetests.

② Therearesomemeasureddataavailableonthecoefficientoflateralsubgradereactionobtainedbythetestsinwhichthelateralloadswereappliedtopilesuptotheyieldpointsasobservedinthecaseofpilesofopen-typewharves. Althoughsomeof thesedatahavebeen related to theN-value, thecoefficientof lateral subgradereactioncannotbeestimatedaccuratelyfromtheN-value.Thus,itispreferabletoestimatethecoefficientbylateralloadingtestsin-situ.

③ Whenlateralloadingtestsofpilesarenotcarriedoutduetosmallscaleconstructionworksortimeconstraints,thecoefficientoflateralsubgradereactionofthesubsoilmayunwillinglyusethemeanvalueoftheminimumvalueandcentralvalueobtainedfromlateralresistancetests.WhenusingChang’smethod,equation(5.2.2)maybeutilized andChapter 2, 2.4.5 [4] Estimation of Pile Behavior using Analytical Methods canbereferenced. However, some in-situmeasurementdata indicate that the coefficientvalueof lateral subgradereactionofrubblestonesissmallerthantheestimatebyequation(5.2.2)withChang’smethod.Inthiscaseitisrecommendedtosetthecoefficientoflateralsubgradereactionequalto3.0-4.0N/cm2inChang’smethod.

(5.5.2)where

kCH :coefficientofhorizontalsubgradereaction(N/cm3) N :averageN-valueofthegrounddowntoadepthofabout1/β β :referto(6) Virtual Fixed Point

Thecoefficientoflateralsubgradereactionshowninequation(5.2.2)isastaticcoefficientofsubgradereaction,andmaybeusedwhencalculating thenaturalperiodsofpiledpiersby frameanalysis. There isnotmuchknowledgeregardingthecoefficientofsubgradereactiontobeconsideredwhencarryingouttheverificationofseismicresponseanalysis,hencethereisaprobleminapplyingequation(5.2.2)todynamicanalysis.Thereforeitispreferabletosetthecoefficientequaltoaboutdoublethevalueobtainedfromequation(5.2.2).

(6)VirtualFixedPointWithrespecttoanopen-typewharfonverticalpiles,thevirtualfixedpointsofthepilesmaybeconsideredtobelocatedatadepthof1/β belowthevirtualgroundsurface.Thevalueofβiscalculatedbyequation(5.2.3).

(5.2.3)where

kCH :lateralsubgradereactioncoefficient(N/cm3)calculatedbyequation(5.2.2) D :diameterorwidthofthepile(cm) EI :flexuralrigidityofthepile(N·cm2)

Page 146: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–821–

5.2.3 Actions

(1)For the calculation of the self weight of reinforced concrete superstructures, each part of the dimensions isassumedbasedonthedimensionsofthesuperstructure,andthevolumeiscalculatedonthem.TheselfweightcanbeobtainedbymultiplyingunitweightobtainedfromPart II, Chapter 10, 2 Self weightbythevolume.Inaddition,forthecalculationoftheselfweightofreinforcedconcretesuperstructures,21kNper1.0m2ofdeckareaofthesuperstructureofthepiledpiermaybeassumed.

(2)Atthesiteexpectedtobesubjecttowaves,thefollowingitemsshouldbeexaminedregardingwaveupliftonthesuperstructureofpiledpierandtheaccessbridge.

① Stabilityoftheaccessbridgesandpullingresistanceofpilesagainstuplift.

②Memberstrengthofthesuperstructuresandaccessbridgesagainstuplift. Foruplift,refertoPart II, Chapter 2, 4.7.4(1) Uplift Acting on Horizontal Plates near the Water Surface.

(3)ThestaticloadsmaybedeterminedinaccordancewithPart II, Chapter 10, 3.1 Static Load.Theearthquakeinertiaforcesduetostaticloadsmaynormallybeconsideredtoactontheuppersurfaceofthedeckslab.However,whenthecenterofgravityofthestaticloadsislocatedatanespeciallyhighelevation,itisimportanttotaketheheightofthecenterofgravityasthepointofapplicationofthehorizontalforce.

(4)LiveloadsshouldbedeterminedinaccordancewithPart II, Chapter 10, 3.2 Live Load.Theseismicforceduetoarailmountedcraneshouldbecalculatedbymultiplyingitsselfweightbytheseismiccoefficientforverification,andtheforcecanbeconsideredtobetransmittedfromthewheelsofthecranetothepile-supportedsection.Itisalsonecessarytocarryoutseismicresponseanalysisconsideringthecoupledoscillationsofthecargohandlingequipmentandtheopen-typewharf(refertoPart III, Chapter 7 Cargo Handling Facilities, 2.2 Fundamentals of Performance Verification).Inthiscase,groundmotionshallbeappliedintheformofatime-seriesseismicwaveprofile.ThewindloadactingoncranemaybedeterminedinaccordancewithPart II, Chapter 2, 2.3 Wind Pressure.

(5)ThefenderreactionforcecanbecalculatedinaccordancewithPart II, Chapter 8, 2.2 Actions Caused by Ship Berthing andPart II, Chapter 8, 2.3 Actions Caused by Ship Motions and 9.2 Fender Equipment.

(6)The tractive force of vessels can be determined in accordancewithPart II, Chapter 8, 2.4 Actions due to Traction by Ships.Inmanycasesonebollardisinstalledtoonedeckblock.

(7)Whenrubberfendersareinstalledasadamperonanordinarylargewharfwithaunitdeckblockof20to30minlength,acommonpracticeistoprovidetworubberfendersononeblock.Inmanycases,fenderintervalsof8to13mareused.Theberthingbehaviorofvarioussizesofshipshasbeenexaminedbyinstalling1.5-meter-longrubberfendersonanordinarylargewharf.Theresultsofexaminationhasrevealedthatitisappropriateto calculate the berthing force on the assumption that the ship’s berthing energy is absorbed by one fender.Therefore,thereactionforcemaybasicallybecalculatedontheassumptionthattheberthingenergyisabsorbedbyonefenderwhenusingrubberfendersasadamper.However,thisdoesnotapplywhenfendersareinstalledcontinuouslyalongthefacelineofawharf.

(8) Theberthingenergy is alsoabsorbedby thedisplacementof themain structureof thepier. However, it is acommonpracticenot to take this into considerationbecause inmanycases the energyabsorbedby themainstructureofthepieraccountsforlessthan10%ofthetotalberthingenergy.

(9)Fig. 5.2.4 showsanexampleof thedisplacement-energycurveandthedisplacement-reactionforcecurveofarubberfender. IfasinglefenderabsorbsaberthingenergyofE1,thecorrespondingfenderdeformationδ1isobtained.Then,usingtheothercurve,thecorrespondingreactionforceactingonthepierisobtainedasH1(δ1→C→H1).However,iffendersareinstalledtooclosetoeachotherandtheberthingenergyisabsorbedbytwofenders,theberthingenergyactingononefenderbecomesE2=E1/2andthecorrespondingfenderdeformationbecomesδ2. Ascanbeobtainedfromthefigure(δ2→D→H2), thereactionforceactingonthepierinthetwofendercaseisalmostthesameasthatgeneratedinthesinglefendercasebecauseofthecharacteristicsofrubberfender.Thusthehorizontalreactionforceactingonthepierbecomes2H2≒2H1,whichmeansthatthehorizontalforcetobeusedintheperformanceverificationbecomestwofold.Whenusingfendersthathavesuchcharacteristics, therefore, it ispreferable togivecarefulconsideration to thisbehaviorof reactionforce in theperformanceverificationandthedeterminationofthelocatingoffenders.

Page 147: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 822–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

H1 H2

E1

E2

D C

A

B

δ2 δ1

Displacement-reaction force curve

Displacement-absorbedenergy curve

Energy orreaction force

Displacement

Fig. 5.2.4 Rubber Fender Characteristics Curve

(10)GroundMotionusedinPerformanceVerificationofSeismic-resistant① Groundmotionusedinperformanceverificationofseismic-resistantissetconsideringtheeffectofthesurface

stratausingagroundseismicresponseanalysis.Itisnecessarytouseaseismicresponseanalysiscodecapableofappropriatelyevaluatingtheamplificationofgroundmotionsinsoftground(refertoANNEX 4, 1 Seismic Response Analysis of Local Soil Deposit).

② Usingaone-dimensionalseismicresponseanalysisasdescribedinANNEX 4, 1 Seismic Response Analysis of Local Soil Deposit,theaccelerationtimehistoryataposition1/β belowthevirtualgroundsurfaceiscalculatedwiththeaccelerationtimehistoryofthegroundmotionsetattheseismicbedrockastheinputgroundmotion.Whencalculatingtheaccelerationtimehistory,theaveragedepthofthe1/β groundpointforeachpilemaybetaken,asshowninFig. 5.2.5.Fromtheaccelerationresponsespectrumobtainedinthisway,theresponseaccelerations corresponding to the natural periods of the piled pier are calculated, and the value obtainedbydividing this by thegravitational acceleration canbe regarded as the characteristic valueof the seismiccoefficientforverification.Adampingfactorof0.2maybeusedwhencalculatingtheaccelerationresponsespectrum.AnexampleofatypicalprocedureforsettingtheseismiccoefficientforverificationisshowninFig. 5.2.6.Whenverifyingtheseismicperformanceofearth-retainingpartsusingtheseismiccoefficientmethod,thestructuralcharacteristicsaredifferentfromthoseofthepiledpier,sotheseismiccoefficientindicatedheremaynotbeused.Forthecalculationoftheseismiccoefficientforverificationforearth-retainingparts,referto⑥below.

Virtual ground surface

Position for calculation of acceleration time history

1/β

Fig. 5.2.5 Positions for Calculation of Earthquake Ground Motions

Page 148: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–823–

Setting of cross-section for performance verificatio

Setting of soil conditions

Setting of input seismic motion at engineering bedrock

One-dimensional seismic response analysis

Calculation of response acceleration timehistory at 1/β below virtual ground surface

Calculation of acceleration response spectrum

Setting of characteristic value of seismic coefficient for verification

Calculation of natural periods of piled pierFrame analysisCalculation of spring constants of piled pierCalculate natural period

Fig. 5.2.6 Typical Procedure for Setting of Seismic Coefficient for Verification

③ DesignvalueofseismiccoefficientforverificationForvariablesituationsunderLevel1earthquakegroundmotion,theminimumofthedesignvalueofseismiccoefficientforverificationis0.05,andthemaximumis0.25. However,whenthecharacteristicvalueof theseismiccoefficientforverificationexceeds0.25,thisvaluedoesnotapply,andthecharacteristicvaluecanbeadoptedas thedesignvalueofseismiccoefficientforverification. Insummary, thedesignvalueofseismiccoefficientforverificationisasfollows.

(5.2.4)where,

khd :designvalueofseismiccoefficientforverification khk :characteristicvalueoftheseismiccoefficientforverification

④ Thenaturalperiodsofthepiledpiermaybecalculatedusingaframeanalysis.Iftherelationshipbetweenthedisplacementandloadisobtainedfromtheframeanalysis,asshowninFig. 5.2.7,whenminuteloadsareactingonthepiledpier,thespringconstantsofthepiledpiercanbesetandthenaturalperiodscanbeobtainedfromequation(5.2.5). Thegroundspringconstantsusedin theframeanalysismaybecalculatedusingequation(5.2.2).

(5.2.5)

where, Ts :naturalperiodofpiledpier(s) W :selfweightandstaticloadduringanearthquakebornebyonerowofpilegroup(kN) g :gravitationalacceleration(m/s2) K :springconstantofthepiledpier(kN/m)

Page 149: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 824–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

tan-1K

Displacementδtan-1K

LoadP

Coefficient of lateral subgrade reactioncan be obtained from equation (5.2.2)

Fig. 5.2.7 Relationship between Load and Displacement from Frame Analysis

⑤ Thenaturalperiodofthepiledpierobtainedfromthespringconstantsofthepiledpierbyframeanalysisusuallyinvolvessomeamountoferrors.Therefore,ifthevalueintheaccelerationresponsespectrumcorrespondingtothenaturalperiodisalocalminimum,theseismiccoefficientforverificationcouldbeunderestimated,andthisshouldnotbeappliedasitis.Inaddition,asindicatedin5.2.5 Performance Verification of Structural Members,repeatedverificationforthevariablesituationunderLevel1earthquakegroundmotionisneeded.Therefore,itispreferablethatthespectralvaluebedeterminedtocalculatetheseismiccoefficientforverificationwithacertainrangeofnaturalperiods.Thus,thenumberofrepetitionsoftheperformanceverificationmaybereduced.However,thisdoesnotdenytheimportanceofavoidingalocalmaximumintheaccelerationresponsespectrumcausedbythesiteeffects.Inthecasethatthenaturalperiodofthepiledpiercorrespondstoalocalmaximumintheaccelerationresponsespectrum,itisverylikelythatthecross-sectionwillnotbeoptimumfromtheviewpointofseismicresistanceperformanceandcost.Itisnecessarytopayattentiontothispointforsettingthecross-sectionforverification.

Ts T [s]

αmax

Width of the natural frequencies to be considered

αmax: Maximum value of acceleration used to determine the seismic coefficient for verificationTs: Natural period of the piled pier calculated by frame analysis

Fig. 5.2.8 Consideration of Natural Period in Acceleration Response Spectrum

⑥ Seismic coefficient for verification used in performance verification of seismic-resistant of earth-retainingsections

(a) Generalperformance verification of seismic-resistant of earth-retaining sections can be carried out by directlyevaluatingthedeformationoftheearth-retainingsectionusingadetailedmethodsuchasnon-lineareffectivestressanalysis.Butsimplemethodssuchastheseismiccoefficientmethodcanbealsoused.Inthiscase,itisnecessarytoappropriatelysettheseismiccoefficientforverificationusedintheperformanceverificationcorrespondingtotheamountofdeformationofthefacility,consideringtheeffectofthefrequencycharacteristicsof the groundmotion and the duration. The normal procedure of calculating the seismic coefficient forverificationisasshowninFig. 5.2.9.Forthecalculationoftheseismiccoefficientforverificationofearth-retaining sections of gravity-type, basically refer to 2.2.2 Actions, prepared for gravity-type quaywalls.However,settingthefiltertakingintoconsiderationthefrequencycharacteristicsasshownbythethicklinesisdifferentfromgravity-typequaywalls,andthispointshouldbecarefullyreflectedintheanalysis.

Page 150: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–825–

Acceleration time history at engineering bedrock Setting of ground conditions

Setting of filter taking into considerationfrequency characteristics

Evaluation of cohesive soil ground

Setting of reduction ratio

Calculation of square root of sumof squares of time history

Calculation of reduction ratio p

One-dimensional seismic response analysis

Maximum value of ground surface accelerationtime history taking into consideration

frequency dependenceαf

Calculation of maximum value ofcorrected acceleration αc

Calculation of characteristic value ofseismic coefficient for verification

Setting of allowable amount of deformation Da

Acceleration time history at ground surface

Consideration of frequency dependence using filter processing

Consideration of the effect of duration of seismic motion with the reduction ratio (αf × p)

Calculation of initial natural periods of background andfoundations underneath wall structure (see (c)2))

Setting of filter (see (c)1))

Fig. 5.2.9 Example of Procedure for Calculating Seismic Coefficient for Verification

(b) For thebasicflowandpoints tobenoticed incalculating the seismiccoefficient forverificationofearth-retainingsectionsofgravity-typestructures,2.2.2, Actionsforgravity-typequaywallsmaybereferredto.However,itisnecessarytoconsidertheeffectonthedeformationoftheearth-retainingsectioninfluencedbytheslopesatthefrontoftheearth-retainingsectionanddeeprubblemound.Andthussettingofthefilterconsideringthefrequencycharacteristicsshallbedonebythecalculationmethoddescribedbelow.

(c) Settingofthefilterconsideringthefrequencycharacteristics

1) SettingofthefilterThefilterobtainedfromequation(2.2.1)of2.2.2 Actionsforgravity-typequaywallsmaybeusedasthefilter inconsiderationof the frequencycharacteristicsof thegroundmotionused inverificationof theearth-retainingsectionofgravitystructures.However,asshowninFig. 5.2.10,theheightfromthevirtualgroundsurfacetothetopoftheearth-retainingsectionmaybesubstitutedforthewallheightH.Thevalueofbmaybesetastherangeofvaluesindicatedbyequation(5.2.6)usingtheheightHfromthevirtualgroundsurfacetothetopoftheearth-retainingsection.

(5.2.6)

where, H :Heightfromthevirtualgroundsurfacetothetopoftheearth-retainingsection(m)

Page 151: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 826–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

2) CalculationofthenaturalperiodofthebackgroundsoilsandsoilsunderneaththewallstructureThemethod of calculation of the initial natural periodTb of the background soils used in setting thefrequencyfilterthattakesintoconsiderationthegroundmotionoftheearth-retainingsectionofgravity-type structuresmay be the same as themethod for gravity-type quaywalls. Also, the initial naturalperiodTuofthesoilsunderneaththewallstructuremaybecalculatedbyevaluatingthesectionfromthevirtualgroundsurfaceincludingrubblemounddowntotheseismicbedrockasaground,andignoringthegroundfromthevirtualgroundsurfaceuptothebottomofthewallstructure.Inthecaseofgravity-typequaywalls,theTuusedinsettingthefilterisevaluatedreplacingthematerialpropertiesoftheoriginalgroundwith thematerialpropertiesof the rubblemound. However,whencalculating theTuofearth-retainingsectionofgravity-typestructures,thismaynotbeapplied,soitisnecessarytobecarefulaboutthis.Inotherwords,TbandTushouldbecalculatedatthepositionsshowninFig. 5.2.10.

Ground for calculating TbGround for calculating Tu

H

Ground surface

H

Crown of earth-retaining section

BackfillingstonesBackfillingstones

Ground above virtual groundsurface not considered

Bottom surface of wallBottom surface of wall

Engineering bedrock

Rubble stones

In-situ soils Evaluate as in-situ soilsVirtual groundsurface

Evaluate as rubble moundwithout changing materialproperties

Fig. 5.2.10 Ground Calculation of Natural Periods

5.2.4 Performance Verification

(1) Itemstobeconsideredintheperformanceverificationofopen-typewharvesonverticalpilesIntheperformanceverificationofopen-typewharvesonverticalpiles,thenecessaryitemsamongthefollowingitemsshallbeappropriatelyinvestigatedandsetasnecessary.

① Thecross-sectionalforcesinthesuperstructure(Variablesituations:actionofships,Level1earthquakegroundmotion,surchargeandactionofwaves,accidentalsituations:Level2earthquakegroundmotion)

② Fatiguefailureofthesuperstructure(Variablesituations:repeatedactionsofsurcharge)

③ Stresses in piles (Variable situations: action of ships, Level 1 earthquake ground motion and surcharge,Accidentalsituation:Level2earthquakegroundmotion)

④ Bearingcapacityofpiles(Variablesituations:actionofships,Level1earthquakegroundmotion,surchargeandactionofwaves,accidentalsituations:Level2earthquakegroundmotion)

⑤ Deformation(accidentalsituations:Level2earthquakegroundmotion)PerformanceverificationunderLevel2earthquakegroundmotionshallbeinaccordancewith(11) Verification of Level 2 Earthquake Ground Motions with a Dynamic Analysis Method.Forthecross-sectionalforcesinthesuperstructureandfatiguefailure,referto5.2.5 Performance Verification of Structural Members.

(2)Intheperformanceverificationofthepiledpiersectionofopen-typewharvesonverticalpilesasdescribedbelow,noloadtransmissionisconsideredfromtheearth-retainingsectiontothewharves.Apiledpierisaveryflexiblestructureifaffectedbydeformationoftheground,hence,piledpiersectionshallbestructurallyindependentofearth-retainingsection.However,inthecasewherethecross-sectionaldimensionsaresuchthatitisnotpossibletoeliminatetheeffectfromtheearth-retainingsection,becauseofphysicalrestrictionsduetogroundcondition,itisnecessarytocarryouttheverificationusingamethodconsideringtheinteractionbetweentheearth-retainingsectionandthepiledpiersection.7)

(3)IntheperformanceverificationforLevel1earthquakegroundmotion,theseismiccoefficientforverificationiscalculatedfromtheaccelerationresponsespectrumvaluescorrespondingtothenaturalperiodsofthepiledpier,thus,whenthedimensionsofthepilesarenotdetermined,itisnotpossibletodeterminethenaturalperiodsofthe

Page 152: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–827–

piledpiereither.Therefore,thedimensionsofthepilesareassumed,andtheseismiccoefficientforverificationiscalculatedfromtheaccelerationresponsespectrumcorrespondingtothenaturalperiods,thentheverificationiscarriedout.Iftheperformancerequirementsarenotsatisfied,thepiledimensionsarechanged,andthesamecalculationneedstoberepeated.

(4)Performanceverificationofthedeformationmaybecarriedoutbysettinganappropriatelimitingvaluetakingintoconsiderationthedynamicdeformationofthepiledpier.Forexample,theamountofdeformationtoensurethattheaccessbridgedoesnotfalldownmaybetakenasthelimitingvalue.Inthatcase,itisappropriatetousetheresponsedisplacementconsideringthedynamicaction,suchasthedisplacementresponsespectrum,andnotthedisplacementconsideringthestaticaction.

(5)Performanceverification for stresses in thepilesunderdesignsituation forother thanaccidental situations inrespectofLevel2earthquakegroundmotion

① Verificationofthestressesoccurringinthepilesofapiledpiermaybecarriedoutusingequation(5.2.7).Inthefollowingequations,thesymbolγisthepartialfactorcorrespondingtothesuffix,wherethesuffixesdandkindicatethedesignvalueandcharacteristicvaluerespectively.

(a) When the axial forces are tensile

(b) When the axial forces are compressive (5.2.7)

where, σt,σc :tensilestressduetoaxialtensileforcesactingonthecross-section,andcompressivestressdue

toaxialcompressiveforces,respectively(N/mm2) σbt,σbc :maximumtensilestressandmaximumcompressivestressduetotheflexuralmomentactingon

thecross-section,respectively(N/mm2) σty,σcy :tensileyieldstressandaxialcompressiveyieldstressfortheweakaxis,respectively(N/mm2)σby :bendingcompressiveyieldstress(N/mm2)

Thedesignvaluesintheequationsmaybecalculatedfromequation(5.2.8).ThevaluesshowninTable 5.2.2maybeusedasthepartialfactorsintheequations.

(5.2.8)where,

A :cross-sectionalareaofpiles(mm2) P :axialforceonpile(N) Z :sectionmodulusofpiles(mm3) M :flexuralmomentofpiles(N·mm)

② Fortheyieldstressofpiles,refertoPart II, Chapter 11, 2 Steel.TheaxialcompressiveyieldstressmaybecalculatedfromtheequationinTable 5.2.1.

Page 153: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 828–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 5.2.1 Axial Compressive Yield Stresses (N/mm2)

SKK400SHK400SHK400MSKY400

SKK490SHK490MSKY490

a)When 235

b)When

c)When

a)When 315

b)When

c)When

:Effectivebucklinglengthofmember(cm),r:Radiusofgyrationofmembergrosscross-section(cm)

③ Thedesignvaluesofcross-sectional forceson thepilescanbecalculated bymultiplying thecharacteristicvaluesofparameterssuchasthecoefficientofsubgradereaction,theactioninthehorizontaldirection,andotherprobabilisticvariablesbythepartialfactors.

④ Itispreferabletocalculatetheflexuralmomentsonthepilesforthedirectionbothnormalandparalleltothefacelineofthewharf.AsintheexampleshowninFig. 5.2.1,ifthegroundsurfaceunderthefloorslabofthepiledpierhasaslopingsurface,itisoftenthecasethattheflexuralmomentsinthefrontmostrowofpilesaremaximizedwhenthegroundmotionactsinthedirectionparalleltothefaceline.

⑤When it is considerednecessary toexamine the rotationof thepiledpierunitwhenevaluating theactions,theverificationshouldtakethisintoconsideration.Inthiscasethedistributionofforcesoneachpilemaybeevaluatedasdescribedbelow.

(a)WhenthesymmetryaxisofthepiledpierunitisperpendiculartothefacelineofthewharfandthedirectionofactionofthehorizontalforceisparalleltothesymmetryaxisasshowninFig. 5.2.11,thehorizontalforcemaybecalculatedbyequation(5.2.9).

(5.2.9)where

Hi :horizontalforceonpile(kN) KHi :horizontalspringconstantofpile(kN/m)

hi :verticaldistancebetweenthepileheadandthevirtualgroundsurface(m) βi :inverseofthedistancebetweenthevirtualgroundsurfaceandthevirtualfixedpointofpile

(m-1) EIi :flexuralrigidityofpile(kN·m2) H :horizontalforceactingontheunit(kN) e :distancebetweentheblock’ssymmetryaxisandthehorizontalforce(m) xi :distancebetweentheunit’ssymmetryaxisandeachpile(m)

Thesubscriptireferstothei-thpile.

Page 154: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–829–

hi

H xixi

hihi

βi11

hi

e

Center of gravityof the pile groupFa

ce li

neSymmetry ax

i-th pile

Fig. 5.2.11 Distance between the Center of Gravity of the Pile Group and Individual Piles

(b)Therowofpilesbearingthemaximumtotalhorizontallydistributedforcesissubjecttotheverification.

(c)WhenobtainingKHi, it isnecessary toappropriatelyset thecoefficientofsubgrade reaction in the lateraldirectionoftheground,andcalculateβ.

⑥ ApartfromaccidentalsituationsinrespectofLevel2earthquakegroundmotion,basicallytheperformanceisprescribedbyyieldingoftheedgeofthepilehead.However,thepiledpierischaracterizedwithstructuralrobustness,whichmeansthecapacityofstructuremaynotbefatallydamagedbylocalfailurecausedbygroundmotions,totheextentthattheoriginalfunctionofthestructureislost.Thereliabilityindexforyieldingoftheedgeofthepilewithinthegroundisreportedabout2.0–2.7largerthanthatofthepilehead.8)

(6)PerformanceverificationofthebearingcapacityinpilesunderdesignsituationsotherthanaccidentalsituationsinrespectofLevel2earthquakegroundmotion

① VerificationofthebearingcapacityofpilesinpiledpierscanbecarriedoutappropriatelyinaccordancewithChapter 2, 2.4.3 Static Maximum Axial Pushing Resistance of Piles Foundations,andChapter 2, 2.4.4 Static Maximum Pulling Resistance of Piles Foundations,correspondingtothegroundcharacteristicsandananalysismethodforpilelateralresistance.Inthiscase,forcalculatingthebearingcapacityofpilesonaslopingsurface,thesoilstratabelowthevirtualgroundsurfacecanbeconsideredastheeffectivebearingstrata.

② Regardingthevirtualgroundsurface,referto5.2.2 Setting the Basic Cross-section.

(7)PartialfactorsunderthedesignsituationsotherthanaccidentalsituationsinrespectofLevel2earthquakegroundmotion

① Regardingpartialfactorsforstressesoccurringinthepilesofopen-typewharvesonverticalpilesandpartialfactorsforthebearingcapacityofpiles,refertoTable 5.2.2.Thetargetreliabilityindicesandtargetfailureprobabilitiesforstressesinpilesshownin1)and4)ofTable 5.2.2meanthevaluesforedgeyieldingofthepileheadofeachsinglepileinthepiledpier.Inthetable,forthevariablesituationsinrespectoftheactionofships,thereliabilityindexis4.1(failureprobabilityof2.3×10-5),beingbasedontheaveragelevelofsafetyintheconventionaldesignmethods.Whentheexpectedtotalcostrepresentedbythesumoftheinitialcostandtheexpectedvalueof therestorationcostduetofailure is takenintoconsideration, thereliability indexthatminimizes theexpected totalcost is3.2 (failureprobabilityof9.1×10-4) forhighearthquake-resistancefacilities,and2.9(failureprobabilityof1.9×10-3)forotherpiledpiers.9)Ifherethelevelofsafetyisevaluatedfromreliability theorybasedonminimizationof theexpected totalcost, thepartial factorsareasshowninTable 5.2.2 1).9) Concerningthevariablesituations inrespectofLevel1earthquakegroundmotionshownintheTable 5.5.2 (4), theaveragelevelofsafetyofapiledpier inaccordancewiththeconventionaldesignmethodsisevaluatedandshown.Besidestheabove,thepartialfactorsofTable 5.2.2aredefinedtakingintoconsiderationthesettingsbasedontheconventionaldesignmethods.

Page 155: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 830–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 5.2.2 Standard Partial Factors(1) Variable situations in respect of the action of ships

(ship berthing, traction by ships), Variable situations in respect of surcharge (during operation)(a) When SKK400 is used

Highearthquake-resistancefacility

TargetreliabilityindexβT 3.2

TargetfailureprobabilityPfT 9.1×10-4

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.719 1.260 0.08 Normal

γkCH Coefficientofsubgradereaction 0.60 0.257 1.333 0.76 Lognormal

γPHHorizontalforces 1.35 -0.645 0.870 0.25 Normal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Otherthanhighearthquake-resistancefacilities

TargetreliabilityindexβT 2.9

TargetfailureprobabilityPfT 1.9×10-3

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.719 1.260 0.08 Normal

γkCH Coefficientofsubgradereaction 0.60 0.257 1.333 0.76 Lognormal

γPHHorizontalforces 1.30 -0.645 0.870 0.25 Normal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Allopen-typewharvesonverticalpiles

γ α µ/Xk V

Bearingcapacity

γc’ Cohesion 1.00 - - -

γN N-value 1.00 - - -

γa

Structuralanalysiscoefficient

Pullingpiles 0.33 - - -

Pushingpiles 0.40 - - -

※1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.※2: Horizontal forces include fender reaction forces (during ship berthing), tractive forces (during traction), and crane horizontal forces

(duringoperationofthecrane).※3:Thedesignvalueofaxialforcesinpilesusedintheverificationofbearingcapacitycanbeobtainedfromtheverificationofstressesin

piles.

Page 156: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–831–

Table 5.2.2 Standard Partial Factors(1) Variable situations in respect of the action of ships

(ship berthing, traction by ships), Variable situations in respect of surcharge (during operation)(b) When SKK490 is used

Highearthquake-resistancefacility

TargetreliabilityindexβT 3.2

TargetfailureprobabilityPfT 9.1×10-4

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 0.95 0.719 1.196 0.08 Normal

γkCH Coefficientofsubgradereaction 0.60 0.257 1.333 0.76 Lognormal

γPHHorizontalforces 1.35 -0.645 0.870 0.25 Normal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Otherthanhighearthquake-resistancefacilities

TargetreliabilityindexβT 2.9

TargetfailureprobabilityPfT 1.9×10-3

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 0.95 0.719 1.196 0.08 Normal

γkCH Coefficientofsubgradereaction 0.60 0.257 1.333 0.76 Lognormal

γPHHorizontalforces 1.30 -0.645 0.870 0.25 Normal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Allopen-typewharvesonverticalpiles

γ α µ/Xk V

Bearingcapacity

γc’ Cohesion 1.00 - - -

γN N-value 1.00 - - -

γaStructuralanalysiscoefficient

Pullingpiles 0.33 - - -

Pushingpiles 0.40 - - -

※1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalue(averagevalue/characteristicvalue),V:.Coefficientofvariation.※2: Horizontalforcesincludefenderreactionforces(duringtheshipberthing),tractiveforces(duringtraction),andcranehorizontalforces

(duringoperationofthecrane).※3:Thedesignvalueofaxialforcesinpilesusedinverificationofbearingcapacitycanbeobtainedfromtheverificationofstressesinpiles.

Page 157: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 832–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2) Variable situations in respect of surcharges (during strong winds)

Allfacilities

γ α µ/Xk V

Pilestress

γσySteelyieldstrength 1.00 - - -

γkCHCoefficientofsubgradereaction 1.00 - - -

γPHHorizontalforces 1.00 - - -

γq Surcharges 1.00 - - -

γa Structuralanalysiscoefficient 1.12 - - -

Bearingcapacity

γc’ Cohesion 1.00 - - -

γN N-value 1.00 - - -

γa

Structuralanalysiscoefficient

Pullingpiles 0.40 - - -Pushing:endbearingpiles 0.66 - - -

Pushing:frictionpiles 0.50 - - -

※1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.※2:Thedesignvalueofaxialforcesinpilesusedintheverificationofbearingcapacitycanbeobtainedfromtheverificationofstressesin

piles.

Table 5.2.2 Standard Partial Factors(3) Variable situations in respect of the action of waves

Allfacilities

γ α µ/Xk V

Bearingcapacity

γP Axialforcesinpiles 1.00 - - -

γc’ Cohesion 1.00 - - -

γN N-value 1.00 - - -

γa

Structuralanalysiscoefficient

Pullingpiles 0.40 - - -Pushing:endbearingpiles 0.66 - - -

Pushing:frictionpiles 0.50 - - -

Page 158: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–833–

(4) Variable situations in respect of Level 1 earthquake ground motion

(a) When SKK400 is usedHighearthquake-resistancefacility(specially

designated)

TargetreliabilityindexβT 3.65

TargetfailureprobabilityPfT 1.3×10-4

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.423 1.260 0.08 Normal

γkCH Coefficientofsubgradereaction 0.66 0.194 1.333 0.76 Lognormal

γkh Horizontalforces 1.68 -0.885 1.000 0.20 Lognormal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Highearthquake-resistancefacility(standard)

TargetreliabilityindexβT 2.67

TargetfailureprobabilityPfT 3.8×10-3

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.443 1.260 0.08 Normal

γkCH Coefficientofsubgradereaction 0.72 0.215 1.333 0.76 Lognormal

γkh Horizontalforces 1.36 -0.870 1.000 0.20 Lognormal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Otherthanhighearthquake-resistancefacilities

TargetreliabilityindexβT 2.19

TargetfailureprobabilityPfT 1.4×10-2

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.455 1.260 0.08 Normal

γkCH Coefficientofsubgradereaction 0.80 0.195 1.333 0.76 Lognormal

γkh Horizontalforces 1.23 -0.869 1.000 0.20 Lognormal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Allopen-typewharvesonverticalpiles

γ α µ/Xk V

Bearingcapacity

γc’ Cohesion 1.00 - - -

γN N-value 1.00 - - -

γa

Structuralanalysiscoefficient

Pullingpile 0.40 - - -Pushing:endbearingpile 0.66 - - -

Pushing:frictionpile 0.50 - - -

※1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.※2:Thedesignvalueofaxialforcesinpilesusedintheverificationofbearingcapacitycanbeobtainedfromtheverificationofstressesin

piles.

Page 159: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 834–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 5.2.2 Standard Partial Factors

(4) Variable situations in respect of Level 1 earthquake ground motion (b) When SKK490 is used

Highearthquake-resistancefacility(speciallydesignated)

TargetreliabilityindexβT 3.65

TargetfailureprobabilityPfT 1.3×10-4

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.423 1.196 0.08 Normal

γkCH Coefficientofsubgradereaction 0.66 0.194 1.333 0.76 Lognormal

γkh Horizontalforces 1.77 -0.885 1.000 0.20 Lognormal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Highearthquake-resistancefacility(standard)

TargetreliabilityindexβT 2.67

TargetfailureprobabilityPfT 3.8×10-3

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.443 1.196 0.08 Normal

γkCH Coefficientofsubgradereaction 0.72 0.215 1.333 0.76 Lognormal

γkh Horizontalforces 1.43 -0.870 1.000 0.20 Lognormal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Otherthanhighearthquake-resistancefacilities

TargetreliabilityindexβT 2.19

TargetfailureprobabilityPfT 1.4×10-2

γ α µ/Xk V Probabilitydistribution

Pilestress

γσy Steelyieldstrength 1.00 0.455 1.196 0.08 Normal

γkCH Coefficientofsubgradereaction 0.80 0.195 1.333 0.76 Lognormal

γkh Horizontalforces 1.30 -0.869 1.000 0.20 Lognormal

γq Surcharges 1.00 - - - -

γa Structuralanalysiscoefficient 1.00 - - - -

Allopen-typewharvesonverticalpiles

γ α µ/Xk V

Bearingcapacity

γc’ Cohesion 1.00 - - -

γN N-value 1.00 - - -

γa

Structuralanalysiscoefficient

Pullingpile 0.40 - - -Pushing:endbearingpile 0.66 - - -

Pushing:frictionpile 0.50 - - -

※1:α:Sensitivityfactor,µ/Xk:Deviationofaveragevalue(averagevalue/characteristicvalue),V:coefficientofvariation.※2:Thedesignvalueofaxialforcesinpilesusedintheverificationofbearingcapacitycanbeobtainedfromtheverificationofstressesin

piles.

Page 160: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–835–

(8)ExaminationofEmbedmentLengthforLateralResistance

① Theembedmentlengthofeachverticalpilemaybedeterminedappropriatelyinaccordancewiththemethodofanalysisofthepilelateralresistance.

② Theembedmentlengthsofverticalpilesaregenerallysetat3/βbelowthevirtualgroundsurfacebasedontheresultsofpilelateralresistanceanalyses.Thevalueofβcanbesetinaccordancewith5.2.2 Setting of Basic Cross Section.

(9)ExaminationofPileJoints

①Whenapilejointisneededinapile,itispreferabletoensurethatthepilecankeepitsstabilityagainsttheimpactstressgeneratedinthejointduringdriving.

② Thelocationofpilejointshallbedeterminedcarefullyinsuchamannerastoavoidtheportionwithexcessivestress.

③ Forthemethodforjoiningpiles,refertoChapter 2, 2.4.6 [4] Joints of Piles.

(10)ChangeofPlateThicknessorMaterialofSteelPipePile

① AnychangeontheplatethicknessormaterialalongthesamesteelpipepileshallbemadeinaccordancewithChapter 2,2.4.6 [5] Change of Plate Thickness or Material Type of Steel Pipe Piles.

② Thestrengthsofjointsandportionwithsteelthicknesschangeshouldbeexaminedcarefullybecausetherearesomeexamplesinwhichpilesofopen-typewharvesbuckledattheseportionsduetogrounddeformationinadeepgroundwherenobendingstressesaregeneratedundernormalloadconditions.

(11)VerificationofLevel2EarthquakeGroundMotionwithaDynamicAnalysisMethod

① For setting thecross-section for theverification,anonlineardynamicanalysisofa spring-massmodelwithsinglemassordoublemassesifthereisacontainercraneinstalledmaybeused.Thesystemconsistsofaspringequivalenttothemodeledload-displacementrelationshipofthepiledpierstructureobtainedfromanelastic-plasticanalysis.

② If container cranes or other cargo handling equipment are installed on a piled pier, the seismic responsecharacteristicsofthepiledpiermaybegreatlyaltereddependingontheratioofthemassofthecargohandlingequipment to thatof thepiledpierandtheratioof theirnaturalperiods. Therefore, it isnecessarytocarryout a seismic response analysis that takes into consideration the coupled oscillations of the cargo handlingequipmentandthepiledpier.Fordetails,refertoChapter 7 Cargo Handling Facilities,2.2 Fundamentals of Performance Verifi cation.

③ Besides the inertia forces actingon the superstructure of thepiledpier, factors that have an adverse effecton thepiles include transmissionof thedeformationof thegroundaround theearth-retainingsection to thesuperstructurethroughtheaccessbridge,andtransmissionofforcestothepileswhenthesoilaroundthepilesmovestowardstheseaduetothedeformationofthesoilsthere. Therefore,astructureoftheaccessbridgeshouldbesuchthatdeformationofthesoilsaroundthegroundearth-retainingsectiondoesnotadverselyaffectthesuperstructureofthepiledpier.

(12)PerformanceVerificationfortheStabilityoftheEarth-retainingSection

① Theexaminationofthestructuralstabilityoftheearth-retainingsectionofopen-typewharfonverticalpilescanbemadeinaccordancewiththeperformancecriteriaprescribedin2.2 Gravity-type Quaywalls, 2.3 Sheet Pile Quaywalls dependingonitsstructuraltype.

② The superstructure and the earth-retaining sectionof anopen-typewharf shouldbeconnectedbya simplysupported slab having clearances on its both ends or buffermaterial provided on the both ends of slab, inordertopreventtheforcesactingontheearth-retainingsectionfrombeingtransmittedtothesuperstructure.It isalsopreferable topreparemeasuresagainst therelativelyunevensettlementbetween thewharfand theearth-retainingsection.Furthermore,theclearancebetweenthesuperstructureandtheearth-retainingsectionshould be determined appropriately by considering the dynamic deformation of the superstructure and theearth-retainingsection.

③ The stabilityof the earth-retaining sectionofopen-typewharfonvertical piles against circular slip failureshouldbeexaminedbyapplyingChapter 2, 3.2.1 Stability Analysis by Circular Slip Failure Surface.

Page 161: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 836–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5.2.5 Performance Verification of Structural Members

(1) Itshallbewellconfirmedthattherewillbenolossoftherequiredfunctioncausedbydeteriorationoftheconcretesuperstructureandthesteelpipepilesubstructureduetomaterialdegradationduringthedesignworkinglife.Inparticulartherehavebeenmanycaseswheretheperformancerequirementsofconcretesuperstructureshavenotbeenachievedasaresultofsaltinjury,soadetailedmaintenancemanagementplanshouldbepreparedandcarriedout.

(2)Itshallbeverifiedthattheflexuralmoment,axialforce,andshearforceactingontheconnectionsbetweenthesteelpipepilesandthesuperstructuredonotreachtheultimatelimitstate.

(3)In the performance verification of piled piers, the analysis is carried out by assuming that rigid connectionsbetweenthepileheadsandtheconcretebeamsareformed.Then,itisnecessarythatthepileheadflexuralmomentcanbesmoothlydistributedtothepileheadandtheconcretebeam.TheflexuralmomentthatcanbedistributedtothebeamMudmaybecalculatedusingthefollowingequation,ignoringthereinforcementconnectionplatesorverticalribswhichareprovided,asnecessary.

(5.2.10)where,

Mud :flexuralmomentthatcanbedistributedtothepartofthepileembeddedinthebeam(N.mm) D :diameterofsteelpipepile(mm) L :embeddedlengthofsteelpipepile(mm) f 'cd :designvalueofcompressivestrengthofbeamconcrete(N/mm2) γb :memberfactor

(4)Itisassumedthataxialforcesaredistributedbyonlythebondbetweentheouterperipheralsurfaceofthepilesandtheverticalribs,whichareprovided,asnecessary,andtheconcrete.Inthiscase,theaxialforcethatcanbedistributed,Pud,canbecalculatedfromthefollowingequation.

(5.2.11)where,

Pud :axialforcethatcanbedistributedtothepartofthepileembedded(N) L :embeddedlengthofsteelpipepile(mm) φ :outerperimeterofsteelpipepile(mm) fbod :designvalueofthebondstrengthbetweenthepileandtheconcrete(N/mm2) fbod=0.11f 'ck

2/3/γc f 'ck :characteristicvalueofthecompressivestrengthoftheconcrete(N/mm2) γc :materialcoefficientofconcrete(=1.3) Ap :areaofverticalribsbondingwithconcrete(mm2) γb :memberfactor(maybetakentobe1.0)

(5)It shallbeverified that failuredue topunching shear forces in thehorizontaldirection shallnotoccur in thebeamattheendofwhichthesteelpipepileisembedded.Inthiscasethepunchingshearresistance,Vpcd,maybecalculatedfromthefollowingequation.

(5.2.12)where,

Vpcd :designvalueofpunchingshearresistanceinthehorizontaldirection(N) f 'cd :designcompressivestrengthofconcrete(N/mm2)

ifβd>1.5,βdshallbetakentobe1.5

ifβp>1.5,βpshallbetakentobe1.5

d :effectiveheight(m) pw :ratioofreinforcementtoconcretesections βγ=1.0 Aτ :shearresistancearea(mm2) γb :memberfactor(maybetakentobe1.3)

Page 162: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–837–

5.3 Open-type Wharves on Coupled Raking Piles5.3.1 Fundamentals of Performance Verification

(1)Thefollowingmaybeappliedtotheopen-typewharveswithastructureinwhichthehorizontalforcesactingonthepiledpieraredistributedtocoupledrakingpiles.

(2)Theperformanceverificationofopen-typewharvesoncoupledrakingpilesmaybecarriedoutinaccordancewith5.2.4 Performance Verificationforopen-typewharvesonverticalpiles,aswellasthefollowing.

(3)Theopen-typewharfoncoupledrakingpilesisastructurethatresiststhehorizontalforceactingonthewharfsuchastheseismicactions,fenderreactionforce,andtractiveforceofshipswithcoupledrakingpiles.Therefore,thistypeofwharfmustbeconstructedonthegroundthatyieldssufficientbearingcapacityforcoupledrakingpiles.Becausethecoupledrakingpilesaresolaidouttoresistthehorizontalforcesinthedirectionnormaltothefacelineofthewharf,thehorizontaldisplacementinthatdirectionissmallerthanthatofopen-typewharvesonverticalpiles.Coupledrakingpilesareseldomlaidouttoresistthehorizontalforcesinthedirectionofwharffaceline.Therefore,itispreferabletoexaminethestrengthofthewharfagainstthehorizontalforceparalleltothefacelineinthesamemannerastheexaminationforopen-typewharvesonverticalpiles.

(4)Inthecaseofcoupledrakingpiles,thepilescomeclosetoadjacentverticalpilesandtheearth-retainingsection,soitispreferablethatthelayoutofthepilesbecarefullydeterminedconsideringtheconstructionconditionsandtheconditionsofuse.

(5)Fortheprocedureforperformanceverificationofopen-typewharvesoncoupledrakingpiles,referto Fig. 5.3.1 of5.2.4 Performance Verificationforopen-typewharvesonverticalpiles.

(6)Verification for thevariablesituations in respectofLevel1earthquakegroundmotionmaybecarriedoutbyobtaining the natural periods of the piled pierwith frame analysis and calculating the seismic coefficient forverificationwiththeaccelerationresponsespectrumcorrespondingtothenaturalperiods.

(7)Anexampleofthecross-sectionoftheopentypewharfoncoupledrakingpilesisshowninFig. 5.3.1.

L.W.L

Concrete paving Access bridge

Water supply pipeSuperstructureSuperstructure

Backfillingstones

Earth-retaining sectionRubble mound

Fenders

Steel pipe pile Steel pipe pile

Steel pipe pile Steel pipe pile

Fig. 5.3.1 Example of Cross-section of Open Type Wharf on Coupled Raking Piles

5.3.2 Setting of Basic Cross-section

(1)Forsettingthebasiccross-sectionofopen-typewharvesoncoupledrakingpiles,referto5.2.2 Setting of Basic Cross-section.

(2)Alargewharffordesignshipsizeof10,000DTWclasshasoneortwosetsofcoupledrakingpilesbehindoneverticalpile in thedirectionnormal to thewharfface line. Thedistancebetweenpilesorbetweencentersof

Page 163: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 838–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

coupledrakingpilesisusuallysettobe4to6minconsiderationofloadingconditionsandconstructionwork.Itispreferabletouseasmallrakingangleofcoupledpilesfromtheviewpointofsecuringresistanceagainsthorizontalforce,butinmanycasesaninclinationof1:0.33to1:0.2isusedbecauseofconstraintsrelatedtotherequireddistancesfromotherpilesandconstructionwork-relatedconstraintssuchasthecapacityofpiledrivingequipmentavailable.

5.3.3 Actions

The characteristic value of the seismic coefficient for verification used in performance verification of open-typewharveson coupled rakingpiles for thevariable situations in respectofLevel1 earthquakegroundmotion shallbe appropriately calculated considering the structural characteristics of thewharf. For calculationof the seismiccoefficientforverificationofopen-typewharvesoncoupledrakingpiles,referto5.2.3(10) Ground Motion used in Performance Verification of Seismic-resistant.

5.3.4 Performance Verification

(1) ItemsforthePerformanceVerificationofOpen-typeWharvesonCoupledRakingPilesThe performance verification of open-type wharves on coupled raking piles shall apply 5.2.4 Performance Verificationandbebasedonthefollowing.

(2)PerformanceVerificationofBearingForcesonPiles

①Thepushing-inandpulling-outforcesofeachpairofcoupledrakingpilesshallbecalculatedappropriatelybasedontheverticalandhorizontalforcesdefinedinconsiderationofthewharfoperationconditions.

② Thepushing-inandpulling-outforcesoneachrakingpileareobtainedwithaframeanalysismethod,takingintoconsiderationtheeffectoftherakingangleofthepileasindicatedinChapter 2, 2.4.5 Static Maximum Lateral Resistance of Piles,calculatingtheratioofthecoefficientoflateralsubgradereaction,andappropriatelycorrectingthecoefficientoflateralsubgradereaction.

③ For verification of pushing-in and pulling-out forces in each raking pile, refer toChapter 2 2.4.3 Static Maximum Axial Pushing Resistance of Pile Foundations,and2.4.4 Static Maximum Pulling Resistance of Pile Foundations.

(3)VerificationofStressesinPilesThecross-sectionalstressineachpilemaybecalculatedbyapplying5.2.4 Performance Verificationforpilessubjecttoaxialforcesorpilessubjecttoaxialforcesandflexuralmoments.

(4)Horizontal Forces Distributed to the Pile Head of each Group when Rotation of the Piled Pier Block isConsidered

①Whenitisnecessarytoconsiderrotationofthepiledpierblock,thehorizontalforcesdistributedtothepileheadofeachgroupofpilesinanopentypewharfoncoupledrakingpilesmaybeappropriatelycalculatedinaccordancewiththecross-sectionofeachpileandtherakingangleandlengthoftherakingpiles.Inthiscase,itmaybeassumedthatallhorizontalforcesaredistributedtothecoupledrakingpiles.Normallytherowofpileshavingthemaximumdistributedhorizontalforceamongalltherowsofpilesisadoptedastherowofpilesusedintheverification.

② Inthecasewherethecross-sectionofeachpilegroupandrakingangleoftherakingpilesaredifferent, thehorizontalforcedistributedtothepileheadofeachgroupmaybecalculatedusingequation(5.3.1)(seeFig. 5.3.2).

(a)Whenthepilescanberegardedasfullyendbearingpiles

(5.3.1)

where,

H :horizontalforceactingontheblock(N/m) Hi :horizontalforcedistributedtoeachpile(N/m)

Page 164: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–839–

e :distancebetweencenterlineofpilegroupandtheactinghorizontalforce(m) xi :distancefromeachpilegrouptothecenterlineofapilegroup(m) i :totalpilelength(m),beingsubstitutedthepilelengthofthefrictionpilewhenpulling-outforces

areacting. Ai :cross-sectionalareaofeachpile(m2) Ei :Young’smodulusofeachpile(N/m2) θi1,θi2:angleofeachpilewiththeverticaldirection(°)

Thesubscriptireferstotheithpile. Thesubscripts1,2refertoeachpileinonepilegroup. ThecenterlineofapilegroupmaybeobtainedfromΣCiξi/ΣCi. ξiarethecoordinatesfromanarbitrarycoordinateoriginofeachpilegroupinfacelinedirection.

(b)Whenthepilescanberegardedfullyasfrictionpiles

1) Sandysoil

Equation(5.3.1)isused,substituting, fori.

2) Cohesivesoil

Equation(5.3.1)isused,substituting, fori.

where, λi: Pile length of the part overwhich the peripheral surface resistance force is not effectivelyworking(m),i:Totalpilelength(m).

Pile group center lineH

e

x1 x2

x3 x4

Coupled piles

Vertical pilesHorizontal force H

Fig. 5.3.2 Pile group Center Line and Distance from each Pile Group

③Whenthecross-section,rakingangleandlengthoftherakingpilesofeachpilegroupareallequal,thehorizontalforcedistributedtoeachpilegroupmaybecalculatedfromequation(5.3.2).

(5.3.2)

(5)PartialFactorsVerificationmaybeappropriatelycarriedoutusingpartialfactorsforverificationofbearingcapacityofpilesandstressesinthepilesofopen-typewharvesoncoupledrakingpilessubstitutedwiththoseforopen-typewharvesonverticalpiles,consideringthesimilarityofperformanceverificationmethodamongthesetwotypesofstructures.

(6)AnalysisintheFaceLineDirectionIftherearecoupledrakingpilesinthefacelinedirection,theanalysisshouldbecarriedoutusingthemethoddefinedin(2)to(5),inthesamewayasthedirectionperpendiculartothefaceline.

(7)VerificationofPileEmbedmentForbearingcapacityonrakingpiles,referto5.2.4 Performance Verification.

Page 165: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 840–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(8)PerformanceVerificationofEarth-retainingSections

① Fortheperformanceverificationofearth-retainingsections,referto5.2.4 Performance Verification.

② Itshallbeensuredthattheactionduetodeformationoftheearth-retainingsectionbyearthquakesshallnotbetransmittedtothesuperstructureofthepiledpierviatheaccessbridge,andthatthepilesarenotadverselyaffectedbysignificantdeformationofthesoilaroundthepilestowardsthesea.

Page 166: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–841–

5.4 Strutted Frame Type Pier

(1)Performanceverificationofstruttedframetypepiersshallapply5.2 Open-type Wharves on Vertical Piles,and5.3 Open-type Wharves on Coupled Raking Piles,andalsorefertotheStrutted Frame Method Technical Manual.22)

(2)The characteristic value of the seismic coefficient for verification used in the performance verification ofstrutted frame typepiersagainst thevariablesituations in respectofLevel1earthquakegroundmotionshallbeappropriatelycalculatedconsideringthestructuralcharacteristics.Forcalculationoftheseismiccoefficientforverificationofstruttedtypepiers,referto5.2.3(10) Ground Motions used in Performance Verification of Seismic-resistant.

Page 167: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 842–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5.5 Jacket Type Piled PiersPublic NoticePerformance Criteria of Piled Piers

Article 55 1TheprovisionsofArticle48shallbeappliedtotheperformancecriteriaofpiledpierswithmodificationasnecessary.

2Inadditiontotherequirementsoftheprecedingparagraph,theperformancecriteriaofpiledpiersshallbeasspecifiedinthesubsequentitems:(1)Theaccessbridgeofapiledpiershallsatisfythefollowingcriteria:(a)Itshallhavethedimensionsrequiredforenablingthesafeandsmoothloading,unloading,embarkation

anddisembarkation,andothersinconsiderationoftheusageconditions.(b)Itshallnottransmitthehorizontalloadstothesuperstructureofthepiledpier,anditshallnotfall

downevenwhenthepiledpierandtheearth-retainingpartaredisplacedowingtotheactionsofearthquakesorsimilarone.

(2)The following criteria shall be satisfied under the variable action situation inwhich the dominantactionsareLevel1earthquakegroundmotions,shipberthingandtractionbyships,andimposedload:(a)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(b)Theriskthattheaxialforcesactinginthepilesmayexceedtheresistancecapacityowingtofailure

ofthegroundshallbeequaltoorlessthanthethresholdlevel.(c)Therisk that thestress in thepilesmayexceedtheyieldstressshallbeequal toor less thanthe

thresholdlevel.(3)Thefollowingcriteriashallbesatisfiedunderthevariableactionsituationinwhichthedominantaction

isvariablewaves:(a)Theriskoflosingthestabilityoftheaccessbridgeduetoupliftactingontheaccessbridgeshallbe

equaltoorlessthanthethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(c)Theriskthattheaxialforcesactinginpilesmayexceedtheresistancecapacityowingtofailureof

thegroundshallbeequaltoorlessthanthethresholdlevel.(4)Inthecaseofstructureshavingstiffeningmembers,theriskofimpairingtheintegrityofthestiffening

membersandtheirconnectionpointsunderthevariableactionsituationinwhichthedominantactionsare variable waves, Level 1 earthquake groundmotions, ship berthing and traction by ships, andimposedloadshallbeequaltoorlessthanthethresholdlevel.

3TheprovisionsofArticle49 throughArticle52shallbeappliedwithmodificationasnecessary to theperformancecriteriaoftheearth-retainingpartsofpiledpiersinconsiderationofthestructuraltype.

[Technical Note]

(1)Theperformanceverificationof jacket typepiledpiersorpiledpierswhose structurehas stiffeningmembers shall apply5.2 Open-type Wharves on Vertical Piles, and5.3 Open-type Wharves on Coupled Raking Piles,andfordetailsrefertotheJacket Method Technical Manual.23)

(2)ThecharacteristicvalueoftheseismiccoefficientforverificationusedintheperformanceverificationofjackettypepiledpiersinthevariablesituationsinrespectofLevel1earthquakegroundmotionshallbe appropriately calculated considering the structural characteristics. For calculationof the seismiccoefficient for theverificationof jacket typepiledpiers, refer to5.2.3(10) Ground Motions used in Performance Verification of Seismic-resistant.

(3)VerificationofLevel2EarthquakeGroundMotionwiththeDynamicAnalysisMethodTheperformanceverificationofjackettypepiledpiersinaccidentalsituationsinrespectoflevel2earthquakegroundmotionshallbeappropriatelycarriedoutconsideringtheconcernedcircumstancesaroundthefacilities,

Page 168: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–843–

importanceof thefacility,andtheaccuracyof themethod. Theperformanceverificationof jacket typepiledpiersmaycomplywiththatofopen-typewharvesonverticalpiles,buttheactionsoccurringinthemembersshallbeappropriatelysetconsideringthestructureofthetrusses.Thedifferentpointsinthedynamiccharacteristicsbetweenjackettypepiledpiersandopen-typewharvesonverticalpilesareasfollows.

(a) Thenaturalperiodsareshortduetothenatureoftrussstructure(b)Becausethestructurehaspanelpoints,thefailuremechanismsarecomplex(c)Separateverificationofthepanelpointsisnecessary

Page 169: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 844–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5.6 Dolphins5.6.1 Fundamentals of Performance Verification

(1)Thefollowingmaybeappliedtotheperformanceverificationofsuchmooringfacilitiesaspiletype,steelcelltype,caissontype,andothertypedolphinstructures.Dependingontheirfunction,thetypesofdolphinincludebreastingdolphins,mooringdolphinsandloadingdolphins.

(2)Theguidelinesoutlinedin5.6.2 Actions,and5.6.3 Performance Verificationmaybeusedinsimpleverificationmethods,thus,thispointshouldbenotedwhentheyareadopted.

(3)Itispreferablethatperformanceverificationofdolphinsbecarriedoutconsideringthefollowingitems.Forotheritems,itispreferabletoappropriatelycarryouttheperformanceverificationinaccordancewitheachstructuralform.

① Thedirectionofactionsondolphinsisnotnecessarilyaconstantdirection,hence,theverificationshouldbecarriedoutforseveraldirections,asnecessary.

② Conventionallytorsioninthecaseofpiletypestructuresandrotationinthecaseofcaissontypestructureshavenotbeenexaminedverymuch.However,thesefactorsmayaffectthestabilityofstructuresincertaincases,thus,itisnecessarytobecarefulabouttheseaspects.

③ It ispreferable toappropriatelyset thecrownheightof thedolphin inaccordancewith its function. In thisconnectionthepositionofinstallationofthefendersforbreastingdolphins,thelevelofthedeckoftheshipformooringdolphins, and theworking rangeof the loading arm for loadingdolphins shouldbe taken intoconsideration. Forconnectingbridges, it ispreferable that theheightbesufficientnot tobeaffectedby theactionofwaves.

(4)Anexampleofthecross-sectionofapiletypedolphinisshowninFig. 5.6.1.

Mooring dolphin

Bitt

Loading piled pierLoading piled pier Loading piled pierLoading piled pier

Mooring post

Mooring dolphinMooring postBitt

H.W.O.S.T.

Seabed surface

Mooring post

L.W.O.S.T.

Bearing ground

Breasting dolphin

Fig. 5.6.1 Example of Cross-section of Pile Type Dolphin

(5)Layout

① Thelayoutofadolphin-berthshallbedeterminedappropriatelytoavoidadverseeffectsonthenavigationandanchorageofothershipsinconsiderationofthedimensionsofthedesignships,waterdepth,winddirection,wavedirection,andtidalcurrents.

② Inthedeterminationofthelayoutofbreastingdolphins,thefollowingitemsneedtobeexamined:

(a) Dimensionsofthedesignship

1) Thesideofdesignshipsisusuallycomposedofcurvelinesformingtheoutlinesof thebowandsternparts,eachofwhichaccountsforabout1/8ofthelengthoverall(L)ofship,respectivelyandastraightlineformingtheoutlineofthecentralpartwhichaccountsforabout3/4ofthelengthoverall(L)ofship..Itispreferablethatthebreastingdolphinsareinstalledinsuchawaythattheshipscanbeberthedtothemwiththestraightlinepart.Normallythenumberofbreastingdolphinsisoneeachtowardthebowandstern,butfordolphinsservingforbothlargeandsmallships,twoeachtowardbowandsternaresometimesprovided.

2) Whenspecialcargohandlingequipmentisrequiredfordolphinsinsuchacaseasdolphinsforoilhandling,

Page 170: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–845–

acargohandlingplatformisinstalledmidwaybetweenthebreastingdolphins.Inthiscase,itispreferabletolocatethecargohandlingplatformwithitsseasidefrontslightlybackwardfromthatofthebreastingdolphins,inorderthattheshipberthingforcedoesnotactdirectlyonthecargohandlingplatform.

(b)It is preferable to layout dolphins in away that the longitudinal axis of dolphins becomesparallel to theprevailingdirectionsofwinds,waves,andtidalcurrents.Thishelpstoeaseshipmaneuveringduringberthingandunberthingandtoreduceexternalforcesactingonthedolphinswhentheshipismoored.

③ Mooringdolphinsarenormallysetatthepositionswiththeangleof45ºfromtheropebittsonship’sbowandstern,havingacertainsetbackfromthefrontfaceofthebreastingdolphins.

④ Thedistancebetweenbreastingdolphinsiscloselyrelatedtothelengthoverall(L)ofthedesignships.Fig. 5.6.2 givestherelationshipbetweenthebreastingdolphinintervalandthewaterdepthderivedfromthepastconstructiondataforreference.

Pile typeSteel sheet pile cell typeCaisson type

Bre

astin

g do

lphi

n in

terv

al( m

)

Water depth (m)

Fig. 5.6.2 Distance between Breasting Dolphins

5.6.2 Actions

(1)Forcalculationofthereactionforcefromthefendersontothedolphins,refertoPart II, Chapter 8, 2.2 Action Caused by Ship Berthing,andChapter 5, 9.2 Fender Equipment.

(2)Forcalculationofthetractiveforceofships,refertoPart II, Chapter 8, 2.4 Action due to Traction by Ships.

(3)Forcalculationofverticalloadsduetoselfweightandliveload,refertoPart II, Chapter 10, Self Weight and Surcharge, 5.2.3 Actions,asappliedforopen-typewharvesonverticalpiles.

(4)Fortheactionduetoearthquakes,refertoPart II, Chapter 4, Earthquakes and 5.2.3 Actions,asappliedforopen-typewharvesonverticalpiles.

(5)Forcalculationofthedynamicwaterpressureduringanearthquake,refertoPart II, Chapter 5, 2.2 Dynamic Water Pressure.

(6)Forcalculationofwindpressureforcesactingoncargohandlingequipment,refertoPart II, Chapter 2, 2.3 Wind Pressure.

Page 171: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 846–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

5.6.3 Performance Verification

[1] Pile Type Dolphins

(1)Fortheperformanceverificationofpiletypedolphins,referto5.2 Open-type Wharves on Vertical Piles,and5.3 Open-type Wharves on Coupled Raking Piles.

(2)The characteristic valueof the seismic coefficient for theverification used in theperformanceverification ofpiletypedolphinsinvariablesituationsinrespectofLevel1earthquakegroundmotionshallbeappropriatelycalculatedconsideringthestructuralcharacteristics.Forcalculationoftheseismiccoefficientfortheverificationofpiletypedolphins,referto5.2.3(10) Ground Motions used in Performance Verification of Seismic-resistant.

(3)Inthecaseofpile typedolphins, theberthingenergymaynormallybecalculatedontheassumptionthat it isabsorbedbythedeformationsofthefendersandthepiles.

(4)Large tankers are usually berthed at a slant anglewith the dolphin alignment line. As the characteristics offendersvarydependingontheberthingangle,itisrecommendedinsuchacasetousethecharacteristicscurveappropriatetotheberthingangle.Inaddition,aslantingberthingentailstheriskthatsomeofthefendersattachedto abreastingdolphinmaynot absorb theberthingenergyeffectively. Therefore, it ispreferable to examinecarefullywhichfenderswillcomeincontactwiththehullofshipinconsiderationoftheberthingangle.

[2] Steel Cell Type Dolphins

(1)For theperformanceverificationof steel cell typedolphins, refer to2.9 Cellular-bulkhead Quaywalls with Embedded Sections.

(2)Thecharacteristicvalueof theseismiccoefficient for theverification for theperformanceverificationofsteelcelltypedolphinsinvariablesituationsinrespectofLevel1earthquakegroundmotionshallbeappropriatelycalculated considering the structural characteristics. The characteristic value of the seismic coefficient forverificationofsteelcelltypedolphinsmaybecalculatedinaccordancewithgravity-typequaywallbyapplying2.2.2(1) Seismic coefficient for verification used for verification of sliding and overturning of wall body and insufficient bearing capacity of foundation grounds in variable situations in respect of level 1 earthquake ground motionwhensoilpressureisacting,orcompositebreakwatersbyapplyingChapter 4, 3.1.4(12) Seismic Coefficient for Verification of Sliding, Overturning, and Bearing Capacity of Upright Sections for Level 1 Earthquake Ground Motion,whensoilpressureisnotacting.

(3)Forthefoundationsofcargohandlingequipmentandmooringposts,refertoChapter 2, 2.4 Pile Foundations, and 9.15 Foundations for Cargo Handling Equipment.

(4)Inthecaseofacylindricalcelltypedolphin,theequivalentwallwidthcanbecalculatedusingequation(5.6.1).

(5.6.1)where

B :equivalentwallwidth(m) R :radiusofcylindricalcell(m)

[3] Caisson Type Dolphins

(1)Fortheperformanceverificationofcaissontypedolphins,referto2.2 Gravity-type Quaywalls.

(2)Thecharacteristicvalueoftheseismiccoefficientforverificationofcaissontypedolphinsmayapplysteelcelltypedolphins.

(3)Rotationofacaissonoccurswhenaneccentricexternalforceactsonadolphin.Examinationofstabilityagainstrotationmustbemadeevenwhenthestabilityagainstslidingandoverturningaswellasagainstfailureofthefoundationgroundduetoinsufficientbearingcapacityarefoundtobesatisfactory,becausetheconfirmationofthestabilitywithrespecttotheseitemsdoesnotguaranteethatthecaissonissafeagainstrotation.Inthiscase,incalculatingtheresistanceforce,attentionshouldbegiventothefrictionforceofthecaissonbottomwhichisproportionaltothebottomreactionforceasdescribedinChapter 2, 1.2 Caissons.

(3)For theperformanceverificationof structuralmembers, refer to [1] Pile Type Dolphins. Inaddition, for theverificationofcaissonmembers,refertoChapter 2, 1.2 Caissons.

Page 172: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–847–

5.7 Detached Piers5.7.1 Fundamentals of Performance Verification

(1)The performance verification of the detached piersmaybe carried out by appropriately selecting items from5.2 Open-type Wharves on Vertical Piles,5.3 Open-type Wharves on Coupled Raking Piles,2.2 Gravity-type Quaywalls, and 2.9 Cellular-bulkhead Quaywalls with Embedded Sections, in accordancewith thestructuretype.Also,theperformanceverificationoftheearth-retainingpartmaybecarriedoutbyappropriatelyselectingitemsfromperformancecriteriaof2.2 Gravity-type Quaywalls, 2.3 Sheet Pile Quaywalls, and 2.4 Cantilevered Sheet Pile Quaywalls,andinadditionrefertothefollowing.

(2)Thefollowingmaybeappliedtotheperformanceverificationofthedetachedpierscomprisingthedetachedpierandtheearth-retainingsection.

(3)AnexampleoftheprocedureofperformanceverificationofthedetachedpiersisshowninFig. 5.7.1.Setting of design conditions

Verification in accordance with structural type of pile

Verification of earth-retaining section

Determination of cross-sectional dimensions

Performance verification of members of superstructure, access bridge, etc.

Performance verification of beams, etc.

Permanent state, variable states in respectof action of ships, Level 1 earthquake ground motion, action of waves, and surcharges

Permanent state

Variable states in respect of action of ships,Level 1 earthquake ground motion, and action of waves

Performance verificationPerformance verificationEvaluation of actions

Setting of basic cross-section*1

*1:Theevaluationoftheeffectofliquefactionisnotindicated,thereforeitisnecessarytoconsiderthisseparately.

Fig. 5.7.1 Example of Procedure of Performance Verification of Detached Piers

(4)Anexampleofacross-sectionofadetachedpierisshowninFig. 5.7.2.

Page 173: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 848–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

H.W.L

Rail center line on sea side Yard bridge (PC slab bridge)

Yard bridge (PC slab bridge)

Rail center line on land side

Caisson

L.W.L

Fig. 5.7.2 Example of Cross-section of Detached Pier

(5)It isnecessary topayadequateattention to thedeformationof theearth-retainingsectiondue to theactionofearthquakes.

(6)Theperformanceverificationofthedetachedpiershallbeconductedsothatitisstableagainstalltheactionsonthepilesandgirders.Inaddition,itispreferableforthedetachedpiertohaveastructurewithdueconsiderationforthetypeanddimensionsofportalbridgecrane,thetravelingcharacteristics,andthesettlementofrailsafterinstallation.

(7)Railmountedcranesareinstalledondetachedpiers,thereforeitispreferablethatthestructureshallhaveasmalldeformation.

5.7.2 Actions

(1)Forthewheelloadsofcargohandlingequipment,refertoPart II, Chapter 10, 3.2 Live Load.

(2)Fortractiveforcesofship,refertoPart II, Chapter 8, 2.4 Action due to Traction by Ships.

(3)Fortheselfweightofsuperstructures,andselfweightofpiles,refertoPart II, Chapter 10, 2 Self Weight,andChapter 10, 3 Surcharge.

(4)Forfenderreactions,refertoPart II, Chapter 8, 2.2 Action Caused by Ship Berthing, Part II, Chapter 8, 2.3 Action Caused by Ship Motions.

(5)Forwindloadsactingoncargohandlingequipmentandsuperstructures,refertoPart II, Chapter 2, 2.3 Wind Pressure.

(6)Forthegroundmotionsactingoncargohandlingequipment,superstructures,andpiles,refertoPart II, Chapter 4, 2 Seismic Action.

(7)Thecharacteristicvalueoftheseismiccoefficientforverificationfortheperformanceverificationofthedetachedpiers against the variable situations in respect of Level 1 earthquake ground motion shall be appropriatelycalculatedconsideringthestructuralcharacteristics.Forcalculationoftheseismiccoefficientforverificationofthedetachedpiers,referto5.2.3(10) Ground Motion used in Performance Verification of Seismic-resistant.

(8)Fortheperformanceverificationofthedetachedpiers,itispreferabletoconsiderwaveforces,upliftpressure,andwindloadsactingonsuperstructures,whennecessary.

(9)Fortheperformanceverificationofthebeams,brakingforcesoncargohandlingequipmentshallbeconsideredasahorizontalforce,butforpilesshallbeconsidered,asnecessary.

(10)Fortheperformanceverificationoftheaccessbridgesandthefloorslabs,aliveloadof5.0kN/m2maybeassumed.

5.7.3 Performance Verification

Page 174: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–849–

PerformanceVerificationofGirder

① Theperformanceverificationofgirdersshallbeconductedsothattheyaresafeagainsttheverticalaswellashorizontalforcesandloads.

② Structuralelementswithsufficientstrengthagainstthedesignatedverticalandhorizontalforcesshallbeusedforthegirdersofthedetachedpier,becausethecranerailsforacranearedirectlyinstalledonthegirders.Intheexaminationofverticalloads,theincreaseinthewheelloadsduetothewindloadorseismicforceactingonthebridgecraneshallbetakenintoaccount.

③Whenboth legsof thebridgecranearefixedones, thehorizontal loadactingoneach leg isdeterminedbydistributingthetotalhorizontalloadtoeachlegbasedontheproportionofthewheelload.Whenthebridgecranehasafixedlegandasuspendedleg,thewholehorizontalloadshallbebornebythefixedlegformakingthedesignonthesaferside.Atthesametime,however,thehorizontalforcebeingone-halfoftheforceactingononefixedleginthecaseofthebothlegsbeingfixedshallbebornebythesuspendedleg.

References

1) SUZUKI,A.,KoichiKUBOandYoshioTANAKA:Lateralresistanceofverticalpilesembeddedinsandylayerwithslopingsurface,Rept.ofPHRIVoL5,No.2,1966

2) Kikuchi,Y.,T.Ogura,M.IshimaruandT.Kondo:Coefficientoflateralsubgradereactionofrubbleground,Proceedingsof53rdAnnualConferenceofJSCE,1998

3) YAMASHITA,I.:EquivalentRigidFrametoVerticalPileStructureontheBasisofthePHRIMethod,TechnicalNoteofPHRINo.105,pp.1-12,1970

4) KUBO,K.:ANewMethodfortheEstimationofLateralResistanceofPiles,Rept.ofPHRIVoL2No.3,pp.1-37,19645) YAMASHITA, I. andM.ARATA:TheStandardCurves for theBuilt-inHeadStandardPilePartiallyEmbedded in the

C-TypeSoil,TechnicalNoteofPHRINo.650pp」3-25,19696) YAMASHITA,I.,T.INATOMI,K.OGURAandY.OKUYAMA:NewStandardCurvesinthePHRIMethod,Rept.ofPHRI

Vol.10No.1,pp.107-168,19717) Nagao,T.andS.Tashiro:Analyticalstudyonearthquakeresistantevaluationmethodforpile-supportedwharves,Jour.JSCE

No.710,1-60,pp、385-398,20028) Nagao,T.,Y.Kikuchi,M.Fujita,M.SuzukiandT.Sanuki:Reliabilitydesignmethodofpiertypemooringwharfagainst

Level-oneearthquake,ProceedingsofStructureEngineering,JSCE,Vol.52A,pp.201-208,20069) Nagao,t.,R.ShibazakiandR.Ozaki:OrdinaryLevel-onereliabilitydesignmethodofportfacilitiesbasedonminimum

expectedtotalcostconsideringeconomiclosses,ProceedingsofStructuralEngineering,JSCE,Vol.51A,pp.389-400,200510) Minami,K.,K.Takahashi,H.Yokota,T.Sonoyama,N.KawabataandK.Sekiguchi:EarthquakedamageofKobePortTPier

andstaticanddynamicanalysis,SoilandFoundation,Vol.25No.9,pp.112-119,199711) Kotsutsumi,O.,S.Shiozaki,K.Kazui,S.IaiandH.Mori:Examinationofanalysisprecisionimprovementof2-dimensional

effectivestressanalyzingmethod,ProceedingofOffshoreDevelopment,JSCE,Vol.20,pp.443-448,200412) FLIPStudyGroup,Examinationofmodelingmethodofpilefoundation13) K,Kitade,Y.Kawamata,K.IchiiandS.Iai:Analysisoflaterallyloadedpilegroupsusing2-DFEM,11thICSDEEand3rd

ICEGE,Berkeley,CD-ROM,200414) Kotsutsumi,O.,Y.Tame,T.Okayoshi,K.Kazui,S.IaiandY.Umeki:Modelingofinteractionofpileandliquefiedgroundin

two-dimensionaleffectivestressanalysis,Proceedingsof38thConferenceonGeotechnicalEngineering,,200315) Kotsutsumi,O.,Y.Tame,T.Okayoshi,S.IaiandY.Umeki:Modelingofinteractionofpileandliquefiedgroundintwo-

dimensionaleffectivestressanalysis,Proceedingsof58thAnnualConferenceofJSCE,200316) Kawanaka,M.,M.Andou,Y.Tame,S.IaiandS.Tagawa:Two-dimensionalFiniteElementMethodanalysisofhorizontal

loadingtestofasinglepileutilizinginteractionspringonformationlawofsoil,-sandyground-.Proceedingsof58thAnnualConferenceofJSCE,2003

17) Yoshikawa,S.,D.Kyoku,Y.Tame,Y.Tame,S. Iai andY.Umeki:Two-dimensionalFiniteElementMethodanalysisofhorizontalloadingtestofasinglepileutilizinginteractionspringonformationlawofsoil,-Clayeyground-.Proceedingsof58thAnnualConferenceofJSCE,2003

18) Kotake,N.,Y.Tame,O.Kotsutsumi,S.IaiandS.Tagawa:Two-dimensionalFiniteElementMethodanalysisofhorizontalloadingtestofasinglepileutilizinginteractionspringonformationlawofsoil,-Influenceofgroundsurface-,.Proceedingsof58thAnnualConferenceofJSCE,2003

19) Jyuraku,K.,K.Kazui,H. Shinozaki, S. Iai and S. Tagawa:Examination of influence of group piles using pile-groundinteractionspringintwo-dimensionalanalysis,Proceedingsof58thAnnualConferenceofJSCE,2003

20) Kawamata,Y.,K.Kazui,H.Shinozaki,S.IaiandY.Umeki:SimulationofStanamichorizontalloadingtestutilizingtwo-dimensionalanalysis incorporatedwithpile-groundinteractionspring,Proceedingsof58thAnnualConferenceofJSCE,2003

21) Okayoshi,T.,H.Satou,T.Kawabe,S.Shiozaki,S.IaiandY.Umeki:Stressofgroundaboutpiles-Tow-dimensionalFiniteElementMethodanalysisofpilefoundationutilizinginteractionspringdependentontherelationshipofstrains,Proceedings

Page 175: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 850–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

of58thAnnualConferenceofJSCE,200322) CoastalDevelopmentInstituteofTechnology(CDIT):TechnicalManualforGridStrutMethod,200023) CoastalDevelopmentInstituteofTechnology(CDIT):TechnicalManualforJacketstructures,200024) JapanRoadAssociation:SpecificationsandCommentaryforHighwayBridges,MaruzenPublications,200425) JapanRoadAssociation:TechnicalStandardsandcommentaryofelevatedpedestriancrossingfacilities,1979

Page 176: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–851–

6 Floating PiersMinisterial OrdinancePerformance Requirements for Floating Piers

Article 30 1Theperformancerequirementsforfloatingpiersshallbeasspecifiedinthesubsequentitemsinconsiderationofitsstructuretype.(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoas toenable thesafeandsmoothmooringofships,embarkationanddisembarkationofpeople,andhandlingofcargo.

(2)Thedamageduetoselfweight,variablewaves,Level1earthquakegroundmotions,shipberthingandtractionbyships,and/orotheractionsshallnotimpairthefunctionofthefloatingpiernoraffectitscontinueduse.

2Inadditiontotheprovisionsoftheprecedingparagraph,theperformancerequirementofthefloatingpiersintheplacewherethereisariskofhavingseriousimpactonhumanlives,property,and/orsocioeconomicactivitybythedamagetothemooringbuoysconcernedshallbesuchthatthestructuralstabilityofthefloatingpierisnotseriouslyaffectedevenincaseswhenthefunctionofthemooringbuoysconcernedisimpairedbytsunamis,accidentalwaves,and/orotheractions.

Public NoticePerformance Criteria of Floating Piers

Article 56 1Theprovisionsofparagraph1ofArticle48(excludingitemii))shallbeappliedtotheperformancecriteriaoffloatingpiers.

2Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaoffloatingpiersshallbeasspecifiedinthesubsequentitemsinconsiderationofthestructuraltype:(1)Thefloatingpiershallhavethedimensionsrequiredforcontainmentoftheirmovementsandtilting

withintheallowablerangeinconsiderationoftheusageconditions.(2)Theriskofcapsizingofthefloatingbodyunderthevariableactionsituationinwhichthedominant

actionisvariablewavesshallbeequaltoorlessthanthethresholdlevel.(3)Thefloatingpiershallhavethefreeboardrequiredforthedimensionsofthedesignshipsandtheusage

conditions.(4)The following criteria shall be satisfied under the variable action situation inwhich the dominant

actionsareLevel1earthquakegroundmotions,shipberthingandtractionbyships,andimposedload:(a)Theriskofimpairingtheintegrityofthemembersofthesuperstructureshallbeequaltoorlessthan

thethresholdlevel.(b)Theriskofimpairingtheintegrityofthemembersofthefloatingmooringfacilitiesandlosingthe

structuralstabilityshallbeequaltoorlessthanthethresholdlevel.3Inadditiontotheprovisionsoftheprecedingtwoparagraphs,theperformancecriteriaoffloatingpiersforwhichthereisariskofseriousimpactonhumanlives,property,orsocioeconomicactivitybythedamagetothefacilitiesconcernedshallbesuchthatthedegreeofdamageundertheaccidentalactionsituation,inwhichthedominantactionsaretsunamisoraccidentalwaves,isequaltoorlessthanthethresholdlevel.

4 The provisions of Article 64 and Article 91 shall be applied with modification as necessary to theperformance criteria of the access facilities of the floating body by taking account of the utilizationconditions.

[Commentary]

(1)PerformanceCriteriaofFloatingPiers①Commonforfloatingpiers(a)Insettingthecross-sectionaldimensionsfortheperformanceverificationoffloatingpiers,itshallbe

Page 177: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 852–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

appropriatelyverifiedthattheamountofmotionsofthefloatingbodyandtheamountoftiltingofthefloatingbodyarewithintheallowablerange,inaccordancewiththeenvisagedconditionsofuse,asnecessary.

(b)Freeboard(usability)Fortheperformancecriteriaoffloatingpiers,thefreeboardofthefloatingpiershallbeappropriatelysetconsideringthedimensionsofthedesignshipsandtheenvisagedconditionsofusetoallowsafeandefficientembarkationanddisembarkationofpassengersandsafeandefficienthandlingofcargo.(c)Structuralstabilityandsoundnessofmembers(serviceability)

1) Thesettingof theperformancecriteria for the structural stabilityandsoundnessofmembersoffloatingpiersandthedesignsituationsexcludingaccidentalsituationsshallbeinaccordancewithAttached Table 50. In the performance verification of floating piers, the performancecriteriaforvariablesituationinrespectofvariablewaves,Level1earthquakegroundmotion,berthingandtractionbyships,surcharges,forwhichperformanceverificationisnecessary,shallbe appropriately set, in accordancewith the structure type of the facility. The itemswithinparenthesesinthecolumnof“Designsituation”inAttached Table 50maybeappliesindividually.

Attached Table 50 Setting of Performance Criteria for Structural Stability and Soundness of Structural Members of Floating Piers and Design Situations (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

VerificationitemIndexof

standardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

action Non-dominatingaction

30 1 2 56 2 2 Serviceability Variable Variablewaves

(L1earthquakegroundmotion)

(Berthingandtractionbyships)

(Surcharges)

Selfweight,wind,waterpressure,waterflow

(Selfweight,wind,waterpressure,waterflow)

(Selfweight,supportreactionsofconnectingfacilities,wind,waterpressure,waterflow,surcharges)

(Selfweight,wind,waterpressure,waterflow)

Capsizingoffloatingbody

Limitvalueforcapsizing

4a Soundnessofmembersoffloatingbody

4b Soundnessofmembersofmooringequipment

Structuralstabilityofmooringequipment

2) CapsizingoffloatingbodiesFortheperformanceverificationagainstcapsizingoffloatingbodies,theperformancecriteriaforcapsizingshallbeappropriatelysetconsideringtheconditionsofuseofthefloatingbodyandthenaturalconditions.

3) SoundnessofthestructuralmembersofafloatingbodyFortheperformanceverificationofthestructuralmembersofafloatingbody,theperformancecriteriafortheirsoundnessshallbeappropriatelysetconsideringthestructuraltypeandmaterialofthemembers.

4) Soundnessofthestructuralmembersofmooringequipmenti) For the performance verification of the structural members of mooring equipment, the

performancecriteriafortheirsoundnessshallbeappropriatelysetconsideringthestructuraltypeandmaterialofthemembers.Thesettingoftheperformancecriteriaforthesoundnessofstructuralmembersofthemooringequipmentinthemooringsystemandthedesignconditionsexcludingaccidental situationsshallbe inaccordancewithAttached Table 51. The itemswithinparenthesesinthecolumnof“Designsituation”inAttached Table 51maybeappliedindividually.

Page 178: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–853–

Attached Table 51 Setting of Performance Criteria for soundness of Structural Members of Mooring Equipment with Mooring Ropes and Design Conditions (excluding accidental situations)

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-dominating

action

30 1 2 56 2 4b Serviceability Variable Variablewaves

(Berthingandtractionbyships)

Selfweight,wind,waterpressure,waterflow

(Selfweight,supportreactionsofconnectingfacilities,wind,waterpressure,waterflow,surcharges)

Yieldingofmooringropes

Designyieldstress

Stabilityofmooringanchors,etc.

Resistanceforceofmooringanchors(horizontal,vertical)

ii)YieldingofthemooringropesVerificationofyieldingofthemooringropesistoverifythattheriskthatthedesignstressesinthemooringropeswillexceedthedesignyieldstressesisequaltoorlessthanthelimitvalue.

iii)StabilityofmooringanchorsVerificationofthestabilityofmooringanchorsistoverifythattheriskthatthetractiveforcesactinginthemooringanchorswillexceedtheresistanceforceisequaltoorlessthanthelimitvalue.Mooringanchorsisageneraltermforequipmentinstalledonthebottomoftheseatoretainfloatingbodies,andthisincludessinkers.

5)StructuralstabilityofmooringequipmentFortheperformanceverificationofthestructureofmooringequipment,theperformancecriteriaofitsstabilityshallbeappropriatelysetinaccordancewiththestructuretypeandmaterials,oftheequipment.

②Floatingpiersagainstaccidentalincident(safety)(a)The setting of the performance criteria of floating piers against accidental incident and design

situationsonlylimitedtoaccidentalsituationsshallbeasshowninAttached Table 52.

Attached Table 52 Setting of Performance Criteria of Floating Piers against Accidental Incident and Design Situations only limited to Accidental Situations

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominatingaction Non-dominating

action

30 2 – 56 3 – Safety Accidental Tsunamis Selfweight,wind,waterpressure,waterflow

Yieldingofmooringropes

Designyieldstress

accidentalwaves Stabilityofmooringanchors

Resistanceforceofmooringanchors(horizontal,vertical)

(b)RequiredfunctionoffloatingpiersagainstaccidentalincidentTheverificationofmooringanchorsagainstaccidentalsituationswherethedominatingactionsaretsunamisandaccidentalwavesshallensurethatfloatingstructuresdonotdriftduetotsunamisandaccidentalwavesresultinginamajoreffectonitsvicinities.

③AccessfacilitiesThesettingoftheperformancecriteriaofaccessfacilitiesoffloatingpiersshallapplytheperformancecriteriaforvehicleramp,whichisancillaryequipmentofmooringfacilitiesdefinedintheStandardPublic Notice Article 64, and the performance criteria of fixed facilities for embarkation anddisembarkationofpassengersdefinedinArticle91,inaccordancewiththeenvisagedconditionsofuseofthefloatingpier.Theaccessfacilitiesoffloatingpiersarethosewhichfunctionbetweenafloatingbodyandthelandorbetweenfloatingbodiesasthepassageofpassengersorvehicles,suchasaccessbridges,connectingbridges,andadjustmenttowers.

Page 179: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 854–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

[Technical Note]

6.1 Fundamentals of Performance Verification

(1)Theprovisionsinthischaptershallbeappliedtothefloatingpierswithfloatingbodies(hereinafterreferredtoas“pontoons”)thataremooredbymooringchains,etc.

(2)Theperformanceverificationmethodsgiveninthischaptercanbeappliedtothefloatingpiersinstalledinplaceswheretheactionsfromwaves,tidalcurrents,andwindsarerelativelyweak.

(3) Insettingthecross-sectionaldimensionsof thefloatingbodyoffloatingpiers, it isnecessarytoappropriatelyverifythattheamountofmotionofthefloatingbodiesandtheamountoftiltingofthefloatingbodiesarecontrolledwithintheallowablerangeinaccordancewiththeenvisagedconditionsofuse.

(4) FreeboardIntheperformanceverificationofthefloatingpiers,itisnecessarytoappropriatelysetthefreeboardofthefloatingpiertoenablesafeandsmoothembarkationanddisembarkationofpassengers,andsafeandsmoothloadingofcargo,consideringthedimensionsofthedesignshipsandtheenvisagedconditionsofuseofthefacility.

(5)Fig. 6.1.1 andFig.6.1.2 showthemaincomponentsofafloatingpierandthestructureofapontoon.Afloatingpiercomprisespontoons,anaccessbridgethatconnectsthepontoonswithland,connectingbridgesthatinterconnectpontoons,mooringchainsthatmoorpontoons,mooringanchors,andotherelements.

W.L.

Mooring anchor Mooring chain

Pontoon

Access bridge

Connecting bridge

Fig. 6.1.1 Notation of Respective Parts of Floating Pier

Partition wall

Slab

Outer wall

CL

CLChain post Mooring post Fender

Chain holeManhole

Protective steel sheet

Fairl

eade

r

Partition wall

Bottom slab

Supporting beam

Fig. 6.1.2 Notation of Respective Parts of Pontoon

(6)When thesiteconditionsareoutside thecoverageof thischapter,The Technical Manual for Floating Body Structures1”canbereferredto.Inaddition,Part II, Chapter 2, 4.7.4 Wave Force acting on Structures near the Water Surface,Part II,Chapter 2, 4.9 Actions on Floating Body and its Motions,andChapter 4, 3.10 Floating Breakwaters canbeusedasreferencesasnecessary.

(7)Normally,thefloatingpiersarenotusedinlocationswherethewavesorcurrentsarelarge,butarefrequentlyused

Page 180: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–855–

inlocationswherethewaveheightis1morless,andthecurrentis0.5m/sorless.

(8)AnexampleoftheprocedureofperformanceverificationoffloatingpiersisshowninFig. 6.1.3.

Performance verification of mooring ropes and anchors

Verification of each part of the pontoon(deck, bottom, outer side, bulkheads,

support beams, support columns, etc.)

Determination of cross-sectional dimensions

Verification against capsizing

Verification of fixing anchors,mooring lines, connecting parts

Verification of each part of the pontoon(deck, bottom, outer side, bulkheads,support beams, support columns, etc.)

Variable states in respect of waves

Variable states in respect of Level 1 earthquake ground motion

Verification of access bridges, etc.

Verification of access bridges, etc.

Verification of access bridges, etc.

Evaluation of actions

Assumption of cross-sectional dimensions including draft and freeboard

Setting of layout of floating pier

Setting of design conditions

Performance verification of mooring ropes, anchors, etc.

Verification of fixing anchors,mooring lines, connecting part

Verification of joints, connection parts

Performance verificationPerformance verification

Variable states in respect of action of ships

Fig. 6.1.3 Example of Sequence of Performance Verification of Floating Piers

Page 181: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 856–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

6.2 Setting the Basic Cross-section

(1)Apontoonshallhaveasurfaceareaandfreeboardappropriateforitspurposeofutilization. Dimensionsofapontoonshallbeappropriatetomakeitstableagainsttheexternalactionsonit.

(2)Thefreeboardofapontoonshallbesettoanappropriateheighttoprovidegoodconditionsforcargohandlingandpassengerusewhenitisfullyloadedandlightlyloadedwithcargoandpassengers.Normallytheheightissettoabout1.0m.Generallythefreeboardmaybecalculatedusingequation(6.2.1).

(6.2.1)

where, h' :freeboard(m) d :pontoonheight(m) W1 :pontoonweight(kN) γW :unitweightofseawater(kN/m3) A :horizontalcross-sectionalareaofpontoon(m2)

(3)Inthecaseofareinforcedconcretepontoon,itispreferablethatthedimensionsaredeterminedconsideringtheimperviousnessoftheconcrete.

(4)Regardingthetypeofmooring,normallyachaintypeorawiretypeareusedforfairlydeepwaterdepths,andforshallowwaterdepths,anintermediatewiretype,anintermediatebuoytype,oradolphin-fendertypearemainlyused.1)Itispreferablethatthetypeofmooringbeselectedbasedonacomparisonofthefunctionandsafetyofthefloatingpierandthecharacteristicsofthemooringfacilities.

Page 182: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–857–

6.3 Actions

(1)Thefenderreactionforce,waveforceandcurrentforceneednotbeconsideredunlessrequiredtodoso.However,whenthereisananticipatedriskthatthepontoonmaybesubjectedtowaveactions,itisnecessarytoconsiderthefollowingforces:thewaveforcesexerteduponthestationarypontoonthatareassumedtoberigidlyfixedinpositionandthefluidforcesduetotheoscillationsofthepontoon5)(refertoPart II, Chapter 2, 4.9 Actions on Floating Body and its Motions).Inthiscase,themooringforceistobecalculatedbyconsideringtheoscillationsofthepontoon.

(2)Aliveloadof5.0kN/m2forpassengersiscommonlyusedforfloatingpiers,whicharemainlyusedforpassengerofships.

(3)ThefenderreactionforcesusedintheperformanceverificationofmooringchainsmaybecalculatedbyreferencetoPart II, Chapter 8, 2.2 Actions Caused by Ship Berthing,andPart II, Chapter 8, 2.3 Actions Caused by Ship Motions.Also,forthetractiveforceofship,refertoPart II, Chapter 8, 2.4 Actions Caused by Traction by Ships.

(4)Thewaveforcesused in theperformanceverificationofmooringchainsmaybecalculatedbyanappropriatemethodbyreferencetoPart II, Chapter 2, 4.7.4 Wave Forces acting on Structures near Water Surface,Part II, Chapter 2, 4.9 Actions on Floating Body and its Motions.Thedragcoefficientforcubesmaybeused.Theareaoverwhichthedragforceactsmaybetakentobethatbelowthestillwatersurface.Theabovementionedwaveforcesarethosethatactonastationarypontoon,butifthenaturalperiodoftheoscillationsofthepontoonisclosetothenaturalperiodofthewaves,resonancemayoccur,causingalargeforceinthechain.Thispointshouldbecarefullyconsidered.Inparticular,forfloatingpierslocatedinplaceswhereitisenvisagedthatswellsandotherlongperiodwavespenetrate,itispreferablethatanmotionanalysisofthemooredfloatingbodiesbecarriedoutusinganumericalsimulationmethod.7)

Page 183: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 858–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

6.4 Performance Verification

(1) ItemstobeconsideredintheVerificationoftheStabilityofFloatingPiersNormallythefollowingitemsareexaminedforthefloatingpiers.

① pontoonstability② stabilityofeachpartofthepontoon③ stabilityofthemooringsystem(mooringchains,mooringanchors)④ stabilityofaccessbridgesandconnectingbridges

(2)PerformanceVerificationoftheStabilityofPontoons

① Structural stability levels required for thepontoons shouldbe securedappropriately inaccordancewith theconditionsofuse.

② Intheexaminationofthestabilityofapontoon,thefollowingrequirementsshouldbesatisfied:

(a) Thepontoonmustsatisfythestabilityconditionofafloatingbodywiththerequiredfreeboardagainstactionsofthereactionforcefromtheaccessbridgesupportingpoint,fullsurchargeonthedeckandevenagainstthepresenceofsomewaterinsidethepontoonowingtoleakageofthepontoon.

(b)Evenwhenthefullsurchargeisplacedononlyonesideofthedeckdividedbythelongitudinalsymmetricalaxisof thepontoonandthereactionforcefromanaccessbridgesupportingpointactson thisside, if thebridgeisattachedthere,thepontoonmustsatisfythestabilityconditionofafloatingbodyandtheinclinationofthedeckshouldbeequaltoorlessthan1:10withthesmallestfreeboardof0ormore.

③ Theheightofthewateraccumulatedinsidethepontoonbyleakageisusuallyassumedat10%oftheheightofpontoonintheexaminationofpontoonstability.Thefreeboardtobemaintainedinthiscaseismostlyabout0.5m.

④ Whenbeingsubjectedtoauniformlydistributedload,thepontoonmayberegardedasstable,ifequation(6.4.1)issatisfied.

(6.4.1)where

I :geometricalmomentofinertiaofthecross-sectionalareaatthestillwaterlevelwithrespecttothelongitudinalaxis(m4)

W :weightofpontoonanduniformlydistributedload(kN) γw :unitweightofseawater(kN/m3) C : centerofbuoyancyofpontoon G :centerofgravityofpontoon

When thepontoon ispartiallyfilledwithwaterby leakage, thepontoonmaybe regardedas stablewhenequation(6.4.2) issatisfied.ThesymbolsW,I,C,andGoftheequationrefertothoseatthestatewithwaterinside.

(6.4.2)where

i : geometricalmoment of inertia of thewater surface inside each chamberwith respect to itscentralaxisparalleltotherotationaxisofthepontoon(m4)

When being subjected to an eccentric load, the pontoonmay be regarded as stable if the value of tanαobtainedbysolvingequation(6.4.3)satisfiesequation(6.4.4)(seeFig. 6.4.1).

(6.4.3)

(6.4.4)

where

Page 184: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–859–

W1 :weightofpontoon(kN) P :totalforceofeccentricload(kN) b :widthofpontoon(m) h :heightofpontoon(m) d :draftofpontoonwhenP isappliedtothecenterofpontoon(m) c :heightofthecenterofgravityofthepontoonmeasuredfromthebottom(m) a :deviationofP fromthecenteraxisofpontoon(m) α :inclinationangleofpontoon(º)

b

a P

F

W1

cd

h

G :Centerof gravity C :Center of buoyancy

α

Fig. 6.4.1 Stability of Pontoon subjected to Eccentric Load

(3)PerformanceVerificationofEachPartofaPontoon

① Stressesgenerated in thestructuralpartsof thepontoonshallbeexaminedbyusinganappropriatemethodselected considering the use conditions of the pontoon, external actions on the respective parts, and theirstructuralcharacteristics.

② Afloorslabcannormallybeverifiedforperformanceasatwo-wayslabfixedonfoursideswithsupportingbeamsandsidewallsagainsttheactionsthatyieldthelargeststressoutofthefollowingcombinationsofactions:

(a)Whenonlystaticloadactsonapontoon(Staticload)+(Selfweight)

(b)Whenliveloadactsonapontoon(liveload)+(Selfweight)

(c)Whenthesupportingpointofanaccessbridgeissetonapontoonwithoutadjustmenttower(Supportingpointreactionforceofanaccessbridge)+(Selfweight)

③ Aouterwallcannormallybeverifiedforperformanceasatwo-wayslabfixedonfoursideswithafloorslab,a bottom slab, and outerwalls or supporting beams, against hydrostatic pressure actingwhen the pontoonsubmergesby0.5mabovethedeck.

④ Abottomslabcannormallybeverifiedforperformanceasatwo-wayslabfixedonfoursideswithouterwallsorsupportingbeams,againsthydrostaticpressureactingwhenthepontoonsubmergesby0.5mabovethedeck.

⑤ Apartitionwallcannormallybeverifiedforperformanceasaslabfixedonfoursideswhenonecompartmenthasbecomefullywaterloggedandisexertinghydrostaticpressure.

⑥ Thesupportingbeamsofthefloorslab,bottomslabandouterwallsandthecentersupportcannormallybecalculatedasarigidframeboxundertheconditionthatthemaximumactionisonthefloorslabofthepontoonandthehydrostaticpressureforthedraftofthepontoonbeingequaltoitsheightisapplied.

⑦Whenthewaveactionsaretobeconsidered,calculationsofsectionforcesaremadeusingMuller’sequation,11)themethodofPrestressedConcreteBarge,orVeritus Rule.Whenitisnecessarytoconsidereffectsoftheoscillationsofthefloatingbody,waveparameters,andwaterdepth,themethodwithcross-sectionaldivisionbyUedaetal.5),12),13)maybeused.

(4)PerformanceVerificationofMooringChain

① Thestructureofmooringchainsshouldbeexaminedbyusinganappropriatemethodinsuchawaythatthechainscanholdsecurelyapontooninpositionunder theactionofwhicheverforce is the largestamongthe

Page 185: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 860–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

fenderreactionforcegeneratedduringberthing,thetractiveforceofshipandthewaveforce,withtheadditionofthetidalcurrentforcetoeachofaforementionedforces.

② Normally, the length of amooring chain is 5 times thewater depth plus the tidal range. When a chain isstretched,itisnecessarytopayattentiontothefollowingpoints:

(a) Duringhightide,thechainshouldnotbeoverstretchedcausinganexcessivetensionforceinit.(b)Duringhightidethereshouldbenointerferencewithshipberthing.(c) Sufficientanchorholdingpowershouldbeensuredformooringanchorsduringhightide.(d)Theamountofhorizontalmovementofthepontoonduringlowtideshouldbesmall.

③ Itissaidthattheanchorholdingpowerofsteelmooringanchorsissignificantlyreducedwhentheanglebetweenthechainattheconnectionpartandthehorizontalsurfaceis3°orhigher.

④ Themaximumtensionactingoneachchainisideallydeterminedthroughdynamicanalysisofthechainandthepontoon,butasthisisverydifficult,staticanalysismaybeusedasthesecond-bestmethod.AchaincannormallybeverifiedforperformanceontheconditionthatonlyonechainisassumedtoresistagainstalltheexternalforcesasshowninFig. 6.4.2. Assumingthatthechainformsacatenaryline,themaximumtensionactingonthechainisgivenbyequation(6.4.5).Intheequationsbelow,thesymbolγ representsthepartialfactorofitssuffixandsuffixeskanddstandforthecharacteristicvalueandthedesignvalue,respectively.

(6.4.5) Thehorizontalforceactingonthemooringanchoristhesameasthehorizontalforceactingonthepontoon,andtheverticalforceactingontheanchorisgivenbyequation(6.4.6).

(6.4.6) Theverticalforceactingonthejointbetweenthechainandthepontoonisgivenbyequation(6.4.7).

(6.4.7) Theanglesθ1andθ2arecalculatedbyequation(6.4.8)withanassumedchainlengthlandanassumedchainweightw perunitlengthofthechain.

(6.4.8)

Fig. 6.4.2 Performance Verification of Mooring Chain

Thehorizontaldistancebetweenamooringanchorandthepontoonwhenahorizontalforceisactingonthepontoonisgivenbyequation(6.4.9),andthustheamountofhorizontalshiftofthepontoonfromitsstationarypositionundernohorizontalforcecanbeevaluated.

(6.4.9)

Becausethecatenarylineofthechainofnormaldiametercanbeapproximatelyrepresentedwithastraight

Page 186: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–861–

line,itcanbeassumedinequations(6.4.5)to(6.4.9)thatθ2= θ1=sin-1(h/l)and .

where T :maximumtensionactingonthechain(kN) P :horizontalexternalforce(kN) Va :verticalforceactingonthemooringanchor(kN) Vb :verticalforceactingonthejointbetweenthechainandpontoon(kN) θ1 :anglethatthechainmakeswiththehorizontalplaneatthejointbetweenthemooringanchor

andchain(º) θ2 :anglethatthechainmakeswiththehorizontalplaneatthejointbetweenthemooringchainand

pontoon(º) l :lengthofthechain(m) w :weightperunitlengthofthechaininwater(kN/m) h :waterdepthunderthebottomofpontoon(m) Kh :horizontaldistancebetweenthemooringanchorandthejointbetweenthepontoonandchain

(m) Thedesignvaluesintheequationscanbecalculatedbythefollowingequation.Thepartialfactorcanbesetat1.0.

⑤ In the determination of the diameter of the chain, careful consideration should be given to the abrasion,corrosion,andbiofoulingofchain.Inaddition,appropriatemaintenanceworkneedstobecarriedoutonthechain,includingperiodicalchecksonthechainanditsreplacement,asnecessary.

⑥Whendeterminingthechaindiameterwithnumericalshipmotionsimulation,thecharacteristicsofdisplacement-restorationforcerelationshipofthemooringsystemneedtobedeterminedusinganappropriatemethodsuchasthecatenarytheory.14)

(5)PerformanceVerificationofMooringAnchor

① Amooringanchorshallbecapableofprovidingtheresistanceforcesrequiredtokeepthepontoonstableagainstthemaximumtensionactingonthemooringchainandshallhaveanappropriatestability.

② Fortheverificationofthestabilityofmooringanchors,equation(6.4.10)maybeused.Inthefollowing,thesubscriptskanddindicatethecharacteristicvaluesanddesignvaluesrespectively.Also,thestructuralanalysisfactormaybetakentobeanappropriatevalueequaltoorgreaterthan1.2.

(6.4.10)where,

Rh :horizontalresistanceforceofmooringanchor(kN) Rv :verticalresistanceforceofmooringanchor(kN) P :horizontalforceactingonmooringanchor(kN) Va :verticalforceactingonmooringanchor(kN) γa :structuralanalysisfactor

Incalculatingthedesignvaluesintheequation,thefollowingequationsmaybeused.Here,Va,P,andθ1intheequationsareasshowninFig. 6.4.2.ForthecharacteristicvalueofthemaximumtensionforceactinginthemooringchainPk,thevalueobtainedin(4) Performance Verification of Mooring Chains,maybeused.Thevalue1.0maybeusedforthepartialfactors.

Vad=γ P Pk tanθ1,Pd =γP Pk,Rhd =γRh Rhk,Rvd =γRv Rvk

③ Normallythefollowingforcesareconsideredastheresistanceforcesofamooringanchor,butitispreferablethatin-situstabilitytestsbemadeforamooringanchor:

(a) Inthecaseofconcreteblock:

1) Forclayground:HorizontalresistanceforceRh :Cohesionofthesurfacesofbottomandsides,differencebetween thepassiveandactiveearthpressuresVerticalresistanceforceRv :Weightinwater,effectiveoverburdenweightinwater

2) Forsandground:

Page 187: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 862–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

HorizontalresistanceforceRh :Bottomfrictionforce,differencebetweenthepassiveand activeearthpressuresVerticalresistanceforceRv :Weightinwater,effectiveoverburdenweightinwaterTheverticalforceemployedinthecalculationofthebottomfrictionforceisthedifferencebetweentheweightoftheblockinwaterandtheverticalcomponentofthechaintensionactingontheblock.

(b)Inthecaseofsteelmooringanchor:HorizontalresistanceforceRh :HoldingpowerVerticalresistanceforceRv :Weightinwater

Theholdingpowerofasteelmooringanchoriscalculatedbyequation(6.4.11).

onsoftmud: TA =17WAd2/3

onhardmud: TA =10WAd2/3 (6.4.11)onsand: TA =3WAdonflatrock: TA =0.4WAd

where TA :holdingpowerofthemooringanchor(kN) WA :weightofthemooringanchorinwater(kN)

Thedesignvaluesintheequationscanbecalculatedfromthefollowingequation.Also,thepartialfactormaybetakentobe1.0.

④Whenarectangularsolidanchorblockisdeeplyembeddedinacohesivesoil,Hansenobtainedequation(6.4.12)forthehorizontalresistanceforcebyassumingtheslipsurfacearoundtheblock.

P =11.4ch (6.4.12) Also,Mackenzieexperimentallyobtainedequation(6.4.13)forblocksembeddedtoadepthof12timesormoretheheightoftheblock.15)

P =8.5ch (6.4.13)where,

P :resistanceforceoftheblockperunitwidth(kN/m) c :cohesionofthecohesivesoil(kN/m2) h :blockheight(m)

References

1) CoastalDevelopmentInstituteofTechnology:TechnicalManualforfloatingstructure,19912) Yonekawa,M.:Designandcalculationexamplesofportfacilities(Enlargedandrevisededition)KazamaPublishing,19833) JSCE:StandardSpecificationsforconcrete,20024) NipponKaijiKyokai(NK):Steelbarge,19975) UEDA,S.,S.SHIRAISHIandK.KAI:CalculationMethodofShearForceandBendingMomentInducedonPontoonType

FloatingStructuresinRandomSea,TechnicalNoteofPHRINo.505,19846) JapanRoadAssociation:SpecificationsandCommentaryforHighwayBridges,PartIVSubstructures,MaruzenPublications,

20027) Ueda, S. : Analysis Method of Ship Motions Moored to Quay Walls and the Applications, Technical Note of PHRI

No.504,19848) Oogushi,M.:Theoreticalnavalarchitect,Kaibun-doPublishing,20049) JapanRoadAssociation:SpecificationsandCommentaryforHighwayBridges,PartIISteelBridge,MaruzenPublications,

200410) Japan Road Association: Specifications and Commentary for Highway Bridges, Part III Concrete Bridge, Maruzen

Publications,200411) JeanMuller:StructuralConsiderationConfigurationsII,UniversityofCaliforniaExtensionBerkeley,SeminaronConcrete

andVesselsSedt.,196512) UEDA,S.,S.SHIRAISHIandT.ISHISAKI:CalculationMethodofForcesandMomentsInducedonPontoonTypeFloating

StructuresinWaves,Rept.ofPHRIVol.31No.2,199213) UEDA,S.S.SHIRAISHIandT. ISHISAKI:ExampleofCalculationofForces andMoments InducedonPontoonType

FloatingStructuresandFiguresandTablesofRadiationForces,TechnicalNoteofPHRI.No.731,1992

Page 188: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–863–

14) UEDA, S and S. SHIRAISHI:Determination ofOptimumMooringChain andDesignChartsUsingCatenary Theory,TechnicalNoteofPHRINo.379,1981

15) EditedbyG.A.Leonards:FoundationEngineering,McGrawHillBookCo.,p.467,196216) JapanRoadAssociation:TechnicalStandardandCommentaryofgradeseparationfacilitiesforpedestrians,1979

Page 189: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 864–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

7 Shallow Draft WharvesMinisterial OrdinancePerformance Requirements for Shallow Draft Wharves

Article 31 TheprovisionsofArticle26orArticle29shallbeappliedcorrespondinglytotheperformancerequirementsforshallowdraftwharves.

Public NoticePerformance Criteria of Shallow Draft Wharves

Article 57 TheprovisionsofArticle48throughArticle52,orArticle55shallbeappliedwithmodificationasnecessarytotheperformancecriteriaofshallowdraftwharvesinconsiderationofthestructuraltype.

[Technical Note]

(1)PerformanceRequirements①Commonforshallowdraftwharves

Theperformancerequirementsofshallowdraftwharvesshallensurethenecessaryusabilitytoenablesafeandefficientmooringofships,safeandefficientboardingandembarkationanddisembarkationofpassengers,andsafeandefficientloadingandunloadingofcargo.Inaddition,itisnecessarythattheperformanceverificationshallensureserviceabilityinrespectofthenecessarydesignsituations,fromamongthepermanentsituationsinrespectofselfweightandearthpressure,andvariablesituationsinrespectofvariablewaves,Level1earthquakegroundmotion,berthingandtractionbyshipsandsurchargesinaccordancewiththestructuraltypeofthefacilities.

Page 190: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–865–

8 Boat Lift Yards and Landing Facilities for Air Cushion CraftMinisterial OrdinancePerformance Requirements for Boat Lift Yards

Article 32 Theperformancerequirementsforboatliftyardsshallbeasspecifiedinthesubsequentitemsinconsiderationofitsstructuretype:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoastoenablethesafeandsmoothliftingandlaunchingofboats.(2)Damageduetoselfweight,earthpressure,waterpressure,variablewaves,berthingandtractionof

boats,Level1earthquakegroundmotions, imposedloads,and/orotheractionsshallnot impair thefunctionoftheboatliftyardsnoraffecttheircontinueduse.

Public NoticePerformance Criteria of Boat Lift Yard

Article 58 1 Theperformancecriteriaofboatliftyardsshallbeasspecifiedinthesubsequentitems:(1)Theboatliftyardshallhavethenecessarywaterdepthandlengthcorrespondingtothedimensionsof

thedesignships.(2)Theboat liftyardshallhavethenecessarygroundelevation inconsiderationof the tidalrange, the

dimensionsofthedesignships,andtheusageconditions.(3)Theboatliftyardshallhavethenecessaryancillaryequipmentinconsiderationoftheusageconditions.

2TheprovisionsofArticle49throughArticle52shallbeappliedwithmodificationasnecessarytotheperformancecriteriaofthefrontwallportionoftheboatliftyardinconsiderationofthestructuraltype.

3Theperformancecriteriaofthepavementoftheboatliftyardshallbeasspecifiedinthesubsequentitems:(1)Thepavementoftheboatliftyardshallhavethedimensionsrequiredforenablingthesafeandsmooth

handlingofboats.(2)Theriskofimpairingtheintegrityofthepavementunderthevariableactionsituation,inwhichthe

dominantactionisimposedload,shallbeequaltoorlessthanthethresholdlevel.(3)Theriskofimpairingtheintegrityofthepavementunderthevariableactionsituation,inwhichthe

dominantactionsarewaterpressureandvariablewaves,shallbeequaltoorlessthanthethresholdlevel.

[Technical Note]

8.1 Boat Lift Yards8.1.1 Fundamentals of Performance Verification

(1)Aboatliftyardisafacilityusedtoretrieveshipstothelandandlaunchtotheseaforsuchpurposesasrepair,refugefromstormwavesandstormsurges,andlandstorageofshipsduringwinter.

(2)Inmanycases,railsorcradlesareemployedintheretrievingandlaunchingofshipsof30tonsorlargeringrosstonnage,buttheprovisionsinthissectioncanbeappliedtotheperformanceverificationsofthefacilitiesusedtoliftandlaunchshipssmallerthan30tonsingrosstonnagedirectlyovertheslopeofslipway.

(3)Fig. 8.1.1 NotationsofVariousPartsofboatliftyard.

Page 191: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 866–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Sea bottom in front of the slipway

ArmouringHeight of front wall

Concrete block covering

M.S.L

Front wall of Landing part

Foundation

Intermediateretaining wall

Slope

Concrete pavement

Foundation Retaining wall

Ship storage yard

Fig. 8.1.1 Boat Lift Yard

8.1.2 Location Selection of Boat Lift Yard

Locationofboatliftyardsneedstobedeterminedinsuchawaythatthefollowingrequirementsaresatisfied:

① Thefrontwaterareaiscalm.

② Thefrontwaterareaisfreefromsiltationorscouring.

③ Navigationandanchorageofothershipsarenothindered.

④ Thereisanadequatespaceinthebackgroundfortheworkforshipliftingandlaunchingaswellasforshipstorage.

8.1.3 Dimensions of Each Part

[1] Requirements for Usability

① Waterdepthandlength

(a) LengthInsettingthelengthofslipwaysfortheperformanceverification,thedimensionsofthedesignshipsshallbeappropriatelyconsidered.

(b)WaterdepthInsettingthewaterdepthofslipwaysfortheperformanceverificationofboatliftyards,thedimensionsofthedesignshipsandtheenvisagedconditionsofuseofthefacilityshallbeappropriatelyconsidered.

② CrownheightInsettingthecrowntheightofslipwaysfortheperformanceverificationofboatliftyards,thedimensionsofthedesignshipsandtheenvisagedconditionsofuseofthefacilityshallbeappropriatelyconsideredtoenabletheslipwaytobesafelyandefficientlyused.

③ SlopeangleoftheslipwayIn the performance verification of boat lift yards having slipways, the slope angle of the slipway shall beappropriatelysetconsidering thedimensionsandshapeof thedesignships, thegroundconditions, the tidalrange,andtheenvisagedconditionsoftheuseofthefacilityinordertoenablesmoothretrievingandlaunchingofships.

[2] Height of Each Part

(1) Itispreferablethatthecrownheightofthefrontwalloftheslipwaysectionbelocatedatalevellowerthanthemeanmonthly-lowestwaterlevel(LWL)bythedraftofthedesignships. Thisrequirementindicatesthatit isnecessaryliftshipsevenatthelowwaterofneaps.Thedraftoftheshipshouldbethelightdraftforthecaseofrepair,refuge,andwintertimestorage,andshouldbethefull-loaddraftforthecaseofliftingsmallfishingboatsfilledwithcatches.Forboatliftyardsthataretobeconstructedintheareaswheretidalrangesaresmallorfortheboatliftyardsthataretobeusedevenatthelowwaterspringsduringhighwaves,itispossibletolowerthecrestheightofthefrontwallfurther.

(2)Thegroundelevationoftheshipstorageyardcanbedeterminedbyapplying2.1.1 Dimensions of Quaywalls.However,whentheshipstorageareaislocatedadjacenttoaquaywall,thecrownheightoftheshipstorageareacanbesetequaltothecrownheightofthequaywalltofacilitateeaseofuse.Incaseswherewavesarehighinthewaterareainfrontoftheboatliftyard,considerationofthewaverunupheightispreferable.

(3)Itispreferablenottochangethegradientoftheslipwaysconsideringtheconvenienceofretrievingandlaunchingofships.

Page 192: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–867–

(4)Ifprovidingapointatwhichthegradientchangesontheslipwaysisunavoidable,duetothedeepdepthofwateror constraint of availablegroundarea, it is preferable that thepositionof thepointofgradient changebe setconsideringtheheightsofthefollowing:

①WhentheslipwayconsistsoftwodifferentsurfacesNearM.S.L.-H.W.L.

②WhentheslipwayconsistsofthreedifferentsurfacesFirstpoint NearL.W.L.Secondpoint NearH.W.L.

[3] Front Water Depth

Thedepthofwaterinfrontoftheslipwaymaybedeterminedreferringtothesumofthedraftofthedesignshipandamarginof0.5m.

[4] Gradient of Slipway

(1)Thegradientofslipwayshallbedeterminedappropriatelyinconsiderationoftheshapeofthedesignships,thecharacteristicsof foundation, and the tidal range, so that the liftingand launchingof shipscanbeperformedsmoothly.

(2)Whentheslipwayistobeutilizedbysmallships,itispreferabletohaveaslopewithasingle-gradient.Single-gradientslopesarefrequentlyusedinslipwaysforhumanpower-basedshipliftinginshallowwaters.Forthistypeofslipways,aslopeinclinationof1:6to1:12maybeusedasareference.

(3)Whenthewaterinfrontoftheslipwayisdeeportheareaoftheconstructionsiteislimited,theslipwaymaybebuiltwithtwoormoregradients.Whenthisisthecase,atwo-gradientslipwaymaybeadoptedwhenthecrownelevationofthefrontwallisabout-2.0m,andathree-gradientslipwaymaybeadoptedwhenthecrestheightofthefrontwallislowerthan-2.0m.Thefollowingvaluesmaybeusedasreferencegradients:

① Whentheslipwayconsistsoftwodifferentsurfaces:Frontslope:1:6to1:8Rearslope:1:8to1:12

②Whentheslipwayconsistsofthreedifferentsurfaces:Frontslope:aninclinationsteeperthan1:6Centralslope:1:6to1:8Rearslope:1:8to1:12

[5] Area of Front Basin

(1)Thebasin in frontofaboat liftyardshallhaveanappropriatearea thatallows forefficientoperationof shipretrievingandlaunchingwithoutdamagetotheships,andsafeandefficientnavigationofnearbyships.

(2)Whentheshipislaunchedtotheseabyslidingovertheslipway,theshiprunsoveracertaindistanceaftertouchingthewaterwiththespeedgainedduringthelaunch.Thisdistanceismorethanaboutfivetimesoftheship’slengthoverall,althoughitvariesdependingonthegradientofslope,slipwayfriction,andlaunchingdistance.However,becausetheshipattainsitsmaneuverabilityaftermovingadistanceabout4to6timesofitslength,itissufficienttosecureadistanceaboutfivetimesoftheship’slengthoverallfromthewaterfrontlineoftheslipwaytotheotherendofthebasin.Whenstrongtidalcurrentsexist,itispreferabletoaddanappropriatemargin.

(3)Whentheshipislaunchedtotheseagentlybywireropes,adistanceofaboutthreetimesoftheship’slengthoverallwillsufficetosecuretherequiredwidthofwaterarea.

8.2 Landing Facilities for Air Cushion Craft8.2.1 Fundamentals of Performance Verification

(1)Aircushioncraftlandingfacilitiesshallbelocatedatanappropriatelocationandhaveanappropriatestructureforthesafeboardingofpassengersandsafeandsmoothlandingofthecraft.

(2)Aircushioncraft landingfacilitiesarenormallyconstructedon theshore. These facilitiesusuallyuseslopessimilartothoseofslipwaysasdescribedin8.1 Boat Lift Yards tolandandglidedownaircushioncrafts.

(3)Fig. 8.2.1 illustratesanaircushioncraft.

Page 193: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

– 868–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Fan for floating

Propeller

Steering seatAntenna Propeller

Air rudder

Submarine (Placed in waterand used as rudder)

LegFlexible skirt

Fig. 8.2.1 Example of Air Cushion Craft

(4)AnexampleofthemaindimensionsofaircushioncraftisshowninTable 8.2.1.

Table 8.2.1 Example of Dimensions of Air Cushion Craft

Totallength(m)

Totalwidth(m)

Totalheight(m)

Skirtdepth(m)

Boardingcapacity(persons)

Totalmass(t)

Maximumspeed(kt)

abcd

18.224.723.114.8

8.612.711.07.0

4.47.96.54.6

1.21.61.21.2

7511510538

1450519.1

45655060

8.2.2 Selection of Location

(1) Indeterminingthelocation,thefollowingrequirementsshallbeconsidered:① Thewaterbasininfrontofthefacilityshallbecalm.② Theeffectsofstrongwindsandbeamwindsonthecraftshallbeminimum.③ Operationofthecraftsshallnothindernavigationandmooringofotherships.④ Influencesofnoiseandwatersprayfromtheoperationofcraftsuponothernavigationshipsandneighboring

areashallbeminimum.

(2)Aircushioncraftsareexcellentforstabilityinhigh-speedoperation,buttheyaresusceptibletoinfluencesofwindsduringlow-speedoperationsuchasapproachingandleavingto/fromalandingfacility.Inthedeterminationofthelocationofaircushioncraftfacilities,therefore,itispreferabletogivecarefulconsiderationtothelevelofcalmnessofthebasininfrontofthefacilitiesandthedirectionoftheprevailingwind.

(3)Asnoisesfromanaircushioncraftmaybeashighas100dBatadistanceof50mfromthecraft,itispreferabletolocateaircushioncraftlandingfacilitiesfarenoughawayfromhospitals,schoolsandhousingareas,ortoshutoffthenoisesbysurroundingthefacilitieswithsound-proofwalls.

8.2.3 Dimensions of Each Part

The air cushion landing facilities shall be providedwith a slipway, apron, and passenger boarding facilities. In

Page 194: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–869–

addition,lightingfacilities,hangers,sound-proofwalls,oilsupplyfacilitiesandrepairfacilitiesandothersshallbeprovidedasnecessary.

[1] Slipway

(1)The structure of the slipway can be determined by referring to the slipway structure described in 8.1.3 Dimensions of Each Part.

(2)Thewidthof theslipwayshouldbedeterminedconsideringof thelateralmovementof theaircushioncraftduringthelandingorgliding-downoperationduetobeamwinds. Usuallyawidthofaboutthreetimesthewidthofthecraftisadopted.

(3)The gradient of the slipway needs to be determined considering its psychological effect on passengers,performanceoftheaircushioncraft,anduseofland.Usuallyagradientof1:10orgentlerisadopted.

[2] Apron

Inmanycasestheapronwidthisthesameasthatoftheslipwayandtheapronlengthisabouttwotimesthelengthoftheaircushioncraft.Incaseswheretwoormoreaircushioncraftsusethelandingfacilitysimultaneously,aparkingspaceshouldbeprovidedalongsidetheapron.

[3] Hangar

Whenahangaristobeconstructed,itispreferabletolocateitadjacenttotheaprontofacilitatetheservicingandmaintenanceofaircushioncraftandtoprovidetherefugespaceofaircushioncraftinroughweather.Thedimensionsofthehangararepreferablyasfollows:

Width: .5timesthewidthoftheaircushioncraft(peronecraft)Length: 1.2timesthelengthoftheaircushioncraft(peronecraft)Height: Thereshouldbeaclearanceofabout0.5mfromtheceilingtothetopoftheaircushioncraftwhen thecraftisliftedafloat.

References

1) Kimura.,K.:Designmethodofplasteringblocksforslipway,JournalofPublicWorksResearchInstitute(PWRI),HokkaidoRegionalDevelopmentBureau,No.369、1984

Page 195: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–870–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

9 Ancillary of Mooring FacilitiesMinisterial OrdinancePerformance Requirements for Ancillary Facilities of Mooring Facilities

Article 331Theperformance requirements for ancillary facilitiesofmooring facilities shallbeas specified in thesubsequentitemsinconsiderationofthetypeoffacilities:(1)TherequirementsspecifiedbytheMinisterofLand,Infrastructure,TransportandTourismshallbe

satisfiedsoastofacilitatethesafeandsmoothuseofmooringfacilities.(2)Thedamagedue to selfweight, earthpressures,Level1 earthquakegroundmotions,berthingand

traction of ship, imposed loads, collision with vehicles, and/or other damage shall not impair thefunctionoftheancillaryfacilitiesnoraffecttheircontinueduse.

2Inadditiontotheprovisionsofthepreviousparagraph,theperformancerequirementsfortheancillaryfacilities for mooring facilities which are classified as high earthquake-resistance facilities shall besuch that the damage due to Level 2 earthquake groundmotions and other actions do not affect therestorationthroughminorrepairworksofthefunctionsrequiredofthepiersconcernedintheaftermathoftheoccurrenceofLevel2earthquakegroundmotions.Provided,however,thatasfortheperformancerequirementsfor theancillaryfacilitiesof themooringfacilitieswhichrequirefurther improvementinearthquake-resistantperformanceduetotheenvironmentalconditions,socialorotherconditionstowhichthepierconcernedissubjected,thedamageduetosaidactionsshallnotadverselyaffecttherestorationthroughminorrepairworksofthefunctionsofthefacilitiesconcernedandtheircontinueduse.

9.1 Mooring Posts and Mooring RingsPublic NoticePerformance Criteria of Mooring Posts and Mooring Rings

Article 59 Theperformancecriteriaofmooringpostsandmooringringsshallbeasspecifiedinthesubsequentitems:(1)Mooringpostsandmooringringsshallbeappropriatelyplacedsoastoenablethesafeandsmooth

mooringofshipsandcargohandlingworksbytakingintoaccountthepositionsofthemooringlinesfortheshipsusingthemooringfacilitiesconcerned.

(2)Theriskofimpairingtheintegrityofthemembersofmooringpostsandmooringringsandlosingtheirstructuralsafetyshallbeequaltoorlessthanthethresholdlevelunderthevariableactionsituationinwhichthedominantactionisthetractionbyships.

[Commentary]

(1)PerformanceCriteriaofMooringPostsandMooringRings①StabilityofFacilities(serviceability)(a) Attached Table 54 shows the setting on the performance criteria and design situations, except

accidentalsituations,ofmooringpostsandmooringrings.

Page 196: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–871–

Attached Table 54 Setting on the Performance Criteria and Design Situations (excluding accidental situations) of Mooring Posts and Mooring Rings

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionsNon-dominating

actions

33 1 2 59 1 2 Serviceability Variable Tractionbyships

Soundnessofmooringpostandmooringringcomponents

Tractionbyships

Selfweight Stabilityofmooringpostandmooringringstructures(slidingofsuperstructures)

Limitvalueonsliding

Stabilityofmooringpostandmooringringstructures(overturningofsuperstructures)

Limitvalueonoverturning

(b)SoundnessofStructuralMembers(serviceability)Fortheperformanceverificationofmooringpostsandmooringrings,theperformancecriteriaforthesoundnessshallbesetproperlyaccordingtothekindofmaterials.

(c)StabilityofStructures(serviceability)Theverificationofstructural stabilityshallverify theslidingandoverturningofsuperstructuresunderthevariablesituationswheredominatingactionisthetractionbyships

[Technical Note]

9.1.1 Position of Mooring Posts and Mooring Rings

(1)Theperformanceverificationofmooringpostsandmooringringsshallrequiretheirproperlayouttoallowthesafeandsmoothmooringofshipsandcargohandling,consideringthepositionsofthemooringlinesoftheshipsusingthemooringfacilitiesconcerned.

(2)Ingeneral,mooringpostsareinstalledataroundbothendsoftheberthandawayfromwaterlinesasfaraspossibleforthemooringofshipsinastorm,whereasbollardsareinstalledclosetotheberthfacelineforthemooringortheberthingandleavingofshipsinordinaryconditions.

(3)Thepositioningandnamesofthemooringlinesofshipsduringberthingmayreferto2.1.1 (2) Length, Water Depth and Layout of Berths.

(4)Thedistance intervalsbetweenbollardsand theirminimumnumberof installationperberthmayrefer to thevaluesgiveninTable 9.1.1.

Table 9.1.1 Placement of Bollards

Grosstonnageofdesignship(t) Maximumintervalbetweenbollards(m)

Minimumnumberofinstallationperberth(unit)

Lessthan2,000 10-15 4

2,000ormoreandlessthan5,000 20 6

5,000ormoreandlessthan20,000 25 6

20,000ormoreandlessthan50,000 35 8

50,000ormoreandlessthan100,000 45 8

(5)Inthecaseswheremooringlinesarenotpulledupwardatsuchmooringfacilitiesforsmallshipsmooringpostsatintervalsof10-20mareinstalledwithoutbollards.Insteadofbollards,smallshipmooringfacilitiesmaybeinstalledwithmooringringsorsimilarwithequivalentstrengthstobollardsatintervalsof5-10m.

(6)For some small shipmooring facilities, mooring rings or equivalentsmay be installed tomoor small ships.Mooringringsorsimilarshallbeinstalledataproperheighttakingtidelevelsintoconsideration.Smallshipsare

Page 197: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–872–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

oftentiedtomooringringswiththemooringlinesfromtheirbowsandsterns,andhencemooringringsorsimilarmaybeplacedatintervalsof5-10m.

(7)Mooringpostsareinstalledaccordingtouseconditionsbyships.Theyareofteninstalledinsuchmannerthatanglesbetweenshipaxesandmooringlineswouldbesetcloselytoarightangleasmuchaspossiblesothattheycould reacteffectivelyagainst the forcesperpendicular to the shipaxes. Inmanycases,onemooringpost isinstalledateachendofaberth. The angles of bow lines and stern lineswith respect to their ship axes are set to be small to control themovementofshipsintheshipaxesdirection.Itispreferabletoinstallbollardssothattheseangelsarekeptlargerthan25-30°.Fig. 9.1.1showsthetypicalinstallmentexamplesofmooringposts.

(8)Therearecaseswherethemooringlinesstretchedfromtwoadjacentlymooredshipsaretiedtoonemooringpostinstalledatthejunctionoftwoberths.Sincethelinesarestretchedfromdifferentdirectionsandtheirresultantforceisnotlargerthanthetractiveforcefromeitheroftheships,thereisnoneedtoinstalllarger-sizemooringpostsat the junctionsof twoberths. However, insomecases, itwould take timetoreleasemooring linesforunberthing,resultinginaccidents.Twobollardsshallbehenceinstalledatanintervalofseveralmetersinthejunction.Inthecaseoflargemooringfacilities,sometimesfourormorelinesaretiedfromeachofbowandsternofthebothsidesofships.Insuchacase,itispreferabletoinstalltwobollardsatanintervalofseveralmetersattheplacestotietheselines.

45°

90°

45°45° 45°

90°

Stern line

(a) The case of right angle

(b) The case of 45°

Bow line

Moorig post

Bollard

Bollard

25 – 30° 25 – 30°

Fig. 9.1.1 Typical Arrangements of Mooring Posts and Bollards

9.1.2 Actions

(1)TractiveForceofDesignShip

① Thetractiveforcesbyshipsshallbecalculatedappropriatelyconsideringtheberthingandmooringconditionsofships.

② ThetractiveforcesbyshipscanbecalculatedinaccordancewithPart II, Section 8, 2.4 Actions due to Traction by Ships.

(2)Theverification of the sliding andoverturningof superstructures shall be performedon tractive forces fromthemostdangeroustractionangles.Thetractionanglesofthemostdangeroustractiveforcescanbecalculatedfromequations(9.1.1)and(9.1.2).Theexpectedrangesoftractionanglesdependingonconditionssuchasthedimensionsofdesignshipsandtidelevelsshallbeconsidered.

① Thecaseofsliding(SeeFig. 9.1.2 (a))

(9.1.1)where

θ :tractionangle(rad) T :tractiveforce(kN/m) Pv :resultantverticalearthpressureactingonsuperstructure(kN/m) Ph :resultanthorizontalearthpressureactiononsuperstructure(kN/m) W :weightofsuperstructure(kN/m)

Page 198: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–873–

② Thecaseofoverturning(SeeFig. 9.1.2 (b))

(9.1.2)where

θ :tractionangle(rad) x2 :distancefromfacelineofquaywalltotractiveforceactingpoint(m) h1 :distancefrombottomofsuperstructuretotractiveforceactingpoint(m)

Tsinθ

Tcosθθ

T

W Ph

Pv

Tsinθ

Tcosθθ

T

W

Ph

Pvh1

x1x3

h2

x2

(a) Sliding (b) Overturing

Fig. 9.1.2 Actions caused by Tractive Forces

9.1.3 Performance Verification

(1)ExaminationontheStabilityoftheSuperstructuresonwhichMooringPostsandMooringRingsareInstalled

① ExaminationonslidingThefollowingequationmaybeusedforexaminingthestabilityofthesuperstructuresonwhichmooringpostsandmooringringsareinstalled.Thesubscriptdindicatesdesignvalue.

(9.1.3)where

f :frictioncoefficient W :weightofsuperstructure(kN/m) θ :tractionangle(rad)(see9.1.2 Actions) T :tractiveforce(kN/m) Pv :resultantverticalearthpressureactingonsuperstructure(kN/m) Ph :resultanthorizontalearthpressureactingonsuperstructure(kN/m) γa :structuralanalysisfactor

Thedesignvaluesintheequationcanbecalculatedfromthefollowingequation,wherethesymbolγisthepartialfactorcorrespondingtoitssubscript,wheresuffixkanddindicatethecharacteristicvaluesanddesignvalues,respectively.

(itcanbeshownas byusinghorizontalcomponents) (9.1.4)where

δ :wallfrictionforce ψ :anglebetweenwallandverticalline(°)

② Thefollowingequationmaybeusedforexamining thestabilityof thesuperstructuresonwhichmooringpostsandmooringringsareinstalled.Thesubscriptdindicatesdesignvalue.

(9.1.5)where

W :weightofsuperstructure(kN/m)

Page 199: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–874–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

θ :tractionangle(rad)(see9.1.2 Actions) T :tractiveforce(kN/m) Pv :resultantverticalearthpressureactingonsuperstructure(kN/m) Ph :resultanthorizontalearthpressureactiononsuperstructure(kN/m) x1 :distancefromthefacelineofquaywalltosuperstructureweightactingpoint(m) x2 :distancefromfacelineofquaywalltotractiveforceactingpoint(m) x3 :distancefromfacelineofquaywalltoactingpointofresultantverticalearthpressure(m) h1 :distancefrombottomofsuperstructuretotractiveforceactingpoint(m) h2 :distancefrombottomofsuperstructuretoactingpointofresultanthorizontalearthpressure(m) γa :structuralanalysisfactor

Thedesignvaluesintheequationcanbecalculatedfromequation(9.1.4).

③ PartialFactorsInexaminingthestabilityoftheslidingandoverturningofthesuperstructuresonwhichmooringpostsandmooringringsareinstalled,thevaluesshowninTable 9.1.2maybeusedasstandardpartialfactors.Thesepartialfactorsaredeterminedtakingaccountofthesettingusedinpreviousdesignmethods.

Table 9.1.2 Partial Factors used in the Performance Verification of the Stability of Superstructures

γ α μ/Xk V

Sliding

γf Frictioncoefficient 1.00 – – –γPv Resultantverticalearthpressure 1.00 – – –γPh Resultanthorizontalearthpressure 1.00 – –γW Weightofsuperstructure 1.00 – – –γT Tractiveforce 1.00 – – –γθ Tractionangle 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

Overturning

γPv Resultantverticalearthpressure 1.00 – – –γPh Resultanthorizontalearthpressure 1.00 – –γW Weightofsuperstructure 1.00 – – –γT Tractiveforce 1.00 – – –γθ Tractionangle 1.00 – – –γa Structuralanalysisfactor 1.20 – – –

α:sensitivitycoefficient,μ/Xk:deviationofaverage(averagevalue/characteristicvalue),V:coefficientofvariation

Page 200: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–875–

9.2 Fender EquipmentPublic Notice Performance Criteria for Fender System

Article 60 Theperformancecriteriaforfendersystemshallbeasspecifiedinthesubsequentitems:(1)Thefendersystemshallbeproperlyinstalledandprovidedwiththefunctionsatisfyingthenecessary

specifications so as to enable the safe and smooth berthing and mooring in consideration of theenvironmental conditions towhich the system concerned are subjected, the berthing andmooringconditionsofships,andthestructuretypeofmooringfacilities.

(2)Theriskthattheberthingenergyofshipsmayexceedtheabsorptionenergyofthefendersystemunderthevariableactionsituation,inwhichthedominantactionsisshipberthing,shallbeequaltoorlessthanthethresholdlevel.

[Commentary]

(1)PerformanceCriteriaofFenderEquipment①StabilityofFacilities(Usability)(a)Attached Table 55 shows the setting on the performance criteria and design situations except

accidentalsituations,offenderequipment.

Attached Table 55 Setting on the Performance Criteria and Design Situations (excluding accidental situations) of Fender Equipment

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-dominating

action

33 1 2 60 1 2 Serviceability Variable VariableShipberthing

– Berthingenergyoffenderequipment

Absorptionenergy

(b)VariableSituationswhereDominatingActionsareShipBerthing(Serviceability)Theverificationofshipberthingissuchthattheriskoftheberthingenergyofshipsexceedingtheabsorptionenergyoffenderequipmentshallbeequaltoorlessthanthelimitvaluewhenshipsareberthing.

[Technical Note]

9.2.1 Fundamentals of the Performance Verification of Fender Equipment

(1)Whenashipisberthedtoawharforwhenamooredshipmovesowingtowindandwaveforces,berthingforceandfrictionforcearegeneratedbetweentheshipandthemooringfacility.Topreventdamagestotheship’shullandmooringfacilitydue to theseforces, fenderequipmentare installedonthemooringfacility. However, incasethatshipsareprovidedwithfenderequipmentsuchasshipfendersortiresforsmallshipsorcertaintypesofferriesandthemaneuveringofsuchashipisdoneverycarefullyconsideringtheenergyabsorptioncapacityofthefenderequipment,themooringfacilitydoesnotnecessarilyhavetobeequippedwithfenderequipment,becausetheberthingforcetothemooringfacilityisrelativelylow.

(2)Forfendersystemsusedasfenderequipment,rubberandpneumaticfendersarecommonlyselected.Othertypessuchasfoamtypes,waterpressuretypes,oilpressuretypes,suspendedweighttypes,piletypes,andtimbertypesarealsoused.2)

(3)Theperformanceverificationprocedureofrubberfenders,pneumaticfenders,andpiletypefendersisasshowninFig. 9.2.1.

(4)Theperformanceoffendershassignificanteffectsontheconstructioncostsofmooringfacilities,themaintenancecostsafterconstruction,andberthingefficiency.Itispreferableforthesectionoffenderstoconsidernotonlytheirconstructioncostsbutalsocomprehensivecostsofallaforementionedfactors.Inthecasesofpiledpiersanddolphins,theeffectsofthereactionforcesoffendersystemsarenormallyrelevant,andhenceinsomecases

Page 201: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–876–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

selectionofhigh-performancefendersystems,even if theyareexpensive, results inreducing theconstructioncostsofquaywallsasawhole. In thecasesofgravity-typequaywallsandsheetpilequaywallsonwhich thereactionforcesoffendersystemshavenoeffectsonthestructuraldimensions,theperformanceoffendersystemdoesnotaffecttheconstructioncostsofquaywalls.Insomecases,however,selectionofeasymaintenancetypefendersystem,eveniftheyareexpensive,resultsincostsavinginthelongrun,duetotheirmaintenancecostsaftercompletion.Therearealsocasesinwhichhigh-performancefendersystemsareselectedtoreducethedelayofshipberthingduetooceanographicandmeteorologicalphenomena.Becausethisresultsinimprovingcargohandlingefficiency.

Determination of design ships

Layout of fenders

Determination of ship displacements,berthing velocities, virtual mass factors,

and eccentricity factors

Calculation of berthing energy of ships

Assumption of the typesand forms of fenders

Calculation of the absorption energy,reaction forces, and deformations of fenders

Determination of the placementand characteristics of mooring ropes

Determination of the conditionssuch as waves, winds, water flows, etc.

Assumption of the typesand forms of fenders

Calculation of the motions of ships,and the deformations

and reaction forces of fenders

Determination of fenders

For berthing ships For moored ships

Fig. 9.2.1 Example of Performance Verification Procedures of Fenders

9.2.2 Actions

(1)BerthingEnergyofShips

① Forcalculatingtheberthingenergyofshipsintheperformanceverificationoffenders,refertoPart II, Chapter 8, 2.2 Actions Caused by Ship Berthing.

② Thepartialfactorsusedforcalculatingtheberthingenergyofshipsintheperformanceverificationoffendersshallbesetat1.0foralltheparameters.

(2)The calculation of berthing force is performed in general by obtaining the load-absorption energy curve ofmooringfacilityandthenpreparingtheload-absorptionenergycurveofawholefendersystematacertainpoint.AsshowninFig. 9.2.2,theberthingforcePforagivenberthingenergyEfcanbeobtainedbasedontheload-absorption energycurvepreparedbyadding the absorption energyEf1 causedby fenderdeformation and theabsorptionenergyEf2causedbyquaywalldeformation.

Page 202: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–877–

Ef1

Ef2

Ef

PA

bsor

ptio

n en

ergy (Quaywall) + (Fender)

Fender

Quaywall

Reaction force

Fig. 9.2.2 Calculation of Berthing Force

(3)Incaseofmooring facilities thatareexposed towaveactions, shipsmove inboth thehorizontalandverticaldirections. The ship’smotionsmay cause excessive shear deformation in fenders in addition to the normalcompressivedeformation,whichsometimesleadstobreakageoffenders.Iftheshearingforceisassumedtobethefrictionforce,theforceisestimatedatabout30%to40%ofthereactionforceofthefender.

(4)Contactpanelsandsimilarmeansshallbeinstalledonfenderequipmentasnecessarytoreducesurfacepressureandthustopreventberthingforcesfromactingonshipsasaconcentratedload.Syntheticresinplatesorothermaterialsaresometimesfixedinfrontofcontactpanelstoreducetheshearingforcesactingonfendersystems.

9.2.3 Layout of Fenders2),7)

(1)Thelayoutandspecificationsettingintheperformanceverificationoffenderequipmentneedtobeappropriatelyperformedtoallowthesafeandsmoothberthingandmooringofships,consideringthenaturalconditionswherethefacilitiesconcernedareplaced,theberthingandmooringconditionsofships,andthestructuretypeofmooringfacilities.

(2)Fenderequipmentneed tobeappropriatelyplacedso thatshipshavenodirectcontactwithmooringfacilitiesbeforethefenderequipmentabsorbtheberthingenergyofdesignships.

(3)Rubberfendersarenormallyplacedatintervalsof5to20m.Whenashipberths,apartneartheboworsterncontactsthequaywallatfirst.Itshouldbenotedthatsincetheshiphasacurvedsurfaceataforementionedcontactparts,excessivelywidefenderintervalscausetheshiptodirectlycontactthequaywall,towhichfendersarenotplaced,beforethefenderssufficientlyabsorbtheberthingenergy.Theintervalsofabout5mnormallycausenoproblem,butinthecasethattheintervalsare10mormoreandthus,thepartoftheshipmightdirectlycontactthepartofthequaywalltowhichfendersarenotplaced,itispreferabletoconstructthecopingoffenderplacingpartsprojectedout0.2to0.5mfromotherparts.Anothermethodistohangawoodblockinfrontofarubberfendertomaketheblockprojectedfromotherparts.

(4)In thecasesof largequaywallswherefendersareplacedatwide intervalsand thefendersforsmallshipsareplacedinbetweenthem,itispreferabletoadjustthefrontsurfacesofthefendersforsmallshipsbackwardofthoseforlargeshipstosomeextent.Ifthefrontsurfacesofthefendersforsmallshipsareinadequatelyadjusted,largeshipsmaycontact thefenderswithasmallenergyabsorptioncapacitybeforethefendersfor largeshipssufficiently absorb theberthingenergyof the ships, causing the serious increase in the reaction forcesof thefendersforsmallships.

9.2.4 Performance Verification

[1] General

(1) Itispreferabletoappropriatelyselectthetypesoffenderstakingaccountofthefollowing:

① Structuralcharacteristicsofmooringfacilitiesandshipsusingthem

② Formooringfacilitiessubjecttotheeffectofwaves,themotionsofmooredshipsandshipberthingconditionssuchasberthingangles.

③ Effectsofthereactionforcesoffendersystemsgeneratedduringshipberthingonthestructuresofmooringfacilities

④ Variationrangesofthephysicalcharacteristicsoffendersduetomanufacturingerrors,dynamiccharacteristicsandthermalcharacteristics.

Page 203: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–878–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

[2] Performance Verification

(1)Theenergyabsorptionduetothedeformationofmooringfacilityisasfollows:

① Itcanbegenerallyassumedthatthereisnoenergyabsorptionduetothedeformationofthemainbodiesofsuchrigidmooringfacilitiesasgravity-typequaywalls,sheetpilequaywalls,quaywallswithrelievingplatform,andcellular-bulkheadtypequaywalls.

② Detachedpiers,dolphins,piledpiers,open-typewharvesareclassifiedintotwotypes:oneisthetypewitharigidstructureandtheotherwithaflexiblestructure.Thereisnoenergyabsorptionduetothedeformationoftheformertypefacilities.Ontheotherhand,thereisenergyabsorptionduetothedeformationofthelattertypefacilitiesbecauseoftheirflexibility,andtheenergyabsorptionisgenerallygivenbyequation(9.2.1).

(9.2.1)

where E1 :absorptionenergyduetothedeformationofmainbodyofmooringfacility(Nm) Y1 :maximumdisplacementofmainbodyofmooringfacility(m) g(y1) :characteristicsofreactionforcecausedbythedeformationofmainbodyofmooringfacility

(N)

Flexiblefacilitiesarenormallymadeofsteelmaterials. Since theirperformancerequiredfor theactionscaused by the berthing forces of ships is serviceability and the responses are within an elastic limit, therelationshipbetweenthedeflectionandreactionforcesofsuchmooringfacilitiesislinear.Whenamooringfacilityanditsfendersystemscompletelyabsorbtheberthingenergyofaship,theabsorptionenergyofthemooringfacilityisexpressedbyequation(9.2.2),whereCdenotesthespringconstantofthequaywall.

(9.2.2)

Thesameshallapplytotheabsorptionenergyofpiletypefenders.

③ Thesinglepilestructure(SPS)isatypeofstructurethatabsorbstheberthingenergybythedeformationofpilesmadeofhightensilestrengthsteel.IntheperformanceverificationofberthingdolphinsthatuseSPS,itispreferabletoevaluatetheamountofenergyabsorptionconsideringtheresidualdeformationofthepilesduetorepeatedberthing.AsshowninFig. 9.2.3,theamountofenergyabsorbedbypilesiscalculatedfromthedisplacementobtainedbysubtractingtheresidualdisplacementfromtheloadingpointdisplacement.8)Theloadingpointdisplacementwiththeresidualdisplacementiscalculatedfromequation(9.2.3).

(9.2.3)where

ytop :displacementofthepileatloadingpoint,consideringresidualdisplacement(m) y0 :piledisplacementatseabottomatthetimeofinitialloading(m) i0 :piledeflectionangleatseabottomatthetimeofinitialloading(rad) P :horizontalload(N) h :heightofloadingpoint(m) EI :flexualrigidityofpile(Nm2)A1, A2:influencecoefficientsduetorepeatedloading

The timeof initial loading indicates the situationwhere the largest load is initially appliedamong thepastloadings.

Page 204: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–879–

Load

Load

Absorption energy

Loading point displacement

(a) Absorption energy at the time of initial loading (b) Absorption energy at the time of ship berthing

Residual displacementLoading point displacement

Absorption energy

Fig. 9.2.3 Absorption Energy by Deformation of Piles

Thevaluesof influencecoefficientsdue to repeated loadingbasedon the resultofan in situ full-scaleloadingexperiment9)andamodeltest10)areproposedinTable 9.2.1.

Table 9.2.1 Values of Influence Coefficients due to Repeated Loading 8)

Forobtainingthemaximumdisplacement

Forobtainingtheenergyabsorbedbythedeformationofpiles

Forobtainingtheresidualdisplacement

A1 1.4 0.4 0.8

A2 1.2 0.6 0.5

(2)CalculationoftheAbsorptionEnergybyFendersInthecasesofrigidstructureswherethereisnoenergyabsorptionduetothedeformationofthemainbodiesofmooringfacilities,theabsorptionenergybyfendersmaybecalculatedfromthefollowingequation,wherethesubscriptdindicatesdesignvalue:

(9.2.4)

where Es :absorptionenergybyfender(kNm) φ :manufacturingerroroffender(tolerance) Ecat :specifiedvalueoftheabsorptionenergybyfender(kNm) Ef :berthingenergyofship(kNm)

ThecharacteristicvalueoftheberthingenergyofashipEfkcanbeexpressedbyequation(2.2.1)inPart II, Chapter 8, 2.2 Actions Caused by Ship Berthing.Sincethepartialfactorsusedforcalculatingtheberthingenergyofashiparesetat1.0forallparameters,thedesignvalueoftheberthingenergyoftheshipEfdisequaltoitscharacteristicvalueEfk.

(3)EnergyAbsorptionbyFendersTherearevarioustypesofrubberfenderssuchasV-shaped,circularhollow,andrectangularhollow.Eachofthesetypesdiffersfromothersintermsoftherelationshipbetweenthereactionforceanddeformationaswellastheenergyabsorptionrate.Manufacturers’catalogsshowdiagramsoftheamountofenergyabsorptionversusthedeformation,andthoseofthereactionforceversusthedeformationforeachtypeoffenders.Itisconvenienttousethesediagrams. Constant-reactionforcetypefenderssuchasV-shapedfendersarecharacterizedwithlowreactionforcesandhighenergyabsorptionrates.Itshouldbeborneinmind,however,thatthetotalreactionforcetothemooringfacilitymaybecomelargewhenashipcomesincontactwithtwotothreefenderssimultaneously.Thisisbecauseofthefactthatthereactionforcelevelrisesnearlytothemaximumvaluewhentheenergyabsorptionratereachesto1/3ofthedesigncapacityoneachfender.

(4)ConsiderationofVariationinCharacteristicsofRubberFendersFactors that cause variations in characteristics of fenders include the product deviations from the standards,

Page 205: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–880–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

aginginquality,dynamiccharacteristicsi.e.velocity-dependentcharacteristics,creepcharacteristics,repetitioncharacteristics i.e. compression frequency-dependentcharacteristics,obliquecompressioncharacteristics,andthermalcharacteristics.Inthefendersforfloatingstructures,thesefactorsareimportantintheevaluationofthesafetyofthemooringequipment.Inthefendersformooringfacilities,itisnecessarytoverifytheperformanceofthefendersinconsiderationoftheproductdeviations,dynamiccharacteristics,obliquecompressioncharacteristicsand thermalcharacteristics. Forexample,when theproductdeviation(tolerance)of thefender is±10%, it ispreferabletoemploytheenergyabsorptioncharacteristicsloweredby10%fromthecatalogvalueandtousethereactionforcecharacteristicsraisedby10%fromthecatalogvalueintheperformanceverificationofthefendersandthemooringfacility.Withregardtodynamiccharacteristics,itispreferabletoconfirmthatthereactionforceofthefenderatthetimeofshipberthingshallnotexceedthestandardvalueshowninthecataloginconsiderationoftheberthingvelocityofships.Itshouldalsobeborneinmindthatthefenderreactionforcebecomeshigherinalow-temperatureenvironmentthaninthestandardtemperatureenvironment. It has been recommended by a working group of the International Navigation Association (PIANC) toperformcorrectionontheabsorptionenergyandreactionforcebyapplyingcorrectioncoefficientsofvelocityandtemperatureintheselectionoffender,inordertoreflectchangesincharacteristicsduetotheenvironmentinwhichthefenderisusedsuchastheship’sberthingvelocityandthetemperature11).Theguideline12)fortheselectionoffendersbyusingthesecorrectioncoefficientsispublished.Actualvaluesofthesecorrectioncoefficientsshouldbecheckedwith themanufacturer,as theyvarydependingon theberthingvelocity, temperature,andkindofrubberusedforthefender.Itshouldalsobeborneinmindthatthereactionforceexertsonthequaywallmaybecomelargerwhenasmallshipisberthingatahighberthingvelocitythanwhenalargeshipisberthingatalowberthingvelocity.

(5)Theberthingforcesofshipsmaycauseapermanentdeformationofshiphull,andhencethetypeoffendersystemsshouldbecarefullyselected.13),14)Itispreferabletofixcontactpanelsinfrontoffendersasnecessarytoreduceloadsonshiphull. Sincedamagetoshiphullisaffectedbynotonlythemagnitudeofberthingforcebutalsostructuralstrengthoftheshiphull,itispreferabletowidenthecontactareaofeachfendersystemsothatthefendercontactstworibsoftheshiphullatthesametime.Nagasawa15)assumedthatactionsatthemaximumberthingforcesdistributedoverasufficientlywideareaareuniformovermorethantheribspace.Heproposedtocalculatethecriticalberthingforcescausingplastichingestoformatbothendsofshiphullplatebetweenribsassumedasfixedcondition.Thereport16)ofPIANC’sFenderCommitteeincludestheresultsofanalyzingtheeffectsoffenderreactionforcesonthestrengthsofshiphullstructures.Kawakamietal.13)performedthestressanalysisoftheshiphullstructuresonwhichthereactionforcesoffendersystemswereacted.Theresultsindicatethatwhenafendersystemcontactstwoormoreribsatthesametime,thestressesexertedontheshiphullandtheribsarenotgreaterthantheyieldpointsifthesurfacepressureis290kN/m2orless.

(6)Afendersystemshouldalsobesafeagainsttheshearingforceduetothefrictionbetweenthefenderandtheshiphullgeneratedbyobliqueberthingofships.ThisforcecanbenormallycalculatedbytheequationsuggestedbyVascoCosta17).Whenashipisberthingtothequaywallatanangleof6to14ºwiththefacelineoftheberth,thisforcebecomes10%to25%oftheberthingforceoftheship.

Page 206: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–881–

9.3 Lighting FacilitiesPublic Notice Performance Criteria of Lighting Facilities

Article 61 Theperformancecriterionoflightingfacilitiesshallbesuchthatappropriatelightingfacilitiesareinstalledsoastoenablethesafeandsmoothutilizationofthemooringfacilitieswherecargohandlingworks,berthingand unberthing of ships, and going-in and going-out of people are taking place in consideration of theutilizationconditionsofthemooringfacilitiesconcerned.

[Technical Note]

9.3.1 Fundamentals of Performance Verification

(1)Appropriatelightingfacilitiesshallbeprovidedatthewharvesandrelatedareaswherecargohandlingworkssuchasloading,unloadingandtransfer,berthing/leavingofships,andusebypassengersandothersarecarriedoutatnight,inconsiderationoftheuseconditionsoftheconcernedmooringfacilities.

(2)Thedescriptionheremaybeappliedtotheinstallation,improvement,andmaintenanceofthelightingfacilitiesatthewharveswherecargohandling,berthingandleaving,passengeruse,etc.areperformedatnight.

(3)Manylightingfacilitiesaredesignedthesedaystohighlightthenightviewsofstructures,parks,watersides,etc.inurbanfringesandtouristsitesinparticulartomeetsocialneedsforthelightingandotherfacilitiesinportfacilities.Inthesecases,notonlyilluminationbutalsolightcolorsandcolorrenderingpropertiesareneededtogivepeoplepleasure,familiarity,andpeaceofmind.Ontheotherhand,aslightingfacilitieshavecomeintowideuse,ithasbecomeessentialtoconsiderattheadverseeffectsoflightingoflightingonthesurroundingsandenergysaving.Theperformanceverificationoflightingfacilitiesshouldfullytakeaccountofthesedemands.Itispreferablefor theplaceswherepeople interactsuchasamenity-orientedrevetments,marinas,parks,promenades,etc. toproperlyexaminelightingfunctionsandindividuallytakenecessarymeasuressuitedtoindividualfacilities.

9.3.2 Standard Intensity of Illumination

[1] General

(1)Standardintensityofilluminationisanaveragehorizontal-planeilluminationanddefinedastheminimumvaluetosafelyandeffectivelyusethefacilitiesconcerned.Theobjectivegenerallyusedindesigninglightingfacilitiesisillumination.Thehorizontalilluminationmeanstheilluminationofafloorsurfaceoragroundsurface.Theaveragehorizontalilluminationistheaveragevalue.

(2)The illumination of lighting facilities shall be properly determined to enable the safe and smooth use of thefacilitiesconcerned,dependingonthevarietiesandsystemsofwork.

(3)TheInternationalCommissiononIllumination(CIE)hasbeenexaminingthecriteriaofilluminationandpublishedtheLighting Guideforoutdoorworkareas.Thecriteriaincludetherecommendationsfortheregulationvaluesoftheuniformityratiosofilluminationandglareaswellasaverageillumination.

[2] Standard Intensity of Illumination for Outdoor Lighting

ThevaluesshowninTable 9.3.1maybeusedfor thestandardintensityofilluminationofeachtypeofoutdoorfacilities.

Page 207: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–882–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 9.3.1 Standard Intensity of Illumination for Outdoor Lighting

Facility Standardintensityofillumination(lx)

Wharf

Apron

Passengerfacilities,vehiclefacilities,mooringfacilitiesforpleasureboats,generalcargoberths,containerberths 50Slipwaysforpleasureboats,apronsforhandlingdangerousgoodsusingpipelines 30

Simpleworkapronsusingpipelinesandbeltconveyors 20

Yard Containerstoragespaces,generalcargostoragespaces,cargohandlingyards,cargotransferyards 20

Path

Passengergates,vehiclegates 75

Passengerpaths,vehiclepaths 50

Otherpaths 20

Security Allfacilities 1–5

RoadandPark

RoadMainroads 20

Otherroads 10

ParkinglotForferries 20

Others 10Park

Greenspace Gardenpaths 3

[3] Standard Intensity of Illumination for Indoor Lighting

Thevalues shown inTable 9.3.2 can be used for the standard intensity of illumination of each typeof indoorfacilities.

Table 9.3.2 Standard Intensity of Illumination of Indoor Lighting

Facility Standardintensityofillumination(lx)

PassengerterminalWaitingrooms 300

Passengerboardingpathsandgates 100

ShedandWarehouse

Cargohandlingspacesforfishingboatberths 200

Containerfreightstations,shedsexclusiveuseofcars 100

Roughworkshedsandwarehouses 70

Othershedsandwarehouses 50

9.3.3 Selection of Light Sources

(1)Lightsourceforwharflightingispreferablyselectedconsideringthefollowingrequirements:

① Thelightsourceshallbeofahighefficiencyandlongservicelife.

② Thelightsourceshallbestableagainstthevariationsofambienttemperature.

③ Thelightsourceshallprovideagoodlightcolorandgoodcolorrenderingperformance.

④ Thetimeofthestabilizationofthelightafterturning-onshallbeshort.

(2)Anylightsourceotherthanalightbulbshallbeusedtogetherwithanappropriatestabilizer.

Page 208: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–883–

9.3.4 Selection of Apparatuses

[1] Outdoor Lighting

Itispreferabletoselectlightingforoutdoorilluminationinconsiderationofthefollowingrequirements:

① Lightingequipmentshallberainproof.Whenalargeamountofflammabledangerousgoodsistobehandledintheproximityofthelightingequipment,lightingequipmentshallbeexplosion-proof.

② Materialsforthelamp,reflectorsurface,andilluminationcovershallbeofgoodqualityandhavehighdurabilityandgoodresistanceagainstdeteriorationandcorrosion.

③ Socketsshallbeofappropriatetypefortherespectivelightsource.

④ Stabilizersandtheinternalwiringshallbecapableofwithstandingtheexpectedincreaseinthetemperatureoftheequipment.

⑤ Lightingequipmentshallbeofhigh-efficiencytype.

⑥ Luminousintensitydistributionshallbecontrolledappropriatelyinconsiderationoftheuseoftheequipment.

[2] Indoor Lighting

Lightingforindoorilluminationshallbeselectedinconsiderationofthefollowingrequirements:

① Luminousintensitydistributionshallbecontrolledappropriatelyinconsiderationoftheuseoftheequipment.

② Socketsshallbeofappropriatetypefortherespectivelightsource.

③ Stabilizersandtheinternalwiringshallbecapableofwithstandingtheexpectedincreaseinthetemperatureoftheequipment.

④ Lightingequipmentshallbeofhigh-efficiencytype.

9.3.5 Performance Verification

Inthedesigningoflighting,thelayoutoflightingfacilitiesshallbedeterminedconsideringtheitemslistedbelowforthelightingmethod,lightsource,andequipmentselected,inconsiderationofthecharacteristicsoftheareawheretheequipmentistobeinstalled.Thoseequipmentwhoseinfluenceareaextendstotheseashallbedeployedinsuchawaythattheydonothinderthenavigationofnearbyships.

① Standardintensityofillumination

② Distributionofintensityofillumination

③ Glare

④ Adverseeffectsoflightandenergyconservationconsiderations

⑤ Lightcolorandcolorrenderingperformance

9.3.6 Maintenance

[1] Inspection

(1) Inspectionshallbeperiodicallyperformedonthefollowing:

① Lightingstatus

② Stainanddamagetoapparatuses

③ Flakingofpaint

(2)Illuminationintensityshouldbemeasuredatseveralselectedpointsinthetypicalplacesofeachfacility.

Page 209: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–884–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

9.4 Lifesaving FacilitiesPublic NoticePerformance Criterion of Lifesaving Equipment

Article 62 Theperformance criteriaof lifesaving equipment shall be such that appropriate lifesaving equipment isprovidedand readily available asnecessary so as to secure the safetyofhumanbeingson themooringfacilitiestoserveforpassengershipswiththegrosstonnagebeingequaltoorlargerthan500tons.

9.5 CurbingsPublic NoticePerformance Criteria of Curbing

Article 63 Theperformancecriteriaofcurbingshallbeasspecifiedinthesubsequentitems:(1)Curbing shallbe installedat appropriate locations andprovidedwith thedimensionsnecessary for

ensuring the safe utilization of themooring facilitieswhile not hindering shipmooring and cargohandlinginconsiderationofthestructuretypesandtheutilizationconditionsofthemooringfacilitiesconcerned.

(2)Theriskofimpairingtheintegrityofcurbingshallbeequaltoorlessthanthethresholdlevelunderthevariableactionsituationinwhichthedominantactioniscollisionofvehicles.

[Commentary]

(1)PerformanceCriteriaofCurbings①StabilityofFacilities(serviceability)

Attached Table 56 shows the setting on the performance criteria and design situations exceptaccidentalsituationsofcurbings.

Attached Table 56 Setting on the Performance Criteria and Design Situations (excluding accidental situations) of Curbings

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-dominating

action

33 1 2 63 1 2 Serviceability Variable Carcrash – Soundnessofcurbing –

[Technical Note]

9.5.1 Fundamentals of Performance Verification

Thestructure,shape,layout,andmaterialsofcurbingshallbesetproperlyinsuchawaythatthesafetyofusersisensuredandcargohandlingworkisnothindered,inconsiderationofthestructuralcharacteristicsandtheconditionsofuseofthemooringfacilities.

9.5.2 Performance Verification

Thedistanceintervalsbetweencurbingsneedtobeshorterthanthewheeltreadsofthecargohandlingequipmentandvehicles.Theymaybesetatabout30cmingeneraltodrainrainwaterfromtheaprons.Itispreferable,however,tosettheintervalsofcurbings,whichareinstalledatbothsideofmooringposts,at1.5-2.5m.Inthecaseswherevehiclesarenotexpectedtopassbecausefencesorotherbarriersaresetuptoprohibitthepassageofvehicles,thereisnoneedtoinstallcurbings.

Page 210: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–885–

9.6 Vehicle Loading FacilitiesPublic NoticePerformance Criteria of Vehicle Ramps

Article 64 The performance criteria of vehicle ramps shall be such that they satisfy the necessary specificationscorrespondingtothedimensionsandcharacteristicsofvehicleswhichusetheramps.

[Technical Note]

(1)ApropervaluenotlessthanthosegiveninTable 9.6.1maybeusedasthewidthsofvehicleloadingfacilities.Regardingmovable bridges, it is preferable, however, to properly take account of the characteristics of theirstructures.Smallfacilitiesmeansloadingfacilitiesexclusivelyusedforsmallandlightvehicles.

(2)ApropervaluenotmorethanthosegiveninTable 9.6.1maybeusedastheslopesofvehicleloadingfacilities.Regarding extension lengths of the horizontal parts, 7m and 4m are used for general type facility and smallfacility,respectively.Itispreferabletoproperlysettheslopesofthefacilitiesfrequentlyusedforloadinglargecontainercars,takingaccountofthesafetyandconditionsofuseoflargecontainercarloading.

(3)TheradiiofthecenterlanesofcurvedsectionsmayrefertotheEnforcement Regulations for Road Structures.Aproperradiusof15mormoremaybegenerallyusedforthecurveradii.24)

(4)Therangeofverticalmovementdistanceofthemovablepartofsmallandgeneralfacilitiesisfrequentlydeterminedbyadding1mtotidalrange.

(5)It ispreferable toproperly install signsandmarksdependingon thecharacteristicsanduseconditionsof thestructuresofthefacilitiesconcerned.

Table 9.6.1 Widths and Gradient of Vehicle Loading Facilities

Typeoffacility Numberoflanes

Width(m)

Gradient(%)Fixedpart Movablepart

Facilityexclusivelyusedforloadingvehicleswithawidthofnotmorethan1.7m(smallfacility)

1 3.0012 17

2 5.00

Facilityexclusivelyusedforloading 1 3.7510 12

Vehicleswithawidthofnotmorethan2.5m 2 6.50

Facilityfrequentlyusedforloadinglargecontainercars1 4.00

– –2 7.00

Page 211: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–886–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

9.7 Water Supply FacilitiesPublic NoticePerformance Criteria of Water Supply Facilities

Article 65 Theprovisions inArticle 89 shall be applied to theperformance criteria ofwater supply facilitieswithmodificationasnecessary.

9.8 Drainage FacilitiesPublic NoticePerformance Criteria of Drainage Facilities

Article 66 The performance criteria of the drainage facilities shall be such that they are installed at appropriatelocationsandprovidedwiththenecessaryfunctionsanddimensionsinconsiderationofthequalityofwatertobedrainedatandthestructuralcharacteristicsofthemooringfacilitiesaswellasandtheirutilizationconditions.

[Technical Note]

Mooringfacilitiesshallbeprovidedwithdrainagefacilitiessuchasdrainsanddrainageholes,asnecessary,takingaccount of the drainage quality and the structural characteristics and conditions of use of themooring facilitiesconcerned.

9.9 Fueling Facilities and Electric Power Supply FacilitiesPublic NoticePerformance Criteria of Fueling Facilities and Electric Power Supply Facilities

Article 67 Theperformancecriteriaoffuelingfacilitiesandelectricpowersupplyfacilitiesshallbeasspecifiedinthesubsequentitems:(1)Thefuelingfacilitiesandelectricpowersupplyfacilitiesshallbeinstalledatappropriatelocationsand

providedwiththerequiredfuelingcapacityorelectricpowersupplycapacitysoastoenablethesafeandsmoothfuelingandelectricpowersupply toshipsandothers inconsiderationof thestructuralcharacteristicsandtheutilizationconditionsthemooringfacilitiesconcerned.

(2)Inthecaseswhereoilpipesarelaidunderpavements,theriskofimpairingtheintegrityofoilpipesshallbeequaltoorlessthanathresholdlevelunderthevariableactionsituationinwhichthedominantactionisimposedload.

[Commentary]

(1)PerformanceCriteriaofFuelingPipes①StabilityofFuelingPipes(serviceability)

Attached Table 57 shows the setting on the performance criteria and design situations (exceptaccidentalsituations)offuelingpipes.

Attached Table 57 Setting on the Performance Criteria and Design Situations (excluding accidental situations) of Fueling Pipes

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionsNon-dominating

actions

33 1 2 67 1 2 Serviceability Variable Surcharge – Soundnessoffuelingpipes

Page 212: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–887–

[Technical Note]

(1)Amooringfacilityshallbeprovided,asnecessary,withfuelingand/orelectricpowersupplyfacilitiesthatallowsafeandefficientfuelingandpowerfeeding,inconsiderationofthesizeofshipstomooratthefacility,situationofthecargohandling,andstructuralcharacteristicsofthemooringfacility.

(2)Fueling and electric power supply facilities shall safely and efficiently supply a required quantitywithin themooringtimeofshipswithoutdisturbingcargohandlingwork,consideringthescalesoftheshipsatberth.

9.10 Passenger Boarding FacilitiesPublic NoticePerformance Criteria of Passenger Boarding Facilities

Article 68 The provisions inArticles 91 or 92 shall be applied to the performance criteria of passenger boardingfacilitieswithmodificationasnecessary.

9.11 Fences, Doors, Ropes, etc.Public NoticePerformance Criteria of Fences, Doors, and Ropes

Article 69 Theperformancecriteriaoffences,doors,ropes,andothersshallbesuchthattheyareinstalledatappropriatelocationsasnecessaryandprovidedwiththenecessarydimensionssoastosecurethesafetyofpassengers,to reserve the space forpassengerpaths, toprevent the intrusionofvehicles, andothers in themooringfacilitiesandtherelatedfacilities.

9.12 Monitoring EquipmentPublic NoticePerformance Criteria of Monitoring Equipment

Article 70 Theperformancecriteriaofmonitoringequipmentshallbeasspecifiedinthesubsequentitems:(1)Themonitoring equipment shall be installed at appropriate locations as necessary and satisfy the

necessaryspecificationssoas tosecurethesafetyofpassengers, tomaintain thepublicsecurity, topreventtheintrusionofvehicles,andothersinthemooringfacilitiesandtherelatedfacilities.

(2)Themonitoringequipmentshallbeprovidedwiththefunctionsnecessaryforpreservingthemonitoringrecords.

[Technical Note]

[1] Fundamentals of Performance Verification

(1) InternationalportfacilitiessuchasquaywallsandbasinsusedbyinternationalshipsshallprovideandmaintainequipmenttoensuresecurityincompliancewiththeLaw on Ensuring the Security of International Ships and Port Facilities (Law No. 31 of 2004). Internationalshipsmeanthepassengershipsengagedininternationalvoyage,i.e.voyagefromaportinacountrytoaportinanothercountry,andthecargoshipswithagrosstonnageof500tonsormore.

(2)Monitoringequipmentneedstobeinstalledtoenablemonitoringinrestrictedareasconsideringtheconditionsofuseofthemooringfacilitiesconcernedandnaturalconditionsinitsvicinities.

(3)Monitoringequipmentmeansmonitoringcamerasandrelatedequipment.

Page 213: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–888–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

9.13 Signs Public NoticePerformance Criteria of Signs

Article 71 Theperformancecriteriaofsignsshallbesuchthattheyareinstalledatappropriatelocationsasnecessaryandsatisfythespecificationsrequiredforindicatingthelocationsofvariousfacilities,guidingusers,andwarningpossibledangers,andotherswiththeobjectivesofsecuringthesafetyandconvenienceofusersandpreventingaccidentsanddisasters.

[Technical Note]

9.13.1 Placement of Signs and Marks

(1) Inordertoensurethesafetyofportusersandconvenientuseofports,itispreferabletoplacesignsandmarksinthefollowingcases:

① When it isnecessary toensure thatportuserscouldarriveat theirdestinations smoothlyandsafelyand toprovideguideboardsforthelocationofportfacilities.

② Whenitisnecessarytowarnportusersaboutdangersassociatedwiththeuseoffacilitiesandcargohandlingworks.

③ Whenit isnecessarytoprovideinstructionstoportusersaboutmethodstousefacilitiesandguidethemtoensuresafeandsmoothuseoffacilities.

④ Whenitisnecessarytoregulatethebehaviorofportuserstoensuretheirsafetyandsmoothactivities,topreventdisasterssuchasfireandfallingaccident,andtopreventenvironmentalpollutionbylittering.

9.13.2 Forms and Installation Sites of Signs

Theformsofsignsshallbesuchthatthoseusedforordinaryroads.Itispreferabletoproperlydeterminethesizes,colors,andcharactersizessothatportuserscaneasilyrecognizethem.

Page 214: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–889–

9.14 ApronsPublic NoticePerformance Criteria of Aprons

Article 72 Theperformancecriteriaofapronsshallbeasspecifiedinthesubsequentitems:(1)Aprons shall be provided with the necessary dimensions for enabling the safe and smooth cargo

handlingworks.(2)Thesurfaceofapronsshallbeprovidedwiththegradientnecessaryfordrainingrainwaterandother

surfacewater.(3)Aprons shall be pavedwith appropriatematerials in consideration of imposed load and the usage

conditionsofthemooringfacilities.(4)Theriskofincurringdamagetothepavementtotheextentofaffectingcargohandlingworksshallbe

equaltoorlessthanathresholdlevelunderthevariableactionsituationinwhichthedominantactionisimposedload.

[Commentary]

(1)PerformanceCriteriaofAprons①Width(usability)

Apronwidthsshallbeproperlysettoallowsafeandsmoothcargohandling.②Gradient(usability)

Gradientofapronshallbeproperlysettodrainwaterandothersurfacewaters.③PavementMaterials(usability)

Apronsshallbepavedwithpropermaterialstakingaccountofthesurchargesandtheconditionsofuseofmooringfacilities.

④ Pavements(serviceability)Attached Table 58 shows the setting on the performance criteria and design situations (exceptaccidentalsituations)ofapronpavements.

Attached Table 58 Setting on the Performance Criteria and Design Situations (excluding accidental situations) of Apron Pavements

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-dominating

action

33 1 2 72 1 4 Serviceability Variable Surcharge – Soundnessofpavement –

[Technical Note]

9.14.1 Specifications of Aprons

[1] Apron Widths

(1)TheapronwidthsofordinarymooringfacilitiesmaygenerallyrefertothevaluesshowninTable 9.14.1.

Table 9.14.1 Apron Widths

Berthwaterdepth(m) Apronwidth(m)Lessthan4.5

4.5ormoreandlessthan7.57.5ormore

101520

Page 215: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–890–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)Thedeterminationofapronwidthsofgeneralcargowharvesshallnormallytakeaccountofthespacesforcranes,temporarystorage,cargohandling,andtrafficpaths.Itispreferabletosetthewidthsatnotlessthan15-20mwhenshedsareinstalledatthebackandforkliftsareused,andnotlessthan10-15mwhenroadsareatthebackandopenstorageyardsareintheimmediatevicinityandtrucksareallowedtodriveintotheapronsforcargohandlingoperations.

[2] Gradient of Apron

(1)Apronsarewherecargohandlingisperformedandcloselyrelatedtotheconditionsofcargohandlingoperationatthebackyards,andhencecrossslopesneedtobeproperlydeterminedtakingtheseconditionsintoconsideration.

(2)Apronsnormallyhaveadownslopeof1-2%towardthesea.Shallowdraftwharveshavesteepslopes.Apronsin snowyplaces oftenhave relatively steep slopes. In some cases, reverse slopes are useddependingon theconditionsofuseofapronsandenvironmentalconsideration.

(3)Sincethesettlementofbackfillingmaycauseslopestobereversed,constructionshouldbecarefullyperformed.

[3] Countermeasures for Apron Settlement

(1)Foraprons,appropriatecountermeasuresneedtobetakentopreventexcessivesettlementduetosandwashing-outorconsolidationofthelowerlandfillmaterialthatwouldhindercargohandlingoperationandthetrafficofvehicles.

(2)Ingeneral,thematerialbelowthesubgradeofapronpavementissubjecttosettlementduetoconsolidation.Thereisalsoariskofsettlementduetowashing-outofthelandfillmaterialusedaspartofthelayersbelowthesubgradethroughjointsectionsofquaywall,orcompressionofthebackfillingmaterialbehindthequaywall.Therearemanycasesof the failureofpavement thatare thought tobeattributablemainly to these typesof settlement.Therefore,itispreferabletoconsidermeasuresforpreventingthesetypesofsettlementsuchastheprovisionofcountermeasureagainstsandwashing-outandthecompactionofthebackfillingmaterialbehindthequaywall.

9.14.2 Performance Verification

[1] General

The typesof apronpavements shall beproperly selected in a comprehensive judgment takingaccountof the soilpropertiesbelowthesubgrade,constructability,surroundingpavementconditions,cargohandlingmethods,economicefficiencies,andmaintenance.

[2] Fundamentals of Performance Verification

(1)Theperformanceverificationof apronpavements shall be such that pavement structures are stableunder thesurchargesbycargohandlingvehiclesandrelatedequipment.

(2)Fig. 9.14.1showsanexampleoftheperformanceverificationproceduresofapronpavements.

Verification of pavement stability

Variable states on surcharges

Setting of design conditions

Performance verificationPerformance verificationEvaluation of actions

Assumption of pavement section

Determination of pavement section

Fig. 9.14.1 Example of Procedures for the Performance Verification of Apron Pavements

[3] Actions

Page 216: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–891–

(1)Actions tobe considered in theperformanceverificationof apronpavements are generally the surchargesbytrucks,truckcranes,roughterraincranes,allterraincranes,forklifttrucks,straddlecarriers,etc.,dependingonthetypesofcargoesandcargohandlingmethods.Here,truckcranes,roughterraincranes,andallterraincranesaredenotedasthemovablecranes.Theperformanceverificationofapronpavementsnormallytakesaccountofthegroundcontactareasonwhichsurchargesareapplied,settingthemaximumsurchargesandthegroundcontactpressurestomakethepavementthicknessbecomemaximum.

(2)ThecharacteristicvaluesofthesurchargesusedfortheverificationofapronpavementsmayrefertoTable 9.14.2.27)Outriggersareappliedtothecasesofmovablecranes,whereawheelmeansasinglewheelordualwheelsi.e.twowheelsarelaterallyconnected.Inthecaseswheretheloadsofactuallyusedcargohandlingequipmentcanbepreciselyset,thistablemaynotbeused.

Page 217: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–892–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 9.14.2 Characteristic Values of the Actions considered in the Performance Verification of Apron Pavements

Typeofaction(cargohandlingequipmentload)

Maximumloadofanoutriggerorawheel

(kN)

Groundcontactareaofanoutriggerora

wheel(cm2)Groundcontactpressure(N/cm2)

Movablecranetruckcrane,roughterraincrane,allterraincrane

Type20Type25Type30Type40Type50Type80Type100Type120Type150

2202603103904706908309701170

1,2501,3001,4001,6501,9002,5503,0003,3503,900

176200221236247271277290300

Truck 25tonclass 100 1,000 100Tractortrailer for20ft

for40ft5050

1,0001,000

5050

Forklifttruck 2t3.5t6t10t15t20t25t35t

254575125185245305425

350600

1,0001,5502,2502,9503,6004,950

7175758182838586

Straddlecarrier 125 1,550 81

[4] Performance Verification for Concrete Pavements

(1)ProceduresofPerformanceVerification

①Fig. 9.14.2showsanexampleoftheproceduresoftheperformanceverificationforconcretepavements.

② Itispreferabletoperformtheverificationofconcretepavementsbothonbasecoursethickness,andconcreteslabthicknessconsidering,cyclicnumbersofactions,conditionsofthebearingcapacitiesofroadbeds.

Page 218: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–893–

Assumption of concrete slab thickness

Verification of concrete slab thickness

Consideration of structural details

Variable states on surcharges

Setting of design conditions

Performance verificationPerformance verification

Evaluation of actions

Determination of pavement section

Verification of base course thickness

Fig. 9.14.2 Example of the Procedures of Performance Verification for Concrete Pavements

(2)DesignConditions

① Thedesignconditionsconsideringtheperformanceverificationaregenerallyasfollows:

(a) Designworkinglife(b)ConditionsofAction(c) Cyclicnumbersofactions(d)Subgradebearingcapacity(e)Materialsused

② DesignworkinglifeThedesignworkinglifeofconcretepavementsshallbeproperlysetconsideringtheconditionsofuseandotherrelatedconditionsofmooringfacilities.Thedesignworkinglifeofconcretepavementsusedfortheapronsofquaywallsandotherfacilitiesmaybegenerallysetat20years.

③ ActionconditionsThedesignactionconditions are those requiring themaximumconcrete slab thickness among the typesofactionstobeconsidered.ThecharacteristicvaluesofactionsmaybesetreferringtoTable 9.14.3.Thepartialfactorsusedforcalculatingdesignvaluesmaybesetat1.0.The“Actionclassification”inTable 9.14.3istheclassificationneededwhenusing(3) ② (d) Empirical method of setting concrete slab thickness.

Page 219: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–894–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 9.14.3 Reference Values for the Action Conditions of Concrete Pavements used for the Aprons of Quaywalls and Other Facilities

Actionclassification Typeofaction Action(kN) Groundcontactradius(cm)

CP1Forklifttruck 2t 25 10.6Tractortrailer for20ft,40ft 50 17.8Forklifttruck 3.5t 45 13.8

CP2 Forklifttruck 6t 75 17.8

CP3

Truck 25tonclass 100 17.8Forklifttruck 10t 125 22.2Straddlecarrier 125 22.2Forklifttruck 15t 185 26.8

CP4

Mobilecrane(truckcrane,roughterraincrane,allterraincrane)

Type20 220 19.9

Forklifttruck 20t 245 30.7Mobilecrane(truckcrane,roughterraincrane,allterraincrane)

Type25 260 20.3

④ RoadbedbearingcapacityTheperformanceverificationofconcretepavementsmaysetthesubgradebearingcapacityusingthedesignbearingcapacitycoefficientK30.

(a) ThedesignbearingcapacitycoefficientK30of the subgradecanbeobtained from the resultsof theplateloadingtestspecified.ThedesignbearingcapacitycoefficientK30isgenerallysetasthevaluecorrespondingtoasettlementof0.125cm.Itispreferabletoperformplateloadingtestsatoneortwolocationsper50minthefacelinedirectionsofquaywalls.

(b)WhensettingthedesignbearingcapacitycoefficientK30inanareaofsubgrademadeofthesamematerials,itispreferabletocalculatethevaluesofK30fromequation(9.14.1)usingthemeasuredvaluesofthreeormorepointsexcludingextremevalues.

(BearingcapacitycoefficientK30ofsubgrade)=(Averageofbearingcapacitycoefficientsofmultiplepoints)

(9.14.1)where

C :coefficientusedforcalculatingbearingcapacitycoefficients.ThevaluesinTable 9.14.4maybeused.

Table 9.14.4 Reference Values for the Coefficient C

Numberoftestpoints(n) 3 4 5 6 7 8 9 10ormore

C 1.91 2.24 2.48 2.67 2.83 2.96 3.08 3.18

(c)When the subgrade has already been constructed, the bearing capacity coefficient should be obtained byperformingaplateloadtestonthesubgradeattheconditionofmaximummoisturecontent. Whenitisnotpossibletoconductaplateloadingtestinsuchcondition,thebearingcapacitycoefficientshouldbeobtainedbycorrectingthevalueusingequation(9.14.2).TheCBRvaluesinequationshouldbeobtainedfromundisturbedsoilsamples.

Page 220: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–895–

Bearingcapacitycoefficientofsubgrade(correctedvalue)=Bearingcapacitycoefficientcalculatedfrommeasuredvalue

(9.14.2)

⑤ CalculationofthecyclicnumbersofactionsThefollowingmethodsareusedforcalculatingthecyclicnumbersofloadingduringdesignworkinglife:

(a) Toestimatethecyclicnumbersfromthepastrecordsofsimilar-scaleports

(b)ToestimatethecyclicnumbersfromthecargohandlingvolumesoftheportsconcernedThemethod27)(b)toestimatethecyclicnumbersfromthecargohandlingvolumesoftheportsmayrefertothecyclicnumbercalculationmethod30)toverifytheperformanceofthefatiguelimitstatesofthesuperstructuresofpiledpiersproposedbyNagaoetal.

(3)PerformanceVerification

① Verificationofbasecoursethickness

(a) Itispreferabletoprepareatestbasecourseandsetbasecoursethicknessatvaluewhichmakesthebearingcapacitycoefficientequalto200N/cm3.Inthecaseswherethepreparationofatestbasecourseisdifficult,thebasecoursethicknessmaybedirectlysetusingthedesigncurvesshowninFig. 9.14.3.Theminimumbasecoursethicknessisgenerallysetat15cm.

60

06

40

20

Crusher run etc.Crusher run etc.

Cement stabilized treatmentCement stabilized treatment

Bas

e co

urse

thic

knes

s (cm

)

K1K=

Bearing capacity coefficient of base courseBearing capacity coefficient of subgrade

K1 is the bearing capacity coefficient of base course K30 (200N/cm3).K2 is the bearing capacity coefficient of subgrade K30

K1 is the bearing capacity coefficient of base course K30 (200N/cm3).K2 is the bearing capacity coefficient of subgrade K30

Graded grain crushed stoneGraded grain crushed stone

Fig. 9.14.3 Design Curves of Base Course Thickness 28)

(b)ThebasecoursethicknessofconcretepavementsmaybesetreferringtoTable 9.14.5preparedbasedonthepastrecords.

Page 221: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–896–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Table 9.14.5 Reference Values for Base Course Thickness of Concrete Pavements

Designcondition BasecoursethicknessDesignbearing

capacitycoefficientofbase

courseK30(N/cm3)

Uppersubbasecourse LowersubbasecourseTotalbasecourse

thicknessCementstabilizedbase

Gradedgrainmaterial

Gradedgrainmaterial Crusherrunetc.

50ormoreandlessthan70

–2025

40––

–20–

20–30

604055

70ormoreandlessthan100

––1515

2020––

15–15–

–20–15

35403030

100ormore –15

20–

––

––

2015

② Verificationofconcreteslabthickness

(a) BendingstrengthsofconcreteslabsThebendingstrengthsofconcreteslabsmaybesetat450N/cm2for28daystestpiece.

(b)Fig. 9.14.4 shows the relationbetween concrete slab thickness andbending stress. Thebending stressesarecalculatedusinganequationcalledArlington formula. ThesymbolsCP1 -CP4 inFig. 9.14.4are theclassificationnamesneededforusing(d) Empirical method of setting concrete slab thickness.

4.5

4.0

3.5

3.0

2.5

2.0

1.515 20 CP1 CP2 CP3 CP425 30 35 40 45 50 55

50Type

40

35t

25t20t15t

10t

6t

3.5t2t

3025

20

25t積級

20ft,40ft

P=470kN a=24.6cm

P=390kN a=22.9cm

P=425kN a=39.7cm

P=310kN a=21.1cm

P=260kN a=20.3cm

P=305kN a=33.8cm

P=220kN a=19.9cm

P=245kN a=30.7cm

P=185kN a=26.8cm

P=125kN a=22.2cm

P=125kN a=22.2cm

P=100kN a=17.8cm

P=75kN a=17.8cm

P=45kN a=13.8cm

P=50kN a=17.8cm

P=25kN a=10.6cm

TypeType

TypeType

Ben

ding

stre

ss o

f con

cret

e (N

/mm

2 )

Thickness of concrete (cm)

Tractor-trailer

Truck

Straddle carrier

Truck craneTruck craneTruck crane

Truck crane

Truck crane

Forklift truck

Forklift truckForklift truck

Forklift truck

Forklift truck

Forklift truck

Forklift truck

Forklift truck

Fig. 9.14.4 Relation between Concrete Slab Thickness and Bending Stress

(c) SettingofconcreteslabthicknessThemethodofsettingthethicknessofconcreteslabsincompliancewiththeconceptofPavement Design and Construction Guide 28)hasbeenproposed.27)Inthismethod,thefatiguecharacteristicsofconcreteslabsarecalculatedbasedonthewheelloadstressesimposedonconcreteslabsandtheircyclicnumbersduringdesignworkinglife.Andtherelationbetweentheabovementionedcharacteristicsandthedegreeoffatigueasafailurecriterionisproposedtosetthethicknessofconcreteslabs.27)Thefollowingoutlinesthemethod:

1) Allowablecyclicnumbersofwheelloadstressesarecalculatedfromthefatigueequation(9.14.3).

Page 222: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–897–

(9.14.3)where

Ni :allowablecyclicnumberofwheelloadstressimposedonconcreteslab SL :wheelloadstress/designreferencebendingstrength(=450N/cm2).

2) CalculationoftheDegreeofFatigueThedegreeoffatigueofaconcreteslabiscalculatedfromequation(9.14.4).

(9.14.4)where

FD :degreeoffatigue ni :cyclicnumberofwheelloadi Ni :allowablecyclicnumberofwheelloadstressimposedonconcreteslab

3) SettingofConcreteSlabThicknessUsingthedegreeoffatigueasthefailurecriterionofaconcreteslab,concreteslabthicknessissetsothatthedegreeoffatigueFDisequalto1.0orless.

(d)Empiricalmethodofsettingconcreteslabthickness

1) TheconcreteslabthicknesssetreferringtotheempiricalvaluesgiveninTable 9.14.5maybeconsideredtohavethesameperformanceastheonesetusingthemethodof(c) Setting Concrete Slab Thickness.

Table 9.14.6 Reference Values for Concrete Slab Thickness

Actionclassification Concreteslabthickness(cm)CP1 20CP2 25CP3 30CP4 35

Appliedtopiledpierslab 10

2) The“Actionclassification”inTable 9.14.6correspondstotheonegiveninTable 9.14.3. ItshouldbenotedinclassifyingactionsthattherearecaseswherethemaximumloadsarenotequivalenttothevalueshowninTable 9.14.2. Insuchcases, theclassificationwith theclosestandlargervalue isused. Forexample,ifthemaximumloadperoutriggerofatruckcraneis120kN,itisregardedasatype20truckcrane;ifthemaximumloadperwheelofaforklifttruckis64kN,itisregardedasa6tonforklifttruck.

3) InFig.9.14.4,itispreferabletoverifytheconcreteslabthicknessbyseparately,fortheloadplottedattherightsideofacurveoftype25truckcrane.

4) RegardingthesettingofconcreteslabthicknessbasedonthevaluesgiveninTable 9.14.6,itispreferableto take account of PC pavement and continuously reinforced concrete pavement for the design loadexceedingCP4,becausenon-reinforcedconcretepavementneedsaverythickslab.Sincecranessuchastruckcraneshavelargergroundcontactpressuresthanothercargohandlingequipment,itispreferabletolayironplatesorthelikeundertheoutriggerstoreducepressurewhenusingthemonaprons.

(4)StructuralDetails

① LayerpreventingfrostpenetrationIn thedesignofpavement in thecold regionswhere thepavement is subject to freezingand thawing, layerpreventingfrostpenetrationshouldbeprovided.

Page 223: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–898–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

② Ironmesh

(a) Itiseffectivetoburyironmeshinaconcreteslabstructuretopreventcracking.

(b)Itispreferabletooverlapthejunctionsofreinforcingbars.Theoverlaplengthandthedepthofthereinforcingbarsfromthesurfaceneedtobeproperlysetconsideringthethicknessoftheconcreteslab.

③ JointsItispreferabletoplacejointsonconcretepavementstoallowtheconcreteslabstoexpand,shrink,andwarpfreelytosomeextent,reducingstresses.

(a) Joints of the concrete pavement of apron shall be arranged appropriately, considering the size of apron,structureofmooringfacilities,thetypeofjointandloadcondition.Inaddition,jointsshallhaveastructurethatisappropriateforthetypeofjoint.

(b)Longitudinaljoint

1) Longitudinal construction joints shall generally be press-type structured and made of tie bars. Tiebarsare,however,notusedforpiledpierslabs.Itispreferableforthelongitudinaljointsadjoiningthesuperstructuresofquaywallsandshedstohaveastructureusingbothjointsealingcompoundsandjointfillers.Itispreferabletosetlongitudinaljointsatproperintervalsdependingonpavingmachinesused,totalpavementwidths,andtravelingcranebeds.Itispreferabletoplacelongitudinaljointsontheshoulderofbackfill,thejointsofquaywalls,andthepositionofsheet-pileanchoragestoreducetheeffectsofchangeinbearingcapacityofandbelowbasecoursesandthejointsofquaywalls.

2) Tie-barsareprovided topreventadjoiningslabs fromseparating,andsinking / risingofeither slabatjoints.Tiebarsalsoserveasareinforcementtotransferthesectionalforce.Becausetheapronpavementhasarelativelysmallwidthandisphysicallyconstrainedbythemainstructureofthequaywallorsheds,separationofapronconcreteslabsat joints rarelyoccurs. However, it isnecessary toprovide tie-barsat longitudinalconstruction joints toprevent sinking / risingofeither slabat jointsdue todifferentialsettlementoflayersbelowthebasecourse,andtoaccommodateawidevarietyinthedirectionsoftrafficloadthatisnotobservedonordinaryroads.

(c) Transversejoints

1) TransverseshrinkagejointsTransverseshrinkagejointsshallgenerallybedummy-typestructuredandmadeofdowelbars.Onpiledpierslabs,however,dowelbarsarenotused.Itispreferableforshrinkagejointstobeplacedonthejointsofquaywalls.

2) TransverseconstructionjointsTransverseconstructionjointsshallgenerallybepress-typeandmadeofdowelbars.Onpiledpierslabs,however, dowelbars arenotused. Transverse construction joints areplacedat the endofdailyworkor inevitably placeddue to rain during construction or the failures of constructionmachines or otherequipment. It is preferable for transverse construction joints tofit positionwith transverse shrinkagejoints.

3) TransverseexpansionjointsIt is preferable for transverse expansion joints to generally have a structure using both joint sealingcompoundsandjointfillersinupperandlowerpartsandusedowelbars.Onpiledpierslabs,however,dowelbarsarenotused.Itispreferabletosettransverseexpansionjointsatproperintervalsdependingonconstructionconditions.Expansionjointsaretheweakestpointsofpavements,hence,considerationisneededforreducingthenumberoftheirplacementpointsasmuchaspossible.

4) DowelbarsDowelbarshaveafunctiontotransferloadsandpreventtheunevennessofadjoiningslabs.Ineithercaseoftransverseshrinkagejoints,transferconstructionjoints,ortransferexpansionjoints,dowelsbarsareplacedtofullytransferloads.

Page 224: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–899–

(d)JointstructuresFig. 9.14.5 - 9.14.8showstandardjointstructures.

6 10mm(1/4 1/6)h

hh/2

/2 /2

6 10mm

(1/4 1/6)h

hh/2

/2 /2

Joint sealingcompound

––

Joint sealingcompoundTie bar

Chair ChairWood stand

Dowel bar

Dowel bar(This side is coated with paint and grease, or with two layers of bitumen.)

Fig. 9.14.5 Longitudinal Construction Joint Fig. 9.14.6 Transverse Shrinkage Joint

(1/4 1/6)h

hh/2

/2 /2

6 10mm

40 50mm

hh/2

/2 /2

20 30mm

25 35mmJoint sealingcompound

–Joint sealingcompound

Chair ChairDowel bar(This side is coated with paintand grease, or with two layers of bitumen.)

Dowel bar(This side is coated with paintand grease, or with two layers of bitumen.)

Cap

Joint filler

Fig. 9.14.7 Transverse Construction Joint Fig. 9.14.8 Transverse Expansion Joint

④ Tiebarsanddowelbars

(a) Tiebarsanddowelbarsshallbeproperlyselectedconsideringthetravelingloadsimposedonapronpavementsinalldirections.

(b)ThespecificationsandplacementintervalsoftiebarsanddowelbarsmayrefertothevaluesshowninTable 9.14.7.

Table 9.14.7 Reference Values for the Specifications and Placement Intervals of Tie Bars and Dowel Bars

Actionclassification

Slabthickness(cm)

Tiebar DowelbarDiameter(cm)

Length(cm) Interval(cm) Diameter

(cm)Length(cm) Interval(cm)

CP1 20 25 80 45 25 50 45CP2 25 25 100 45 25 50 45CP3 30 32 100 40 32 60 40CP4 35 32 100 40 32 60 40

Note:ThevaluesoftiebarsanddowelbarsarethoseofSD295A(deformedsteelbar)specifiedinJISG3112andofSS400(roundsteelbar)specifiedinJISG3101,respectively.

⑤ EndprotectionAnendprotectionworkalongthelandwardsideofpavementshallbeprovidedatalocationwherethereisariskofdestructionofthebasecourseduetoinfiltrationofrainwaterordestructionoftheconcreteslabandbasecourseduetoheavyloading.

[5] Performance Verification of Asphalt Pavements

(1)ProceduresofPerformanceVerificationFig. 9.14.9showsanexampleoftheproceduresoftheperformanceverificationforasphaltpavements.

Page 225: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–900–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(2)DesignConditions

① Thedesignconditionsconsideredintheperformanceverificationaregenerallyasfollows:

(a) Designworkinglife(b)Actionconditions(c) Cyclicnumbersofactions(d)Bearingcapacityofsubgrade(e)Materialsused

② DesignworkinglifeThedesignworkinglifeofasphaltpavementsshallbeproperlysetconsideringtheusageconditionsofmooringfacilities.Thedesignworkinglifeofasphaltpavementsusedfortheapronsofquaywallsandmaybegenerallysetat10years.

③ ConditionsofactionAmong thekindsof subjectactions, theconditionsofactionshallbe those requiring themaximumasphaltpavementthickness.

④ CalculationofthecyclicnumbersofactionsForcalculatingofthecyclicnumbersofactions,referto9.14. [4] (2) ⑤ Calculation of the cyclic numbers of actions.

Assumption of the section structure of asphalt concrete

Verification of the section structure of asphalt concrete

Examination of structural details

Variable states on surcharges

Setting of design conditions

Performance verificationPerformance verification

Evaluation of actions

Determination of pavement section

Verification of subgrade

Fig. 9.14.9 Example of Procedures of Performance Verification for Asphalt Pavements

⑤ SubgradebearingcapacityThedesignCBRofthesubgradeinthepavementareasubjecttotheperformanceverificationisdeterminedbytampingdownsubgradesoilcontainingnaturalmoistureandimmersingitinwaterforfourdaystoobtaintheCBR.

(9.14.5)

DesignCBRcanbeobtainedfromequation(9.14.6)usingtheabove-definedCBRexcludingextremevalues.

(9.14.6)whereCisgiveninTable 9.14.4.

Page 226: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–901–

(4)PerformanceVerification

① Verificationofasphaltconcretepavementstructure

(a) SettingofpavementsectionsPavementstructureisdeterminedsothattheequivalentconversionasphaltconcretesectionsoftheassumedpavementsectionsarenotlessthanrequiredequivalentconversionsections.

(b)RequiredequivalentconversionasphaltconcretepavementthicknessRequiredequivalentconversionasphaltconcretepavementthicknessTAiscalculatedfromequation(9.14.7).Thevariablessubscriptedwithdmeandesignvalues.

(9.14.7)where

TA :requiredequivalentconversionasphaltconcretepavementthickness(cm) N :thevalueofcyclicnumberofactionduringdesignworkinglifeniconvertedto49kNwheelload.

Itiscalculatedfromthefollowingequation.Thepartialfactorscanbesetat1.0.

(9.14.8)where

Pi :wheelload(kN) ni :cyclicnumberofwheelloadPi m :settingnumberofloadedstate

(c) EquivalentconversionasphaltconcretepavementthicknessofassumedsectionTheequivalentconversionasphaltconcretepavementthicknessTAoftheassumedsectioncanbecalculatedfromequation(9.13.9).

(9.14.9)where

TA :equivalentconversionasphaltconcretepavementthicknessofassumedsection(cm) hi :thicknessoflayeri(cm) ai :equivalentconversionfactorofmaterialandworkmethodusedforpavementlayeri.Itmaybe

referredtoTable 9.14.8. n :numberoflayers

Table 9.14.8 Equivalent Conversion Factor of Asphalt Concrete

Layer Constructionmethod/material Requirements

Equivalentconversionfactor

Remark

Surfaceandbindercourses

Hotasphaltmixtureforsurfaceandbindercourses – 1.00 ACI–ACIV

BasecourseBituminousstabilization

Marshallstabilitylevel3.43kNorgreater 0.80 A-treatedmaterialII

Marshallstabilitylevel2.45to3.43kN 0.55 A-treatedmaterialI

Gradingadjustment CorrectedCBR80orgreater 0.35 Gradingadjusted

material

Subbasecourse

Crusher-run,slag,sand,etc.

CorrectedCBR30orgreater 0.25

CorrectedCBR20to30 0.20 Grainmaterial

② ExampleofempiricalverificationofasphaltconcretepavementcompositionTable 9.14.10showsanexampleofempiricalverificationofasphaltconcretepavementcomposition.ThetableispreparedreferringtotheactionconditionsshowninTable 9.14.9.ThesymbolsHandTA’inTable 9.14.10express total pavement thickness and the equivalent conversion asphalt concrete pavement thickness of theassumedsection,respectively.IfthedesignCBRofasubgradeis2ormoreandlessthan3,itispreferableto

Page 227: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–902–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

replaceitwithoneusinggoodqualitymaterialsortoaddawatersealinglayer.Ifitislessthan2,itispreferabletoreplaceitwithgoodqualitymaterialsandsetthepavementthicknessonceagain.

Table 9.14.9 Reference Values for Action Conditions of Action for Asphalt Pavements on Aprons of Quaywalls

Actionclassification Cargohandlingmachine

AP1 Tractortrailer 20ft,40ftAP2 Forklifttruck 2t

Forklifttruck 3.5tForklifttruck 6t

AP3 Forklifttruck 10tForklifttruck 15tTruck 25tonclassStraddlecarrierMobilecrane(truckcrane,roughterraincrane,allterraincrane) Type20

AP4 Mobilecrane(truckcrane,roughterraincrane,allterraincrane) Type25

③ ThetypeandmaterialqualityofasphaltconcretecanbesetaslistedinTable 9.14.11

Table 9.14.11 Type and Material Quality of Asphalt Concrete

Type ACI ACII ACIII ACIVUse Forsurfacecourse Forbindercourse

NumberofblowsforMarshallstabilitytest 50times 75times 50times 75timesMarshallstability(kN)Flowvalue(1/100cm)

Porosity(%)Degreeofsaturation(%)

4.9orgreater20–403–575–85

8.8orgreater20–402–575–85

4.9orgreater15–403–665–80

8.8orgreater15–403–665–85

Note:Thecolumnsof“numberofblows75times”applytocaseswherethegroundcontactpressureoftirewiththedesignloadis70N/cm2orgreater,orwherethetrafficoflargevehiclesisheavyandruttingisexpected.

(5)StructuralDetailsTheplacementoffrost-heavingsuppressionbedisneededincoldregionswherefreezingandthawing,mayoccurifpavementthicknessislessthanfreezingdepth.

Page 228: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–903–

Table 9.14.10 Examples of Composition of Asphalt Pavement

Conditionofactions CompositionofpavementClassificationofactions

DesignCBRofsubgrade(%)

Surfacecourse Bindercourse Basecourse Subbasecourse

Totalthickness

Type h1(cm) Type h2(cm) Type h3(cm) h4(cm) H(cm) T 'A (cm)AP1 Equaltoorabove3

andlessthan5ACI 5 ACIII 5 Gradingadjusted

material25 35 70 25.8

ACI 5 – – A-treatedmaterialI 25 35 65 25.8Equaltoorabove5andlessthan8

ACI 5 ACIII 5 Gradingadjustedmaterial

20 25 55 22.0

ACI 5 – – A-treatedmaterialI 20 30 55 22.0Equaltoorabove8andlessthan12

ACI 5 ACIII 5 Gradingadjustedmaterial

15 20 45 19.3

ACI 5 – – A-treatedmaterialI 15 30 50 19.3Equaltoorabove12andlessthan20

ACI 5 ACIII 5 Gradingadjustedmaterial

15 15 40 18.3

ACI 5 – – A-treatedmaterialI 15 20 40 17.3Equaltoorabove

20ACI 5 ACIII 5 Gradingadjusted

material15 15 40 18.3

ACI 5 – – A-treatedmaterialI 15 15 35 16.3Onthedeckslabofopen-typewharf

ACI 5 ACIII 4orgreater – – – 9or

greater–

AP2 Equaltoorabove3andlessthan5

ACII 5 ACIV 5 Gradingadjustedmaterial

25 35 70 25.8

ACII 5 – – A-treatedmaterialI 25 35 65 25.8Equaltoorabove5andlessthan8

ACII 5 ACIV 5 Gradingadjustedmaterial

20 25 55 22.0

ACII 5 – – A-treatedmaterialI 20 30 55 22.0Equaltoorabove8andlessthan12

ACII 5 ACIV 5 Gradingadjustedmaterial

15 20 45 19.3

ACII 5 – – A-treatedmaterialI 15 30 50 19.3Equaltoorabove12andlessthan20

ACII 5 ACIV 5 Gradingadjustedmaterial

15 15 40 18.3

ACII 5 – – A-treatedmaterialI 15 20 40 17.3Equaltoorabove

20ACII 5 ACIV 5 Gradingadjusted

material15 15 40 18.3

ACII 5 – – A-treatedmaterialI 15 15 35 16.3Onthedeckslabofopen-typewharf

ACII 5 ACIV 4orgreater – – – 9or

greater–

AP3 Equaltoorabove3andlessthan5

ACII 5 ACIV 15 Gradingadjustedmaterial

30 45 95 40.0

ACII 5 ACIV 10 A-treatedmaterialII 20 45 80 40.0Equaltoorabove5andlessthan8

ACII 5 ACIV 15 Gradingadjustedmaterial

25 30 75 34.8

ACII 5 ACIV 10 A-treatedmaterialII 20 20 55 35.0Equaltoorabove8andlessthan12

ACII 5 ACIV 15 Gradingadjustedmaterial

15 20 55 29.3

ACII 5 ACIV 10 A-treatedmaterialII 15 15 45 30.0Equaltoorabove12andlessthan20

ACII 5 ACIV 15 Gradingadjustedmaterial

15 15 50 28.3

ACII 5 ACIV 10 A-treatedmaterialII 15 15 45 30.0Equaltoorabove

20ACII 5 ACIV 15 Gradingadjusted

material15 15 50 28.3

ACII 5 ACIV 10 A-treatedmaterialII 15 15 45 30.0Onthedeckslabofopen-typewharf

ACII 5 ACIV 4orgreater – – – 9or

greater–

AP4 Equaltoorabove3andlessthan5

ACII 5 ACIV 15 Gradingadjustedmaterial

40 60 120 46.0

ACII 5 ACIV 10 A-treatedmaterialII 20 70 105 45.0Equaltoorabove5andlessthan8

ACII 5 ACIV 15 Gradingadjustedmaterial

30 45 95 39.5

ACII 5 ACIV 10 A-treatedmaterialII 20 40 75 39.0Equaltoorabove8andlessthan12

ACII 5 ACIV 15 Gradingadjustedmaterial

25 30 75 34.8

ACII 5 ACIV 10 A-treatedmaterialII 15 35 65 34.0Equaltoorabove12andlessthan20

ACII 5 ACIV 15 Gradingadjustedmaterial

15 25 60 30.3

ACII 5 ACIV 10 A-treatedmaterialII 15 15 45 30.0Equaltoorabove

20ACII 5 ACIV 15 Gradingadjusted

material15 15 50 28.3

ACII 5 ACIV 10 A-treatedmaterialII 15 15 45 30.0Onthedeckslabofopen-typewharf

ACII 5 ACIV 4orgreater – – – 9or

greater–

Note:Incaseofthedeckslabofpiledpier,theboxesofthebindercourseinTable9.14.10refertothevalueforthetotaloffillingmaterialandbindercourse.Thisdoesnotnecessarilyhavetobeasphaltconcrete.

Page 229: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–904–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

9.15 Foundations for Cargo Handling EquipmentPublic NoticePerformance Criteria of Foundations for Cargo Handling Equipment

Article 73 1Theperformancecriteriaof the foundations for cargohandlingequipment shallbeas specified in thesubsequent items inconsiderationof the typesofcargohandlingequipmentand thestructural typeoffoundations:(1)Thefoundationsshallhavethedimensionsnecessaryforenablingthesafeandsmoothoperationsof

cargohandlingworks,travelingofcargohandlingequipment,andothers.(2)The foundations shall satisfy the followingcriteriaunder thevariableactionsituation inwhich the

dominantactionsareLevel1earthquakegroundmotionsandimposedload:(a)In the case of pile-type structures, the risk that the axial force acting on a pilemay exceed the

resistancestresscausedbygroundfailureshallbeequaltoorlessthanthethresholdlevel.(b)Inthecaseofpile-typestructures,theriskthatthestressinapilemayexceedtheyieldstressshall

beequaltoorlessthanthethresholdlevel.(c)Theriskofimpairingtheintegrityofbeamcomponentsshallbeequaltoorlessthanthethreshold

level.(d)Inthecasesofpile-lessstructures,theriskofbeamslidingshallbeequaltoorlessthanthethreshold

level.(3)Theamountofbeamdeflectionshallbeequal toor less than the threshold levelunder thevariable

actionsituationinwhichthedominantactionsisimposedload.2Inadditiontotheprovisionsintheprecedingparagraph,theperformancecriteriaforthefoundationsofcargohandlingequipmenttobeinstalledonthehighearthquake-resistancefacilitiesshallbesuchthatthedegreeofdamageowingtotheactionofLevel2earthquakegroundmotions,whichisthedominantactionoftheaccidentalactionsituation,isequaltoorlessthanthethresholdlevelcorrespondingtotheperformancerequirement.

[Commentary]

(1)PerformanceCriteriaoftheFoundationsforCargoHandlingEquipment①Thespecificationsof thefoundationsforcargohandlingequipmentshallbeproperlysetaccording

tothetypesofcargohandlingequipmentandthestructuraltypesoffoundationstoallowsafeandsmoothcargohandlingoperationsandthesafeandsmoothtravelingandotheroperationsofcargohandlingequipment.

②PilesandBeams(Serviceability)(a)Attached Table 59 shows the setting on the performance criteria and design situations (except

accidentalsituations)ofthefoundationsforcargohandlingequipment.

Page 230: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–905–

Attached Table 59 Setting on the Performance Criteria and Design Situations (excluding accidental situations) of the Foundations for Cargo Handling Equipment

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-dominating

action

33 1 2 73 1 2a Serviceability Variable L1earthquakegroundmotion(Surcharge*3))

Selfweight,earthpressure

Axialforceactingonpile*1)

Resistanceforceagainstgroundfailure(pushin,pullout)

2b Yieldofpile*1) Designyieldstrength

2c Sectionfailureofbeam Designsectionresistance(ultimatelimitstate)

2d Slidingofbeam*2) Limitvalueonsliding

3 (Surcharge*3)) Selfweight,earthpressure

Deflectionofbeam Limitvalueofdeflection

*1)Limitedtothestructureswherefoundationpilesareusedforthefoundationsforcargohandlingequipment*2)Limitedtothestructureswherefoundationpilesarenotusedforthefoundationsforcargohandlingequipment*3)Itisanactionappliedfromacargohandlingmachinetoitsfoundationandisproperlysetaccordingtodesignsituations.

(b)AxialForcesActingonPilesintheCasesofPile-typeStructuresTheverificationofaxialforcesactingonpilesinthecasesofpile-typestructuresshallbesuchthattheriskoftheaxialforcesactingonpilesbeinggreaterthantheresistanceforcesagainstgroundfailureisnotmorethanalimitvalue.

(c)YieldofPilesintheCasesofPile-typeStructuresTheyieldverificationofpilesinthecasesofpile-typestructuresshallbesuchthattheriskofthestressgeneratedinapilebeinggreaterthantheyieldisnotmorethanthelimitvalue.

(d)SectionFailureofBeamsThe section failure verification of beams shall be such that the risk of the design section forcegeneratedinabeamcomponentbeinggreaterthanthedesignsectionresistanceisnotmorethanthelimitvalue.

(e)BeamSlidingintheCasesofPile-lessStructuresTheverificationofbeamslidinginthecasesofpile-lessstructuresshallbesuchthattheriskofbeamslidingisnotmorethanthelimitvalue.

(f)BeamDeflectionTheverificationofbeamdeflectionshallbesuchthattheamountofdeflectiongeneratedinabeambeinggreaterthanthelimitvalueofdeflectionisnotmorethanthelimitvalueunderthevariablesituationswheredominatingactionissurcharge.

③Foundations for Cargo Handling Equipment Installed in High Earthquake-Resistance facilities(Restorability)RestorabilityshallbeensuredundertheaccidentalsituationsinrespectofLevel2earthquakegroundmotions.

Page 231: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–906–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

Attached Table 60 Setting on the Performance Criteria and Design Situations limited to Accidental Situations of the Foundations for Cargo Handling Equipment in High Earthquake-resistance Facilities

MinisterialOrdinance PublicNotice

Performancerequirements

Designsituation

Verificationitem Indexofstandardlimitvalue

Article

Paragraph

Item

Article

Paragraph

Item Situation Dominating

actionNon-dominating

action

33 1 2 73 2 – Restorability Accidental L2earthquakegroundmotion

Selfweight,surcharge,earthpressure

Damage –

[Technical Note]

9.15.1 Fundamentals of Performance Verification

(1)Thespecificationsofthefoundationsforcargohandlingequipmentshallbeproperlysetaccordingtothetypesofcargohandlingequipmentandthestructural typesoffoundations toallowsafeandsmoothcargohandlingoperationsandthesafeandsmoothtravelingofcargohandlingequipment.

(2)Thefoundationforrail-typetravelingcargohandlingequipmentneedstobedesignedappropriatelyinconsiderationoftheexternalforcesthatactonthefoundation,allowabledisplacementforthefoundation,degreeofdifficultyofmaintenance,effectsonthewharfstructure,andconstructionandmaintenancecosts.

(3)Fig. 9.15.1 showsanexampleof theprocedures for theperformanceverificationof the foundations for cargohandlingequipment.

Page 232: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–907–

Examination of effectson mooring facility

Examination onconcrete beam sliding

Examination on sectionforces generated in concretebeams and other components

Determination of rail types and mounting methods

Variable states in respect ofsurcharges

Examination on deflectionamounts of concrete beams

Examination on sectionforces generated in concretebeams and other components

Examination on deflectionamounts of concrete beams

Examination on stressesgenerated in piles and

axial forces acting on piles

Variable states inrespect of surcharges

Variable states onsurcharges andLevel 1 earthquake ground motions

Examination on overallstructures and components

according to structural types

Concrete beam typeon pile foundation

Concrete beam typeon rubble foundation

General purpose typefor main body ofmooring facility andother facilities

Variable states on surchargesand Level 1 earthquake ground motions

Verification of deformation amounts by dynamic analysis

Accidental states in respect ofLevel 2 earthquake ground motions

Determination of design conditions

Setting of foundation type

Evaluation of actions including the setting of seismic coefficient

Performance verificationPerformance verification

*1

*2

*1 Sincetheevaluationoftheeffectsofliquefactionisnotincludedinthischart,itshouldbeconsideredseparately.*2 Thefoundationsforcargohandlingequipmentinstalledinhighearthquake-resistancefacilitiesareverifiedonLevel2earthquakeground

motions.

Fig. 9.15.1 Example of Procedures of the Performance Verification for the Foundations for Cargo Handling Equipment

(4)TypesofFoundationsforRailTravelingEquipment

① FoundationtypethatconnectspilesbyreinforcedconcretebeamsonpilefoundationsThistypeisusedforsoftgroundwhereunevensettlementisexpected.Itisalsousedforthefoundationsforlargecargohandlingequipmentongoodqualitysandground.

② FoundationtypethatusesotherfacilitiessuchasthemainbodiesofmooringfacilitiesThistypeusesthereinforcedconcretebeamsofpiledpiers,themainbodiesofmooringfacilities,suchasthesuperstructuresof caisson-typequaywallsor thewall anchoragesof sheet-pilequaywalls as the foundationfor thecargohandlingequipment. Theperformanceverificationof facilitiesshallbeconducted inadvanceconsidering the actions causedby cargohandling equipment. In such cases, overall construction costs are

Page 233: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–908–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

oftenreduced.Whenonelegisonthemainbodyofamooringfacilityandtheotherlegisonanindependentfoundation,cautionisneededtoavoidunevensettlement.Itshouldbenotedthatgroundmotionsmaycausethedisplacementofcranefoundations,resultinginthedisplacementorderailingofcranelegs.Rigidlegsofgantrycranesarenormallynotplacedonpiledpiers. Sincethetipofjetty-typepiledpiersareweaktotheactionscausedbyshipberthingortractiveforcesorearthquakes,specialreinforcementisneeded.

③ FoundationtypethatplacesconcretebeamsonrubblefoundationsThistypeisusedforrelativelygoodqualitygroundwithasmallpossibilityofsettlement.

(5)LimitValueofDisplacementofRailsThedisplacementofrailsissmallatthetimeofcompletionofconstruction,butitincreaseswiththelapseoftime.Therefore,itisgeneralpracticetomakeconstructionerrorsassmallaspossible.Toleranceofthedisplacementdifferssomewhatamongmanufacturersofequipment.Table 9.15.1 31)indicatestheinstallationandmaintenancestandardsthatarecommonlyemployed.

Table 9.15.1 Examples of Technical Standards of Rail Truck Laying and Maintenance

Item Installationstandards Maintenancerequirements(upperlimitsforoperation)

Railspan ±10mmorlessfortheentireraillength

±15mmorlessfortheentireraillength

Lateralandverticalwarpsofrail 5mmorlessper10mofrails 15mmorlessper10mofrailsElevationdifferencebetweenseawardandlandwardrails 1/1000ofrailspanorless 1/500ofrailspan

Gradientinthetravellingdirection 1/500orless 1/250orless

Straightness ±50mmorlessfortheentireraillength

±80mmorlessfortheentireraillength

RailjointsVerticalandlateraldifferences:0.5mmorless

Verticalandlateraldifferences:1mmorless

Gap:5mmorless Gap:5mmorlessWearoftheheadofrail – 10%orlessoftheoriginaldimension

9.15.2 Actions

(1)Forces that act on the foundation for cargo handling equipment shall be determined appropriately in dueconsiderationofthetype,andoperationconditions.

(2)Theforcesareassumedtoactontheentirelengthofrailsduringoperationorearthquakes.Atthetimeofstorms,theforcesassumedtoactonthesectionwherethecraneisstationed.

(3)Forthewheelloadsthatactontherailswhenthecraneisoperational,atravelingloadthatisequalto120%ofthemaximumstaticwheelloadcanbeconsidered.However,thiscanbeconsideredtobe110%ofthemaximumstaticwheelpressureofthecranewhenthetravelingspeedislessthan60m/min.34)

9.15.3 Performance Verification of Pile-type Foundations

[1] Concrete Beams

(1)Theperformanceverificationofconcretebeamsplacedonpilefoundationsmaybeconductedassumingthattheyarecontinuousbeamssupportedbypileheads.Theeffectsofbeamscontactingthegroundareignored.

(2)Concretebeamsconstructedonpilefoundationneedtobestableagainstthecontactpressurebetweentherailandconcrete,andagainstthestresstransmittedfromtherail.

(3)Therailstressisusuallycalculatedbyassumingthattherailisaninfinitecontinuousbeamsupportedbyelasticfoundation.Thismethodisoftenusedforthecaseswherethewheelloadsarespreadoverthebeambyinsertinganelasticmaterialsuchasrubberpadsbetweentherailandtheconcretebeamtopreventcrushingofconcrete.

(4)SolvingMethodoftheInfiniteContinuousBeamSupportedbyElasticFoundationTherailstressandthecontactpressurebetweentherailandconcretecanbecalculatedusingthemethoddescribedin9.15.4 [2]Concrete Beams.Inthiscase,thesymbolsEc,Ic,andK inequation(9.15.4)shouldbereplacedasfollows:s

Ec : modulusofelasticityoftherail

Page 234: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–909–

Ic : momentofinertiaoftherail K : modulus of elasticity of thematerial placed under the rail,when tie pads are used, use the

modulusofelasticityofthetiepadWhenthebearingstressistoohigh,itshouldbereducedbyinsertingelasticplatesundertherail.

(7)Thefasteningforcebetweentherailandthefoundationcanbecalculatedbyusingthebeamtheoryonelasticfoundation,36)butitisnecessarytohaveasufficientallowancetoavoidtheeffectofimpact.Forcalculationofthefasteningforceforthecaseswherethedoubleelasticfasteningmethodisemployed,refertoMinemura’sstudy.37)Inmanycases,boltswithadiameterofabout22mmareusedatintervalsofabout50cm.

[2] Maximum Static Resistance Forces of Piles

(1)Pilesshallbestableagainsttheactionscausedbycargohandlingequipmentandfoundations.

(2)Theactionthatexertsonthepilesshouldbethereactionforceateachsupportingpointcalculatedinaccordancewith[1] Concrete Beams.

(3)Themaximum static resistance forces of piles may be calculated referring toPart III, Chapter 2, 2.4 Pile Foundations.

(4)In the cases where piles are affected by the surfaces of rupture of active earth pressures, the performanceverificationofbearingpilesdescribedin2.8 Quaywalls with Relieving Platformsmaybereferredto.

(5)Whenpilesareunder the influenceof theactiveearthpressure failureplane, the requiredembedment lengthdiffersbetweentheseawardpilesandlandwardpiles.However,itiscommonpracticetousefoundationpilesofthesamelengthforboththeseawardandlandward,toavoidadifferentialsettlementofthefoundation.Whenthepilesaredrivenintothebearingstratum,thereisnoneedtousethesameembeddedlength.

9.15.4 Performance Verification in the Cases of Pile-less Foundation

[1] Analysis of Effect on Quaywall38)

(1)Whennopileisusedtosupportthefoundationforcargohandlingequipment,theeffectoftheactionsofthecargohandlingequipmentanditsfoundationonthemainstructureofmooringfacilitiesshallbeexamined.

(2)Applicationofsurchargeontheareabehindagravity-typestructureincreasestheearthpressureandmaycauseforwardslidingofthequaywall.Theinfluenceofaconcentratedloadontheearthpressureislargeinthezoneatthelevelsimmediatelybelowtheloadingpoint.Buttheinfluencebecomessmallerasthedepthincreases.Whenthequaywallheightissmallandthequaywalllengthisshort,careshouldbegivenbecauseofstronginfluenceof concentrated load. When the load is applied directly on a quaywall, the subsoil reaction force increases.Inparticular,when the load isappliedon thequaywallat its frontend, thesubsoil reaction forceat the fronttoebecomessignificantlylarge.Inaquaywallofsmallwidthandshortlength,thistendencyofreactionforceincreaseisamplifiedandthuscareshouldbegiven.

(3)Inordinarysheetpilequaywalls,themaximumstressoccursbetweenthetiememberinstallationpointandtheseabottom. However,whenaconcentratedloadisexpectedtoactontheareabehindthesheetpilewall, themaximumstressmayoccuratthelevelnearthetiememberinstallationpoint.Theconcentratedload,however,rarelycausesanadverseeffectontheembeddedpartofthesheetpile.Itispreferabletoprovideasufficientcausesearthcoveringthicknessforthetiememberstoavoidadverseeffectsonthetiemembers.

[2] Concrete Beams

(1)Thereinforcedconcretebeamsplacedontherubblefoundationslaidonthegroundshallensurestabilityagainstflexuralmoments,shearforcesanddeflection,andtheiramountsofsettlementshallbelessthanalimitvalueofsettlement.

(2)Thecharacteristicvaluesoftheflexuralmoments,shearforcesanddeflectionofthereinforcedconcretebeamsplacedonrubblefoundationscanbeobtainedfromequations(9.15.1) - (9.15.6).Thevariablessubscriptedwithkdenotecharacteristicvalues.

① Inthecaseswhereloadsactnearthemiddleofbeam

(9.15.1)

Page 235: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–910–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

(9.15.2)

(9.15.3)

② Inthecaseswhereloadsactonbeamsendsorjunctions

(9.15.4)

(9.15.5)

(9.15.6)where

M :flexuralmomentatsubjectsection(N‐mm) S :shearforceatsubjectsection(N) y :amountofdeflectionatsubjectsection(mm) Ec :modulusofelasticityofconcrete(N/mm2) Wi :wheelload(N) lc :inertiamomentofconcretefoundation(mm4) K :modulusofelasticityofgroundK=Cb C :pressureneededtosettleaunitareaofgroundbyunitdepth(N/mm3) b :bottomwidthofconcretebeam(mm) xi :distancefromwheelloadpointtosubjectsection(mm)

(3)Thereinforcedconcretebeamsplacedonrubblefoundationsareassumedtobesupportedbycontinuouselasticfoundationsofauniformsectionovertheentirelength.Inotherwords,itisassumedthatthereactionforcesofloadedbeamsarecontinuouslydistributedandtheirstrengthsaredirectlyproportionaltotheamountofdeflectionateachpoint.AssumingthemomentgeneratedatapointofadistanceX fromthetravelingwheelasMandthedeflectionasy,Mandyareexpressedbyequations(9.15.7)and(9.15.8),respectively,byanelastictheory.39),49)

(9.15.7)

(9.15.8)

Whentwoormorewheelsareclosetoeachother,theflexuralmomentdirectlyunderanarbitrarywheelisobtainedfromequation(9.15.9).

(9.15.9) Expressingthedistancebetweenanotherwheelasx2andφ1forβx2asφ12,theflexuralmomentiscalculatedfromequation(9.15.10).

(9.15.10)

TheresultantmomentdirectlyunderthefirstwheelcanbedeterminedfromM=M1+M2.Equation(9.15.1)can be derived from this expression. Deflection can be obtained in the sameway. The values given by thefollowingexpressionmaybeusedforthevaluesofC.39),41)

C =5.0×10-2~0.15(N/mm2)

Page 236: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

PART III FACILITIES, CHAPTER 5 MOORING FACILITIES

–911–

References

1) Inagaki,M.,K.YamaguchiandT.Katayama:Standarddesignofmooringpost(Draft),,TechnicalNoteofPHRINo.102,1970

2) UEDA,S.andE.OOI:OntheDesignofFendingSystemsforMooringFacilitiesinaPort,TechnicalNoteofPHRINo596,19873) Ueda,S.,T.Umemura,S.Shiraishi,S.Yamamoto,Y.AkakuraandH.Yamase4) Ueda,S.,Hirano,T.,Shiraishi,S.,Yamamoto,S.andYamase,S.:ReliabilityDesignMethodofFenderforBerthingShip,

Proc.Int’lNavig.Congr.(PIANC),Sydney,pp.692-707,20025) Nagao,T.,T.Okada,N.Iwata,H.Matsumoto,M.IshidaandY.Sato:Astudyontheperformance-baseddesignofquaywalls

underberthingcondition,TechnicalNoteofNationalInstituteforLandandInfrastructureManagementNo.63,20036) YONEYAMA,H.,HironaoTAKAHASHIandAyakoGOTO:PropositionofPartialFactorsonReliability-BasedDesign

MethodforFenders,TechnicalNoteofPARINo.1115,20067) Kitajima,S.,HiroshiSAKAMOTO,ShoheiKISHI,TakujiNAKANOandSyusakuKAKIZAKI:OnSomeProblemsBeing

ConcernedwithPreparation for theDesignStandardson `Port andHarbourStructures,TechnicalNoteofPHRINo,30,1967

8) CoastalDevelopmentInstituteofTechnology:GuidelinefordesignofSPS(Singlepilestructure),19929) Kiuchi,S.,M.Matsushita,M.Takahashi,M.Kakee,S.IsozakiandM.Suzuki10) KIKUCHI,Y.,K.TAKAHASHIandM.SUZUKI:LateralResistanceofSinglePilesunderLargeRepeatedLoads,Rept.of

PHRIVol.31No.4,PP.33-60,199211) PIANC:ReportofPIANCWorkingGroupNo.33“GuidelinesfortheDesignofFenders”,SupplementtoBulletin,200012) PermanentInternationalAssociationofNavigationCongress:GuidelineofFendersystem2002Version,SeaPortCommittee,

33rdReportofWorkingGroup,p,133,200513) Kawakami,M.,H.Shinkawa,K.TanakaandJ.Kurasawa:Relationbetweenstructuralstrengthofhullandfender,Reportof

SchoolofEngineering,HiroshimaUniv.,Vol.24,PartI,p,133,200514) Tukayama,A.:Strengthofshipsfordocking,JournalofNipponKaijiKyokai,No.151,197515) Nagasawa,J.:Berthingforceandstrengthofouterplateofship,Ships,Vol.40No,3,pp.46-50,196716) PIANC:Report of the InternationalCommission for Improving theDesign of Fender Systems, Supplement toBulletin,

No.45,198417) VascoCosta:Theberthingship,TheDock&HarbourAuthority,Vol.XLV,May-July,196418) JapanPortAssociation,Examplesofdesigncalculationofportstructures(Vol.1),pp.112-153,pp.257-300,199219) UEDA,S.andS.SHIRAISHI:OntheDesignofFendersBasedontheShipOscillationsMooredtoQuayWalls,Technical

NoteofPHRINo.729,199220) JapanRoadAssociation:StandardandCommentaryofHighwayLightingFacilities,MaruzenPublishing,199621) Japan Lighting Committee: Guide for lighting of outdoor work place, JICA Translation Publications No. 9, Maruzen

Publishing,198922) TheilluminationEngineeringInstituteofJapan:Maintenancerateforlightingdesignandmaintenanceplanning,Technical

GuidelineofTheilluminationEngineeringInstituteofJapan,,JIEG-001,Maruzen,198723) CoastalDevelopmentInstituteofTechnology:DesignManualofBufferStop,199424) JapanRoadAssociation:Commentaryofenforcementregulationsforroadstructuresandapplication,MaruzenPublishing,

execution,pp.309-316,200425) JapanRoadAssociation:Roadearthworks-Guidelineofdrainageworks,pp.9-75,199426) SATO,K.,H.MORIGUCHI,T.ASAJIMAandH.SHIBUYA:ControlofshrinkageCrackingofConcretePavementsonPier

Slabs,Rept.ofPHRIVol.14,No.2,pp.111-138,197527) Ozawa,K.andS.Kitazawa:Setupmethodofdecidingnumberofloadsbycargohandlingmachine,indesigningofpavement

wharfapron,TechnicalNoteofNationalInstituteforLandandInfrastructureManagementNo.285,200628) JapanRoadAssociation:DesignandConstructionGuidelineforPavement,MaruzenPublishing,200229) JSCE:StandardSpecificationsforconcrete,(Pavement),200230) NAGAO,T.,HiroshiYOKOTA,KoichiroTAKECHI,SusumuKAWASAKIandNoboruOKUBO:FatigueLimitStateDesign

MethodforSuperstructuresofOpenTypeWharvesinviewofCargoHandlingMachineLoads,Rept.ofPHRIVol.37No.2,pp.177-220,1998

31) JapanAssociationofCargo-handlingMachinerySystem:Surveyreportonstandardizationofrelatedfacilities,(6htReport),1998

32) JapanAssociationofCargo-handlingMachinerySystem:Surveyreportonstandardizationofrelatedfacilities,(5thReport),1997

33) Japan Association of Cargo-handlingMachinery System: Report of Survey and Study Committee of Container cargo-handlingfacilities,1993

34) ArchitecturalInstituteofJapan:Designstandardsforsteelstructure,p.4,199435) Yokoyama,Y.:Designandconstructionofsteelpiles,Sankai-doPublishing,pp.99-11l,196336) JapanSocietyofMechanicalEngineers:MechanicalEngineeringLecturesCargohandlingequipment,p.239,195937) Minemura,Y.:Lecturenoteforrailconnectionandmaintenancecourse,JapanRailwayMaintenanceAssociation,p,4,195838) KITAJIMA,S.andO.HORII:TheInfluenceofMobilecranesonQuaywalls,TechnicalNoteofPHRINo.29,pp4-62,1967

Page 237: Chapter 5 Mooring Facilities - OCDI 一般財団法人 ... · PDF filePART III FACILITIES, CHAPTER 5 MOORING FACILITIES – 677 – Acceleration time history of engineering ground

–912–

TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN

39) Kuniyuki,I.:HandbookofCargo-handlingMechanicalEngineering,CoronaPublishing,,p526,196140) Kitabatake,T.,K.Katayama:Timoshenko’sMaterialMechanicsofmaterial(Vol.2),CoronaPublishing,p.9,195541) Yasojima,Y:Railwaytrack,Giho-doPublishing,p.302,196742) KATAYAMA,T.MuneakiSEGAWA,Ken-ichiFURUHATAandYumikoMOMOSE:ACollectionofDetailDesignof

ConnectedandCornerPartofQuayWall,TechnicalNoteofPHRINo.114,1971