CHUYÊN ðỀ DÃY SỐ (BDHSG) · PDF fileu2011 = + −5 12.2011 13. Theo ñịnh lí Phécma thì 52010 −1 2011

  • Upload
    lamdat

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • CHUYN DY S (BDHSG)

    1. KHI NIM DY S 1) Cho A l mt tp con khc rng ca tp s nguyn , hm s u : A

    nn u(n) u= c gi l mt dy s, v k hiu l n(u ) hoc { }nu . Thng thng ta hay chn A sao cho phn t nh nht ca A l 1. Dy (un) gi l dy s hu hn (hoc dy s v hn) nu A l tp hp gm hu hn (v hn) phn t. S un c gi l s hng tng qut ca dy (un). 2) Dy s (un) c gi l dy s tng (tng khng nghim ngt, gim, gim khng nghim ngt) nu n n 1u u +< (tng ng n n 1u u + , n n 1u u +> , n n 1u u + ) vi mi n A. 3) Dy s (un) c gi l tun hon nu tn ti s nguyn dng k sao cho n k nu u , n A.+ = S k nh nht tho mn tnh cht ny c gi l chu k ca dy tun hon (un). Nu k = 1 th ta c mt dy hng (tt c cc s hng bng nhau). 4) Dy s (un) c gi l b chn trn nu tn ti s thc M sao cho nu M vi mi n A. Dy s (un) c gi l b chn di nu tn ti s thc m sao cho nu m vi mi n A. Dy s (un) c gi l b chn (hoc gii ni) nu n va b chn trn va b chn di, tc l tn ti s thc M, m sao cho nm u M vi mi n A, hoc tn ti s thc C sao cho nu C, n A. Dy s hu hn hoc tun hon th lun b chn. 2. CP S 1) Cp s cng - Dy s (un) c gi l cp s cng nu mi s hng u tho mn n 1 nu u d+ = (d: hng s, gi l cng sai). - Cng thc truy hi: n 1 nu u d.+ = + Cng thc s hng tng qut: n 1u u (n 1)d, n A.= + Cng thc tnh

    tng n s hng u tin: n 1 n 1 1n n n(n 1)

    S (u u ) (2u (n 1)d) nu d.2 2 2

    = + = + = + Tnh cht cc s hng:

    k 1 k 1 ku u 2u .+ + = 2) Cp s nhn - Dy s (un) c gi l cp s nhn nu mi s hng u tho mn n 1 nu u .q+ = (q: hng s, gi l cng bi).

    - Cng thc truy hi: n 1 nu u .q.+ = Cng thc s hng tng qut: n 1

    n 1u u .q .= Cng thc tnh tng n s hng

    u tin: n 1S nu= nu q = 1, n 1

    n 11 q

    S u1 q

    +=

    nu q 1. Tnh cht cc s hng: 2k 1 k 1 ku .u u .+ =

    3) Cp s nhn cng - Dy s (un) c gi l cp s nhn cng nu mi s hng u tho mn n 1 nu u .q d+ = + (q, d l hng s). 4) Cp s iu ho

    - Dy s (un) c gi l cp s iu ho nu mi s hng ca n u khc 0 v tho mn n 1 n 1nn 1 n 1

    2u uu ,

    u u +

    +=

    +

    hay n n 1 n 1

    1 1 1 1( ).

    u 2 u u += + (Hc sinh t n tp cc dng ton v cp s)

    3. XC NH S HNG TNG QUT CA DY S 3.1. D ON S HNG TNG QUT V CHNG MINH BNG QUI NP BI TP 1) Xc nh s hng tng qut ca dy s cho bi:

    n1 n 1 1 n 1 n

    n

    2 n1 n 1 n n 1 n 1

    n

    ua)u 1, u , n 1, 2,3,... b)u 2, u 2 u , n 1, 2,3,...

    1 u

    3 1 ( 3 1)u3 5 3 1c)u 1, u u u 1, n 1, 2,3,... d)u , u , n 1, 2,3,.

    2 2 3 1 3 1 ( 3 1)u

    + +

    + +

    = = = = = + =+

    + += = + + = = = =+ +

    ..

    [email protected]

    www.VNMATH.com

  • 2 21 n 1 n 1 n 1 n n

    1 1e)u ,u 2u 1, n 1,2,3,... f )u , u 2u 1 u , n 1, 2,3,...

    2 2+ += = = = = =

    3.2. MT S DNG TRUY HI C BIT Vi dy s cho bi cng thc truy hi dng n 1 nu u f (n)+ = + th n 1u u f (1) f (2) ... f (n 1).= + + + + Vi dy s cho bi cng thc truy hi dng n 1 nu u .g(n)+ = th n 1u u .g(1).g(2)...g(n 1).= BI TP 2) Xc nh s hng tng qut ca dy s cho bi:

    2n

    1 n 1 n 1 n 1

    3 2 n1 n 1 n 1 n 1 n

    1 n 1 n

    (n 1) ua)u 1, u u n!.n, n 1, 2,3,... b)u 1, u , n 1, 2,3,...

    n(n 2)

    c)u 1, u u n 3n 3n 1, n 1, 2,3,... d)u 3, u u 3 , n 1, 2,3,...

    e)u 1, u u (n 1).

    + +

    + +

    +

    += = + = = = =+

    = = + + + = = = + =

    = = + + n 1 n 1n

    2

    1 n 1 n 1 n 1 n

    12 , n 1, 2,3,... f )u 2, u 2 , n 1, 2,3,...

    u

    n 1 ng)u 1, u u , n 1, 2,3,... h)u 0, u (1 u ), n 1, 2,3,...

    n n 1

    +

    + +

    = = = =

    = = = = = + =+

    3.3. PHNG TRNH C TRNG Ta ch xt hai trng hp n gin sau y:

    a) Xt dy s (un) cho bi 1 2 n 2 n 1 nu ,u ,u a.u b.u , n * (a,b const). + += + = Khi phng trnh 2x ax b 0 =

    c gi l phng trnh c trng ca dy s cho.

    Nu phng trnh trn c hai nghim thc phn bit 1 2x , x th n n

    n 1 2u A.x B.x .= +

    Nu phng trnh trn c hai nghim thc trng nhau 1 2x x= th n

    n 1u (A nB).x .= + Nu phng trnh trn c 0 < , gi hai nghim phc ca n l 1 2x , x , v biu din hai s phc ny dng lng gic 1 2x r(cos i.sin ), x r(cos i.sin ),= + = vi r, l cc s thc, r l mun ca 1x v 2x ,

    [ )0;2 , i l n v o, th nnu r (A.cos n B.sinn ).= + ( cc hng s A, B c xc nh nh 1 2u , u ) b) Xt dy s (un) cho bi 1 2 3 n 3 n 2 n 1 nu ,u ,u ,u a.u b.u c.u , n * (a,b,c const) + + += + + = c phng trnh c

    trng 3 2x ax bx c 0. = Nu phng trnh trn c ba nghim thc phn bit 1 2 3x , x , x th

    n n nn 1 2 3u A.x B.x C.x .= + +

    Nu phng trnh trn c ba nghim thc 1 2 3x , x , x m 1 2 3x x x = th n n

    n 1 2u A.x (B nC).x .= + +

    Nu phng trnh trn c ba nghim thc 1 2 3x , x , x v 1 2 3x x x= = th 2 n

    n 1u (A nB n C).x .= + + Nu phng trnh trn c ba nghim 1 2 3x , x , x trong 1x l nghim thc, cn hai nghim

    2x r(cos i.sin ),= + 3x r(cos i.sin )= l hai nghim phc (khng phi l s thc) th n n

    n 1u A.x r (B.cos n C.sinn ).= + + ( cc hng s A, B, C c xc nh nh 1 2 3u , u ,u )

    VD1. Cho dy s n(u ) xc nh bi 1 2 n 2 n 1 nu 1,u 0, u u u , n *.+ += = = Chng minh n(u ) b chn.

    HD. Phng trnh c trng ca dy s cho l 2x x 1 0 + = c hai nghim phc 1x cos i.sin ,3 3 = +

    2x cos i.sin ,3 3

    = nn nnn n

    u 1 (A.cos B.sin ), n *.3 3

    = + Do 1 2u 1,u 0,= = nn ta c

    1

    2

    A B 3 A 11 A.cos B.sin ( u ) 13 3 2 2 .32 2 BA B 30 A.cos B.sin ( u ) 0 33 3 2 2

    == + = + = = = + = + =

    TM SNG CH BN

    [email protected]

    www.VNMATH.com

  • Suy ra nn 3 n

    u cos .sin , n *.3 3 3

    = + Vy 2 2nn 3 n 3 2

    u cos .sin 1 ( ) , n *,3 3 3 3 3

    = + + = hay

    n(u ) l dy b chn.

    VD2. Cho n(u ) c 1 2 3 n 3 n 2 n 1 nu 0,u 16,u 47,u 7u 11u 5u , n *.+ + += = = = + Tm d khi chia 2011u cho 2011.

    HD. Phng trnh c trng 3 2x 7x 11x 5 0 + = c 3 nghim thc 1x 5= (nghim n), 2 3x x 1= = (nghim

    kp) do n nnu A.5 (B nC).1 , n *.= + + V 1 2 3u 0,u 16,u 47= = = nn 1

    A ,B 13,C 12.5

    = = = Suy ra

    n 1nu 5 12n 13, n *.

    = + T 20102011u 5 12.2011 13.= + Theo nh l Phcma th 20105 1 2011 (nh

    l Phcma: Nu p l s nguyn t, a l s nguyn v (a, p) = 1, th p 1a 1 (mod p)). Vy 2011u chia cho 2011 d 12 (hay d 1999).

    VD3. Cho hai dy s n n(x ), (y ) tho mn 1 1 n 1 n n n 1 n nx y 1, x 4x 2y , y x y , n *.+ += = = = + Xc nh cng thc ca n nx , y .

    HD. Ta c n 2 n 1 n 1 n 1 n n n 1 n n n 1 n n 1 nx 4x 2y 4x 2(x y ) 4x 2x 2y 4x 2x x 4x+ + + + + + += = + = = + hay

    n 2 n 1 nx 5x 6x ( n *). + += Dy n(u ) c phng trnh c trng 2x 5x 6 0 x 2 + = = hoc x = 3. Suy ra

    n nnx A.2 B.3 , n *.= + M 1 2 1 1x 1, x 4x 2y 2,= = = nn

    1A , B 0,

    2= = v ta c n 1nx 2 , n *.

    = T

    v n 1n 1 n n nx 4x 2y y 2 .

    + = = Vy n 1

    n nx y 2 , n *.= =

    3.4. PHNG PHP DY S PH VD4. Cho dy s n 1 2 n 2 n 1 n(u ) : u 1,u 2,u 2.u u 1, n *.+ += = = + t n n 1 nv u u .+= Chng minh n(v ) l cp s cng v tm nu .

    HD. a) Ta c 1 2 1v u u 1.= = V n 2 n 1 n n 2 n 1 n 1 nu 2.u u 1, n * u u u u 1, n *+ + + + += + = +

    n 1 nv v 1, n *.+ = + Vy n(v ) l cp s cng vi s hng u tin 1v 1,= cng sai d = 1. b) T cu a ta c n 1v v (n 1).d 1 (n 1).1 n,= + = + = hay n 1 nu u n, n *.+ = Suy ra n n n 1 n 1 n 2u (u u ) (u u ) = + +

    2

    2 1 1(n 1).n n n

    ... (u u ) u [(n 1) (n 2) ... 2 1] 1 1 1, n *.2 2 2

    + + + = + + + + + = + = +

    VD5. Cho dy s n 1 2 n 2 n 1 n2 1

    (u ) : u 0, u 1,u .u u , n *.3 3+ +

    = = = + t n n 1 nv u u .+= Chng minh n(v ) l

    cp s nhn v tm nu .

    HD. Ta c 1 2 1v u u 1.= = V n 2 n 1 n n 2 n 1 n2 1

    u .u u , n * 3u 2u u , n *3 3+ + + +

    = + = +

    n 2 n 1 n 1 n3(u u ) (u u ), n *+ + + = n 1 n1

    v v , n *.3+ = Vy n(v ) l cp s nhn vi s hng u tin

    1v 1,= cng bi 1

    q .3 =

    Ta c n 1 n 1n 11

    v v .q ( ) ,3

    = = n *. Suy ra n n n 1 n 1 n 2 2 1 1 n 1 n 2u (u u ) (u u ) ... (u u ) u v v = + ++ + + = + +

    n 1

    2 n 22 1 1 n

    11 ( )1 1 1 3 93... v v u 0 1 ( ) ( ) ... ( ) 1. , n *.

    13 3 3 4 4.( 3)1 ( )3

    + + + + = + + + + + = = +

    VD6. Tm s hng tng qut ca dy s ( nu ) c 1 1, . , *,+= = + + nnu c u q u an d n a, c, d, q l hng s.

    [email protected]

    TM SNG CH BN

    www.VNMATH.com

  • HD. Vi q = 1 th 1 , *nnu u an d n+ = + + . Ta nhn thy 2 1 3 2u u a d,u u 2a d,...,= + + = + +

    n 1 n 2 n n 1 2 3 n 1 n 1 2 n 2 n 1

    n 1 n

    ... ...

    n(n 1) n(n 1)a(1 2 ... (n 2) (n 1)) (n 1)d a (n 1)d c a (n 1)d, (n *).

    2 2

    u u (n 2)a d,u u (n 1)a d u u u u u u u u

    u u u

    + + + + = + + + + + + + + + + + = + + = + +

    = + + = + +

    Khi q 1, ta s xt mt dy ph ( nv ) tha mn , *,n nu v bn e n= + + b, e l nhng hng s, v ta c gng chn b, e thch hp ( nv ) l cp s nhn. T ng thc truy hi ban u ta c

    1 ( ) ( ), *,+ = + + + + n nv qv qb a b n qe d b e n v d thy ( nv ) l cp s nhn th cn c

    qb a b+ = qe d b e+ = 0 2 ,(q 1),1 ( 1)a d a qd

    b eq q

    = =

    . Lc ny (vi b, e nh trn) do 1n nv qv+ =

    nn ( nv ) l cp s nhn c cng bi q. Suy ra nv = 11

    .n

    qv = 11 2( ).( 1)naq dq du q

    q+ +

    , t ta tnh c s hng

    tng qut ca ( nu ) l 1

    1 2 2.( ). 1 ( 1)( 1)

    nn

    aq dq d d a qda nu u q q qq= + + + +

    (n 2).

    Vy, s hng tng qut ca ( nu ) cho l : 1

    2 2

    ( 1)( 1) , 1

    2

    , 1.( ). 1 ( 1)( 1)

    + + ==

    + + + +

    nn

    n nc a n d khi q

    khi qu

    aq dq d d a qda nc qq qq

    .

    BI TP

    3) Cho n(u ) : n

    1 n 1n

    3 2uu 0,u , n