CIDER Seismo2 Romanowicz b

  • Upload
    cyrill

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    1/60

    SeismologyLecture 2

    Normal modes and surface waves

    Barbara Romanowicz

    Univ. of California, Berkeley

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    2/60

    From Stein and Wysession, 2003CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    3/60

    P SSS

    Surface waves

    Loma Prieta (CA) 1989 M 7 earthquake observed at KEV, Finland

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    4/60

    From Stein and Wysession, 2003

    Shallow earthquake

    CIDER Summer 2010 - KITPone hour

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    5/60

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    6/60

    Surface waves Arise from interaction of body waves with free

    surface. Energy confined near the surface

    Rayleigh waves: interference between P and SV waves

    exist because of free surface

    Love waves: interference of multiple S reflections.Require increase of velocity with depth

    Surface waves are dispersive: velocity depends onfrequency (group and phase velocity)

    Most of the long period energy (>30 s) radiated fromearthquakes propagates as surface waves

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    7/60

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    8/60

    After Park et al, 2005CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    9/60

    Free oscillations

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    10/60

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    11/60

    The kth free oscillation satisfies:

    SNREI model; Solutions of the form

    k = (l,m,n)

    Lt

    )(2

    2

    0 u

    u

    )( 20 kkk uuL

    i

    kru),,(u

    CIDER Summer 2010 - KITP

    Free Oscillations (Standing Waves)

    0

    2uL(u)

    In the frequency domain:

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    12/60

    Free Oscillations

    In a Spherical, Non-Rotating, Elastic and Isotropic Earth model,

    the kth free oscillation can be described as:

    l = angular order; m = azimuthal order; n = radial order

    k = (l,m,n) singlet

    Degeneracy:

    (l,n): multiplet = 2l+1 singlets with the same eigenfrequency nl

    i

    kru),,(

    u

    uk(r,,)r

    nU

    l(r)Y

    l

    m(,)nV

    l(r)

    1Yl

    m(,) nW

    l(r)r

    1Yl

    m(,)

    knl

    lmlYlm

    (,)Xlm

    ()eim

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    13/60

    Spheroidal modes : Vertical & Radial component

    Toroidal modes : Transverse component

    nTl

    l: angular order, horizontal nodal planes

    n: overtone number, vertical nodes

    n=0

    n=1

    CIDER Summer 2010 - KITP

    Fundamentalmode

    overtones

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    14/60Spheroidal modes

    n=0

    nSl

    S i l h

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    15/60

    Spatial shapes:

    D th iti it k l f th l d

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    16/60

    Depth sensitivity kernels of earths normal modes

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    17/60

    53.9

    44.2

    20.9

    dr=0.05m

    0T22S1

    0S30S2

    0T4

    1S2

    0S5

    0

    S0

    0S43S1

    2S2

    1S3

    0T3

    Sumatra Andaman earthquake 12/26/04 M 9.3

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    18/60

    Rotation, ellipticity, 3D heterogeneityremoves the degeneracy:

    -> For each (n, l) there are 2l+1 singletswith different frequencies

    0S2 0S3

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    19/60

    0S2 0S3

    2l+1=5 2l+1=7

    mode S 7 singlets

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    20/60

    mode 0S3 7 singlets

    G hi l iti it k l K ( )

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    21/60

    Geographical sensitivity kernel K0(,)

    0S45

    0S3

    Mode frequency shifts

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    22/60

    o

    frequency

    Frequency shift depends only on the average structure along the vertical planecontaining the source and the receiver weighted by the depth sensitivity ofthe mode considered:

    Mode frequency shifts

    SNREI->

    dk

    1

    2d(s)ds

    d(,) Mkk

    (r)dm0

    a

    (r,,)r2dr

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    23/60

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    24/60

    Anomalous splitting of core sensitive modes

    Data

    Model

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    25/60

    Mantle mode

    Core mode

    S i b d ti

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    26/60

    Seismograms by mode summation

    Mode Completeness:

    u Re akk

    (t)uk(r,,)eiktekt

    Orthonormality (L is an adjoint operator):

    0uk'* u

    kdVd

    kk'

    V

    Lt

    )(2

    2

    0 u

    u

    * Denotes complex conjugate

    Depends on source excitation f

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    27/60

    Normal mode summation 1D

    A : excitationw : eigen-frequencyQ : Quality factor ( attenuation )

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    28/60

    Spheroidal modes : Vertical & Radial component

    Toroidal modes : Transverse component

    nTl

    l: angular order, horizontal nodalplanes

    n: overtone number, vertical nodes

    n=0

    n=1

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    29/60

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    30/60

    P SSS

    Surface waves

    Loma Prieta (CA) 1989 M 7 earthquake observed at KEV, Finland

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    31/60

    u(t) Re Akk

    eiktektStanding waves and travelling waves

    Ak----linear combination of moment tensor elements and

    spherical harmonics Ylm

    When l is large (short wavelengths):

    Yl

    m(,) 1

    sincos (l

    1

    2)

    4m

    2

    eim

    Replace x=a , where is angular distance and x linear distance along the earths

    surface

    Jeans formula : ka = l + 1/2

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    32/60

    Yl

    m(,)

    1

    sin cos kx

    4m

    2

    eim

    12 sin

    ei(kx

    4m

    2)

    ei(kx

    4m

    2)

    Hence:

    u(t) Re Akk

    eiktekt

    ei(ktkx)

    ei(ktkx)Plane waves

    propagating

    in opposite

    directions

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    33/60

    -> Replace discrete sum over lby continuous

    sum over frequency (Poissons formula):

    u(x,t) S()ei(tkx)d

    With k=k() (dispersion)k k()

    Phase velocity:

    C()

    k

    S is slowly varying with ; The main contribution to the integral is when

    the phase is stationary:

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    34/60

    S is slowly varying with ; The main contribution to the

    integral is when the phase is stationary:

    dd

    t dk

    dx 0 For some frequency s

    The energy associated with a particular group

    centered on stravels with the group velocity:

    U()x

    td

    dk

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    35/60

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    36/60

    Rayleigh phase velocity maps

    Reference: G. MastersCIDER 2008

    Period = 50 s Period = 100 s

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    37/60

    Group velocity maps

    Period = 100 sPeriod = 50 s

    Reference: G. Masters CIDER 2008

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    38/60

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    39/60

    Importance of overtones for constraining structurein the transition zone

    n=0: fundamental mode

    n=1n=2

    overtones

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    40/60

    Overtones By including overtones, we cansee into the transition zone andthe top of the lower mantle.

    from Ritsema et al, 2004

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    41/60

    Ritsema et al.,

    2004

    FundamentalMode

    Surfacewaves

    Overtonesurface waves

    Body waves

    120 km

    325 km

    600 km

    1100 km

    1600 km

    2100

    km

    2800 km

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    42/60

    Anisotropy

    In general elastic properties of a material vary withorientation

    Anisotropy causes seismic waves to propagate atdifferent speeds in different directions

    If they have different polarizations

    f

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    43/60

    Types of anisotropy

    General anisotropic model: 21independent elements of the elastictensor cijkl

    Long period waveforms sensitive to asubset (13) of which only a small numbercan be resolved

    Radial anisotropy Azimuthal anisotropy

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    44/60

    Montagner andNataf, 1986

    Radial

    Anisotropy

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    45/60

    Radial (polarization) Anisotropy

    Love/Rayleigh wave discrepancy Vertical axis of symmetry A=Vph2,

    C=Vpv2,

    F,

    L= Vsv2,

    N= Vsh2(Love, 1911)

    Long period S waveforms can only resolve L , N

    => x= (Vsh/Vsv) 2

    dln x=2(dln VshdlnVsv)

    A i th l i t

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    46/60

    Azimuthal anisotropy

    Horizontal axis of symmetry Described in terms of y, azimuth with

    respect to the symmetry axis in the

    horizontal plane 6 Terms in 2y(B,G,H) and 2 terms in 4y(E) Cos 2y-> Bc,Gc, Hc

    Sin 2y-> Bs,Gs, Hs

    Cos 4y-> Ec

    Sin 4y-> Es

    In general, long period waveforms can resolve Gcand Gs

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    47/60

    Montagner and Anderson, 1989

    Vectorial tomography:

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    48/60

    Vectorial tomography: Combination radial/azimuthal (Montagner and

    Nataf, 1986):

    Radial anisotropy with arbitrary axisorientation (cf olivine crystals oriented inflow) orthotropic medium

    L,N, Y, Q

    x

    y

    z

    Axis of symmetry

    CIDER Summer 2010 - KITP

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    49/60

    Montagner, 2002

    x= (Vsh/Vsv)2

    Radial

    Anisotropy

    Isotropic

    velocity

    Azimuthal

    anisotropy

    Depth= 100 km

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    50/60

    Montagner, 2002

    Ekstrom and Dziewonski, 1997

    Pacific ocean radial anisotropy: Vsh > Vsv

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    51/60

    Gung et al., 2003

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    52/60

    Marone and Romanowicz, 2007

    Absolute Plate Motion

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    53/60

    Continuous lines: % Fo (Mg)fromGriffin et al. 2004Grey: Fo%93

    black: Fo%92 Yuan and Romanowicz, in press

    Layer 1 thickness

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    54/60

    y

    Mid-continental rift zone

    Trans HudsonOrogen

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    55/60

    Finite frequency effects

    CIDER Summer 2010 - KITP

    Structure sensitivity kernels: path average approximation (PAVA)versus Finite Frequenc (B rn) kernels

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    56/60

    versus Finite Frequency ( Born) kernels

    SR

    M

    SR

    M

    PAVA

    2DPhase

    kernels

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    57/60

    Panning et al., 2009

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    58/60

    Waveform tomography

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    59/60

    Waveform Tomography

  • 8/13/2019 CIDER Seismo2 Romanowicz b

    60/60

    observed

    synthetic

    Wa form omography