43
교수 한국항공대학교 항공전자 정보통신 공학부 Ch 8 Radar Signal Processing

Ch8 Radar Signal Processing

Embed Size (px)

DESCRIPTION

radar signal processing

Citation preview

  • Ch 8

    Radar Signal Processing

  • @Prof Y Kwag 2

    Lecture 8 : Radar Signal Processing

    Objective - - MTI, MTD - SAR

    - Introduction - Signal Integration - Correlation / Convolution - Moving Target Indicator (MTI) - Moving Target Detection (MTD) Doppler Processing - PRF Ambiguity - Improvement Factor - High Resolution Radar - SAR - Reference

  • @Prof Y Kwag 3

    Introduction

    RSP objective - Improve S/N and Pd of target - High clutter rejection - High Interference/jamming rejection - Exact information extraction : characteristics

    Environments - Clutter - surface, volume clutters - Interference jamming, ECM, spiky noise - Target RCS scintillation SW 1~4 - Noise & noise jamming = randomness(amp/phase) - Desired target = small, orderliness phase

    Differences between signal and noise - orderliness vs randomness in phase & amp - rate of changes of the phase of orderly signal

  • @Prof Y Kwag 4

    Introduction

    Processes - signal integration : vector sum, orderly from hit-to-hit - correlation(pulse compression) : matching the desired signal to the reference

    - filtering & spectrum analysis windowing used in correlation & spectral analysis to reduce leakage error

    convolution : windowing in time convolution in freq. Domain

    Block diagram - Digital pulse compression

    < Typical signal Processor, Digital Pulse Compression >

  • @Prof Y Kwag 5

    Introduction

    - Analog pulse compression

    < Typical signal Processor, Analog Pulse Compression >

    thresholdofiondetectctordeteCFAR

    timprovemenNISorNSbinsthealldistributenoiserandom

    binDopplertheointDopplerInphase

    shiftDopplerbycomponentssignalthesegregatesanalyzerSpectrum

    filteringclutterMTIfilteringSignal

    signaldtransmittetheofcopydelayedawithwaveechothecorrelatesfilterMatched

    ytemporarilstorageSignal

    bitofnumberconverterdigitaltoaloganDA

    jVVvoltagecomplexbinrangeperonceHS QI

    :

    )/(/

    :

    :

    :

    :

    :/

    ,:/

  • @Prof Y Kwag 6

    Sampling Range &Doppler

    Range Bin Rate - PRF : rate at which an individual target can change

    target sampling freq.

    phase shift from hit to hit caused by the Doppler shift.

    sample at a rate or equal to at least twice the highest Doppler

    frequency, otherwise Doppler ambiguity

    - Range/Doppler trade-off

    Range bin rate = A/D sampling

    = Range resolution

    Doppler sampling rate = PRF

    16 FFT (ex)

  • @Prof Y Kwag 7

    PRI Dwell Time, CPI,

    Burst, Scan

    SCAN

    DWELL TIME

    CPI

    RANGE

    CELL

    P1 P2 Pa P1 P2 Pa P1 P2 Pa

    Scani-1 Scani Scani+1

    DT1 DT2 DTk DTm-1 DTm

    R1 R2 Ri Rk Rj Rl

    CPI1 CPI2 CPI3

    Effective Range Guard Time

  • @Prof Y Kwag 8

    Radar Range-Gated Data Structure

    Bean of No. : 360

    K

    Pulse Interation of No. : T

    TN

    Cell Range of No. : T

    M

    BW

    i

    3 D Structure

    Rangel/Azimuth/Doppler

  • @Prof Y Kwag 9

    (1)

    (2)

    1st PRF 2nd PRF

    PRF

    f

    f

    Radar Echo Signal

  • @Prof Y Kwag 10

    (4) AMTI

    PRF

    f

    (3) MTI

    PRF

    f

  • @Prof Y Kwag 11

    PRF f

    PRF/N

    f

    (5) Doppler

    Filter Bank

    (FFT)

    (6) CFAR

    /

  • @Prof Y Kwag 12

    Signal Integration

    Non-Coherent Integration - Signal plus Noise

  • @Prof Y Kwag 13

    Signal Integration

    Non-Coherent Integration - Signal plus Clutter

  • @Prof Y Kwag 14

    Signal Integration

    Coherent Integration - Stationary Target

  • @Prof Y Kwag 15

    Signal Integration

    Coherent Integration - Bin-1 Moving Target

  • @Prof Y Kwag 16

    Signal Integration

    Integration Loss - Type of integration (coherent or non-coherent) - Number of pulse integrated - Required detection & false alarm probability - Target fluctuation statistics - Processing window used

    Coherent integration loss is determined by - processing window used

    Window loss for most window is less than 3 dB

    - target fluctuation statistics

  • @Prof Y Kwag 17

    Correlation

    Correlation - process of matching two waveforms in time domain - determine the time at the maximum correlation coefficient

    ncompressiopulsenapplicatio

    TikhiTxktz

    dthxtz

    N

    i

    :

    ])[()()(

    )()()(

    1

    0

    < Correlation >

  • @Prof Y Kwag 18

    Convolution

    Continuous Convolution

    1

    0

    ])[()()(

    )()()(

    N

    i

    TikhiTxkty

    dthxty

    < Convolution >

  • @Prof Y Kwag 19

    Gated CW Convolution

    Gated CW Convolution

    < Spectrum of Gated CW Wave from Convolution >

  • Clutter Rejection

    MTI and Pulse Doppler Processing

  • @Prof Y Kwag 21

    Air Defense Scenario

  • @Prof Y Kwag 22

    Terminology

  • @Prof Y Kwag 23

    Doppler Frequency

  • @Prof Y Kwag 24

    Example Clutter Spectra

  • @Prof Y Kwag 25

    MTI and Pulse Doppler Waveforms

  • @Prof Y Kwag 26

    MTI Processing

    Separate MTI Process

    < Separate MTI Process for Each Range Bin >

  • @Prof Y Kwag 27

    Two Pulse MTI Canceller

  • @Prof Y Kwag 28

    MTI Processing

    Single Delay Line Canceller

    )(kx )(ky

    T

    )(th

    )/sin(2)sin(2)(

    )2sin(4)(

    )(sin42cos2-2using

    )cos1(21111

    )()()()()(

    11)(

    )()()(

    )()()(

    22

    2

    *2

    1

    PRFffTwH

    wTwH

    wTeeee

    wHwHwhjwHjwH

    zewH

    Tttth

    Ttxtxty

    jwTjwTjwTjwT

    jwT

    PRF

    Amp

    2PRFf

  • @Prof Y Kwag 29

    MTI and Doppler Processing

    Double Delay Line Canceller (three pulse canceller)

    )(tx )(ty

    T

    T

    4212

    1

    2

    2121

    )2(sin16)()()(

    21)1()(

    )2()(2)()(

    wTwHwHwH

    zzzzH

    TtTttth

    )(tx

    )(ty

    T T

    1 2 1

    2

    0

    )()(k

    n knxnwy

    linedelaytapped

  • @Prof Y Kwag 30

    MTI and Doppler Processing

    Delay Line with Feedback (Recursive)

    )(tx

    )(ty

    T)(tv

    )(twk1

    factorgainchangek

    linedelaylesingwTeHkwhen

    wTkk

    wTeH

    wTazzezusingzzkk

    zz

    kzkz

    zzzH

    jwT

    jwT

    jwT

    9.0,7.0,25.0

    )cos1(2)(,0

    cos2)1(

    )cos1(2)(

    cos,)()1(

    )(2

    )1)(1(

    )1)(1()(

    2

    2

    2

    1

    12

    1

    1

    12

    1

    1

    1

    1

    1)(

    )()(

    )()()(

    )()1()()(

    )()(

    )()()(

    )()1()()(

    kz

    zzH

    zvzzW

    zWzYzV

    zWkzXzY

    Ttvtw

    twtytu

    twktxty

  • @Prof Y Kwag 31

    Moving Target Indicator (MTI) Processing

  • @Prof Y Kwag 32

    clitterchaffandraingroundtoMTIcancellerdoubleaofeResponc ,,*

    Clutter Spectrum Characteristics

  • @Prof Y Kwag 33

    MTI Improvement Factor

  • @Prof Y Kwag 34

    MTI Improvement Factor Examples

  • @Prof Y Kwag 35

    Pulse Doppler Processing

  • @Prof Y Kwag 36

    Moving Target Detector (MTD)

  • @Prof Y Kwag 37

    MTI and Doppler Processing

    PRF Stagger - Blind Doppler occurs when the freq. shift is an integer multiple of sample rate (PRF)

    pulse-to-pulse PRF stagger

    look-to-look & scan-to-scan stagger

    ratesamplePRF

    freqtransmitf

    velocityradialblindv

    ern

    shiftDopplerblindfwhere

    vf

    f

    PRFncv

    PRFnf

    T

    B

    B

    d

    T

    B

    B

    :

    .:

    :

    0integ:

    :

    2

    2

  • @Prof Y Kwag 38

    Staggered PRFs to Increase Blind Speed

  • @Prof Y Kwag 39

    Blind Rejection Filter

    Staggering Filter Response

    HzPRF 6001

    HzPRF 7502

    )(

    )(

    6000:2,3000:1

    staggerpulsetopulsePRFlowinonlystaggeringDe

    PRFstwoofLCMMultipleCommonLeast

    HznullndHznullstPRFstwoofncombinatio

    Clutter rejection ratio

    blind speed

    .

    < Three Delay Non-Recursive Filter Response >

  • @Prof Y Kwag 40

    Range Ambiguities

  • @Prof Y Kwag 41

    Doppler Ambiguities

  • @Prof Y Kwag 42

    Unambiguous Range and Doppler Velocity

  • @Prof Y Kwag 43

    Limitation on Improvement Factor

    Limitations on the Improvement Factor With good canceller or filter bank design, cancellation can be

    essentially perfect if

    - The antenna is stationary (not scanning)

    - The clutter is totally stationary, with a zero width spectrum

    - Enough rang sweeps are gathered to totally charge the canceller,

    or in the case of a filter bank, the number of points processed is large

    - The system is totally linear

    - Pulse-to-pulse stagger is not necessary to avoid blind Doppler shifts

    Many MTI systems are specified and tested with the antenna stationary.

    Scanning is, of all the factors listed, the most important in limiting the

    improvement of MTI and MTD. Without scanning or with step-scanning,

    the same antenna gain is pointed at the clutter throughout the dwell

    and the echo from non-moving clutter is constant.