ChewMA1506-14 Ch8

Embed Size (px)

Citation preview

  • 8/11/2019 ChewMA1506-14 Ch8

    1/69

    Chapter 8

    Partial Differential equationsPDEs

    MA1506

    Mathematics II

    Chew T S MA1506-14 Chapter 8 1

  • 8/11/2019 ChewMA1506-14 Ch8

    2/69

    Chew T S MA1506-14 Chapter 8 2

    In this Chapter, we will study

    (1) Method of separation of variables (MSV)

    (2) Solution of wave equation (Two versions)

    (b) dAlemberts method

    1

    ( , ) sin cosnn

    n n y x t A x c t

    L L

    =

    =

    0

    2( )sin

    L

    n

    n A f x x dx L L

    = where

    (a)By MSV

    [ ]1( , ) ( ) ( )2

    y x t f x ct f x ct = + +

    (3) Solution of Heat equation

    22

    1( , ) sin

    nc t

    Ln

    n

    nu x t A x e L

    =

    =

    0

    2( )sin

    L

    n

    n A f x x dx

    L L = where

  • 8/11/2019 ChewMA1506-14 Ch8

    3/69

    Notation

    ( , )u x y x xudenoted by

    ( , )u x y y

    yudenoted by2

    2

    ( , )u x y

    x

    xxudenoted by

    2 ( , )u x y y x

    xyudenoted by

    Chew T S MA1506-14 Chapter 8 3

  • 8/11/2019 ChewMA1506-14 Ch8

    4/69

    Partial Differential Equations

    0 xxu u = 0 x yu xu+ =

    y xxu u= yy xxu u=

    0 xx yyu u+ =Equations above involving partial derivativesare called partial differential equations

    Chew T S MA1506-14 Chapter 8 4

  • 8/11/2019 ChewMA1506-14 Ch8

    5/69

    By method of separation of variables, weassume that solution ( , )u x y can be written as

    ( , ) ( ) ( )u x y X x Y y=Hence' ( ) ( ) xu X x Y y=

    '( ) ( ) yu X x Y y=

    ' '( ) ( ) xyu X x Y y=

    '' ( ) ( ) xxu X x Y y= ''( ) ( ) yyu X x Y y=

    8.1 SV for PDE

    8.1 Separation of variables for PDE N L pp 7-12

    In this section, , we study one simple case

    by method of separation of variables .

    Chew T S MA1506-14 Chapter 8 5

  • 8/11/2019 ChewMA1506-14 Ch8

    6/69

    Example

    solve 0 x yu xu+ =SolutionLet ( , ) ( ) ( )u x y X x Y y=

    Then ' '( ) ( ) ( ) ( ) 0 X x Y y xX x Y y+ =Hence

    ' '1 ( ) ( )( ) ( )

    X x Y y x X x Y y

    = holds for any x and y

    Use method of S V to8.1 SV for PDE

    Chew T S MA1506-14 Chapter 8 6

  • 8/11/2019 ChewMA1506-14 Ch8

    7/69

    Therefore'' '

    00

    ( )1 ( ) ( )( ) ( ) ( )

    Y y X x Y y x X x Y y Y y= = for any fixed 0 yThus

    ' '

    1 ( ) ( ) constant( ) ( )

    X x Y y k x X x Y y

    = = =

    holds for any x and y

    So ' X kxX = 'Y kY =

    8.1 SV for PDE

    for any fixed k

    Chew T S MA1506-14 Chapter 8 7

  • 8/11/2019 ChewMA1506-14 Ch8

    8/69

    Solve the above two 1 st order ODE, get

    2 /2( ) kx X x Ae= ( ) kyY y Be=Hence

    ( , ) ( ) ( )u x y X x Y y=2 2/2 /2kx ky kx ky

    ABe e Ce e

    = =

    8.1 SV for PDE

    Chew T S MA1506-14 Chapter 8 8

  • 8/11/2019 ChewMA1506-14 Ch8

    9/69

    USEFUL FACTS for studying wave and heat equationsUSEFUL FACTS

    Sturm-Liouville equationconsider ( ) + ( ) = 0 with initial conditions (0) = 0, (0) = 0 Then we know that zero is a solution.Zero is the only solution .

    Now, if we replace the above initial conditions byboundary conditions

    Then we have Sturm-Liouville equation

    ( ) + ( ) = 0 (0) = 0,

    ( ) = 0

    (0) = 0, ( ) = 0 Chew T S MA1506-14 Chapter 8 9

  • 8/11/2019 ChewMA1506-14 Ch8

    10/69

    We shall write down solutions ofSturm-Liouville equation without proofs.

    Case 1 < 0 Zero is the only solution

    Case 2 = 0

    Zero is the only solution

    Case 3 > 0

    There are two subcasesSubcase 1 When 2, = 1,2, . . .

    Zero is the only solution

    USEFUL FACTS

    Chew T S MA1506-14 Chapter 8 10

  • 8/11/2019 ChewMA1506-14 Ch8

    11/69

    Subcase 2 = 2, = 1,2, . . .

    = 2, = 1,2, . . . called eigenvalueFor eachthere exists nonzero solution

    called eigenfunction

    USEFUL FACTS

    ( ) = sin

    Chew T S MA1506-14 Chapter 8 11

    This case is very important

  • 8/11/2019 ChewMA1506-14 Ch8

    12/69

    1. if

    n m

    n m=1

    sin sin L

    L

    n m x x dx

    L L L

    =

    0

    1

    if

    where m, n are positive integers

    USEFUL FACTSSome special integrals

    1cos cos

    L

    L

    n m x x dx

    L L L

    = 2.0

    1

    if

    if

    n mn m=

    1sin cos 0

    L

    L

    n m x x dx

    L L L

    = 3.for any positive

    integers m, n

    where m, n are positive integers

    Chew T S MA1506-14 Chapter 8 12

  • 8/11/2019 ChewMA1506-14 Ch8

    13/69

    You dont have to spend time on working out

    Examples 1, 2,3.Just need to know the results.

    Use 1, 2 and 3,

    21 (sin 4sin 2 23cos3 ) x x x dx

    + +

    2 2 21 4 23= + +

    we get

    expand

    USEFUL FACTS

    Chew T S MA1506-14 Chapter 8 13

  • 8/11/2019 ChewMA1506-14 Ch8

    14/69

    1. Odd function f(x) : symmetric w.r.t. origin

    2. Even function f(x): symmetric w.r.t. y-axis

    USEFUL FACTSOdd and even functions

    ( ) = ( )

    ( ) = ( ) Chew T S MA1506-14 Chapter 8 14

  • 8/11/2019 ChewMA1506-14 Ch8

    15/69

    3. sinx, sin x are odd, where is any real number

    4. cosx, cos x are even, where is any real number

    USEFUL FACTS

    Chew T S MA1506-14 Chapter 8 15

  • 8/11/2019 ChewMA1506-14 Ch8

    16/69

    5. oddeven =odd functionoddodd =even functioneveneven =even function

    6.

    ( ) 0

    L

    L odd dx =sin( ) 0

    L

    L x dx

    =

    sin cos 0 L L

    n m x x dx L L

    = for any integers n, m

    odd even

    means

    multiplication

    USEFUL FACTS

    Chew T S MA1506-14 Chapter 8 16

  • 8/11/2019 ChewMA1506-14 Ch8

    17/69

    7.0

    ( ) 2 ( ) L L

    L

    even dx even dx

    =

    8. Let f be odd.

    ( )sin = 2 ( )sin 0 odd odd

    USEFUL FACTS

    Chew T S MA1506-14 Chapter 8 17

  • 8/11/2019 ChewMA1506-14 Ch8

    18/69

    sin( ) =sin( )

    2 cos( )

    2sin( ) = 2 sin( )2 + 2 22)cos(3

    9.

    11.

    sin( ) = 1 cos 10.

    USEFUL FACTS

    Chew T S MA1506-14 Chapter 8 18

  • 8/11/2019 ChewMA1506-14 Ch8

    19/69

    2 1

    cos (1 cos 2 )2 x x= +

    2 1sin (1 cos 2 )

    2 x x=

    1sin cos sin 2

    2

    x x x=

    1sin sin [cos( ) cos( )]

    2 x y x y x y= +

    1cos cos [cos( ) cos( )]

    2 x y x y x y= + +

    1sin cos [sin( ) sin( )]2

    x y x y x y= + +

    12.

    Chew T S MA1506-14 Chapter 8 19

  • 8/11/2019 ChewMA1506-14 Ch8

    20/69

  • 8/11/2019 ChewMA1506-14 Ch8

    21/69

    14.

    1sin(2 1) ( 1)2

    nn + =

    sin 0n =1,2,3,...n =

    1,2,3,...n =

    USEFUL FACTS

    sin(2

    ) =

    sin(

    2

    ) = Chew T S MA1506-14 Chapter 8 21

  • 8/11/2019 ChewMA1506-14 Ch8

    22/69

    8.2 Wave Equation8.2 wave equation

    Elastic string of length L

    tightly stretched

    The string is set in motion.It vibrates in vertical plane.

    Animation slide

    Chew T S MA1506-14 Chapter 8 22

  • 8/11/2019 ChewMA1506-14 Ch8

    23/69

    Let be vertical displacement at pt , at time( , ) y x t x t Let c be constant velocity of propagation

    of wave along string

    8.2 wave equation

    Animation slide

    x

    Chew T S MA1506-14 Chapter 8 23

  • 8/11/2019 ChewMA1506-14 Ch8

    24/69

  • 8/11/2019 ChewMA1506-14 Ch8

    25/69

    Now we shall use the method of S Vto solve the above wave equation

    Solution

    By MSV, let ( , ) ( ) ( ) y x t u x v t =

    Then ( , ) ( ) ( ) xx y x t u x v t =( , ) ( ) ( )tt y x t u x v t =

    Hence2

    ( , ) ( , ) xx tt c y x t y x t =implies 2 ( ) ( ) ( ) ( )c u x v t u x v t =

    8.2 wave equation

    Chew T S MA1506-14 Chapter 8 25

  • 8/11/2019 ChewMA1506-14 Ch8

    26/69

    Therefore2

    ( ) 1 ( )( ) ( )

    u x v t u x c v t

    = holds for

    ALL x, and t

    So 2( ) 1 ( )( ) ( )

    u x v t u x c v t

    = = for any fixed

    Hence ( ) ( ) 0u x u x + =2( ) ( ) 0v t c v t + =

    For convenience, we use -

    8.2 wave equation

    Chew T S MA1506-14 Chapter 8 26

  • 8/11/2019 ChewMA1506-14 Ch8

    27/69

    Now we shall solve

    ( ) ( ) 0u x u x + =with boundary conditions:

    (0, ) 0, ( , ) 0, for all 0 y t y L t t = = >i.e., (0) ( ) 0, ( ) ( ) 0, for all 0u v t u L v t t = = >

    i.e., (0) 0, ( ) 0u u L= =

    8.2 wave equation

    Chew T S MA1506-14 Chapter 8 27

  • 8/11/2019 ChewMA1506-14 Ch8

    28/69

    So now we solve

    ( ) ( ) 0u x u x + =with boundary conditions: (0) 0, ( ) 0u u L= =Recall the above equation is

    Sturm-Liouville equation.

    = 2, = 1,2, . . . Whenthere exists nonzero solution

    ( ) = sin

    8.2 wave equation

    Chew T S MA1506-14 Chapter 8 28

  • 8/11/2019 ChewMA1506-14 Ch8

    29/69

    now look at corresponding

    For

    2( ) ( ) 0v t c v t + =

    The general solution is

    ( ) cos sinn nn n

    v t A c t B c t L L = +

    However, from one of the initial conditions( ,0) 0t y x = i.e., (0) 0v = we have 0n B =

    = 2, = 1,2, . . . 8.2 wave equation

    Chew T S MA1506-14 Chapter 8 29

  • 8/11/2019 ChewMA1506-14 Ch8

    30/69

    So for each n,

    sin cosnn n

    A x c t L L

    is a solution of the given PDE

    with boundary conditions and initial condition( ,0) 0t y x =

    1sin cos

    m

    nn

    n n A x c t L L

    =

    Hence

    is again a solution

    8.2 wave equation

    Chew T S MA1506-14 Chapter 8 30

  • 8/11/2019 ChewMA1506-14 Ch8

    31/69

    1

    ( , ) sin cosnn

    n n y x t A x c t

    L L

    =

    =

    In fact

    is the general solution of the given PDE

    Now we shall use the 2nd

    initial condition

    to find the value ofn

    A( ,0) ( ) y x f x=

    8.2 wave equation

    Chew T S MA1506-14 Chapter 8 31

  • 8/11/2019 ChewMA1506-14 Ch8

    32/69

    1 1

    ( ) ( ,0) sin cos 0 sinn nn n

    n n n f x y x A x c A x

    L L L

    = =

    = = =

    1

    ( ) sinnn

    n f x A x

    L

    =

    =

    How to find n A

    where 0 x L<

    ( ,0) , ( ,0) 0, where 0t y x x y x x = = <

    (0, ) 0, ( , ) 0, for all 0 y t y t t = = >( ,0) , ( ,0) 0, where 0t y x x y x x = = <

    (0, ) 0, ( , ) 0, for all 0 y t y t t = = >

    ( ,0) sin(10 ), ( ,0) 0, where 0t y x x y x x = = <

    (0, ) 0, ( , ) 0, for all 0 y t y L t t = = >

    ( ,0) ( ), ( ,0) 0, where 0t y x f x y x x L= = <

    Chew T S MA1506-14 Chapter 8 48

    8 3 Heat Equation

  • 8/11/2019 ChewMA1506-14 Ch8

    49/69

    with boundary conditions:

    (0, ) 0, ( , ) 0, for any 0u t u L t t = = >

    0 0Temperatures are always ZERO at both end points

    with initial condition:

    ( ,0) ( ), where 0u x f x x L=