33
LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN 8.1. ECUACIÓN CARTESIANA DE LA CATENARIA Un cable flexible de peso uniformemente distribuido, sujeto entre dos apoyos por los puntos A y B situados a la misma altura, forma una curva llamada catenaria. La distancia “f” entre el punto más bajo situado en el centro de la curva y la recta AB, que une los apoyos, recibe el nombre de flecha. Se llama vano a la distancia "a" entre los dos puntos de apoyo o de amarre A y B. Los postes o estructuras deberán soportar las tensiones T A y T B que ejerce el conductor en los puntos de amarre. La tensión T = T A = T B dependerá de la longitud del vano, del peso del conductor, de la temperatura y de las condiciones atmosféricas.

CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

  • Upload
    others

  • View
    22

  • Download
    2

Embed Size (px)

Citation preview

Page 1: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

123

CAPITULO 8

CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN

8.1. ECUACIÓN CARTESIANA DE LA CATENARIA

Un cable flexible de peso uniformemente distribuido, sujeto entre dos apoyos por los puntos A y B situados a la misma altura, forma una curva llamada catenaria. La distancia “f” entre el punto más bajo situado en el centro de la curva y la recta AB, que une los apoyos, recibe el nombre de flecha. Se llama vano a la distancia "a" entre los dos puntos de apoyo o de amarre A y B.

Los postes o estructuras deberán soportar las tensiones TA y TB que ejerce el conductor en los puntos de amarre. La tensión T = TA = TB dependerá de la longitud del vano, del peso del conductor, de la temperatura y de las condiciones atmosféricas.

Page 2: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

124

Condición de equilibrio del arco de catenaria OQ

Sea: L = Longitud del arco de la catenaria OQ T = Tensión mecánica en el punto Q H = Tensión mecánica en el punto inferior de la catenaria O

W = Peso del cable por unidad de longitud (incluye sobrecargas) Se pueden escribir las siguientes ecuaciones de equilibrio para el arco de la catenaria OQ

)B(WLTsen:F

)A(HcosT:F

y

x

00

De las ecuaciones anteriores

y

x

T

W.L

H

β

Page 3: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

125

)C(dxH

L.Wdy

dxdy

HL.Wtg

Por otro lado L

WHL

dyLW

HdydydxdydydxdL

2

22

22

2222 11

2

22

1

2

22

WHLCyegrandoint

dL

WHL

Ldy

Si se considera un nuevo eje referencia O´x´ paralelo al Ox y a una distancia de este

igual a hWH

Se cumple si L=0 entonces hWHy de donde C1 = 0

Page 4: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

126

Por tanto

)E(dL

WHL

Ldy

hLWHLy

2

22

222

22

igualando ( C ) y ( E )

dL

WHL

LdxH

WLdy

2

22

22 hLdLhdx

integrando

22

2 LhLlnhCx

Cuando L=0 entonces x=0 de donde C2=h ln(h)

Por tanto

22 LhLlnh)hln(hx

hLhLlnhx

22

hLhLln

hx 22

hLhLe h

x 22

22 LhLeh hx

………(F)

Invirtiendo ecuación (F) 22

11

LhLeh hx

Multiplicando numerador y denominador del segundo miembro por LLh 22

Page 5: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

127

LLhLLh

LhLeh hx

22

22

2211 siendo una diferencia de cuadrados

2

22

222

221h

LLhL)Lh(

LLh

eh hx

)G(LLheh hx

22

Sumando (F) y (G)

)E(conigualandoLhhxcoshh

Lheeh hx

hx

22

22

2

2

hxcoshhy Ecuación cartesiana de la catenaria

La longitud de la catenaria se obtiene restando (F) – (G)

LLLhLhLeheh hx

hx

22222

2

hx

hx

eehL

hxsenhhL Longitud de la catenaria

La tensión mecánica en un punto Q de la catenaria de coordenadas x, y se puede obtener de las ecuaciones (A) y (B) elevando al cuadrado y sumando.

2222222 LWHsenTcosT

2

2

22222 L

WHWsencosT

Page 6: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

128

2222 LhWT

Sustituyendo la ecuación (E) 222 hLy

yWTyWT

222

Como

hxcoshhy

hxcosh

WHW

hxcoshhWT

hxcoshHT Tensión del cable en el punto Q

8.2. FÓRMULAS DE LA CATENARIA

a = Vano o claro en (m) f = Flecha (m) H = Tensión mecánica en el punto más bajo de la catenaria (kg) T = Tensión mecánica en los puntos Q y Q´ (kg) W = Peso del cable por metro (kg/m) L = Longitud del arco de la catenaria Q-Q´ (m)

Page 7: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

129

Para el caso particular hfy

ax

2 se tiene

1

21

2 HaWcosh

WH

hacoshhf

HaWsenh

WH

hasenhhL

22

22

HaWcoshH

hacoshHT

22

Como 2H>>Wa entonces 12

HaWcosh

Entonces aproximadamente se considera T=H

8.3. FÓRMULAS PARA LA PARÁBOLA

La ecuación cartesiana de la catenaria es

hxcoshhy

Desarrollando el coseno hiperbólico en una serie infinita

4

4

2

2

2421

hx

hxhy

Tomando los dos primeros términos no se comete error apreciable siempre que la flecha sea menor al 10% del vano (lo que normalmente ocurre)

hxhy2

2 ecuación de la parábola

Como también hfy entonces

Page 8: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

130

hxf2

2 pero

WHhax

2

HaWf

8

2 pero como H ≈ T

TaWf

8

2

Si StT

SwW

w (kg/m-mm2) T (kg/mm2) S (mm2)

tawf

8

2

Para vanos de hasta unos 500 metros la forma de la curva de la catenaria se puede equiparar a la forma de una parábola, lo que permite ahorrar unos complejos cálculos matemáticos, obteniendo, sin embargo, una exactitud más que suficiente.

Con la sustitución de la parábola en vez de la catenaria y para vanos menores a 400 m, que es muy corriente y con flechas menores del 3% del vano, el error que se comete en la determinación de la flecha es del orden del 0,1%

La catenaria deberá emplearse necesariamente en vanos superiores a los 1000 metros de longitud, ya que cuanto mayor es el vano menor es la similitud entre la catenaria y la parábola.

El valor de la tensión T, es la tensión de trabajo, que de ninguna manera debe sobrepasar la tensión de rotura del cable (TR), pues de lo contrario este se rompería. Entonces, puesto que el cable no debe trabajar nunca en condiciones próximas a la de rotura, se deberá admitir un cierto coeficiente de seguridad (CS) tal que

sR

CTT

El Reglamento de Líneas de Alta Tensión admite coeficientes de seguridad mínimos

Page 9: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

131

Ejemplo. Comparación entre la catenaria y la parábola

Con un cable ACSR Duck (605,000 MCM) calculamos las flechas para distintos vanos con un coeficiente de seguridad de 4,5. El conductor Duck presenta una tensión de rotura (TR) de 10.210 kg y un peso unitario (W) de 1,158 kg/m.

La flecha para la catenaria es:

1

21

2 TaWcosh

WT

HaWcosh

WHf

La flecha para la parábola es: TaWf

8

2

Los valores que se sustituyen son :

)kg(,,C

TTSR 892268

5410210

; W=1,158 (kg/m)

De esta manera se elabora la tabla siguiente en la que aparece la longitud del vano en metros, la flecha para la catenaria y para la parábola en metros y la diferencia entre los dos valores expresada en tanto por ciento.

VANO CATENARIA PARÁBOLA %

100 0,63801 0,63798 0,0047

200 2,55246 2,55191 0,0216

400 10,21650 10,20763 0,0868

600 23,01208 22,96718 0,1951

800 40,97255 40,83054 0,3466

1000 64,14469 63,79772 0,5409

1200 92,58888 91,86871 0,7778

Como se puede verificar en la tabla, es suficiente aproximación el empleo de la parábola, sobre todo para vanos inferiores a 1000 metros.

Page 10: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

132

Dada la flecha que se produce en un vano, la longitud del conductor no es igual a la distancia entre los postes. Por lo tanto, para hallar el valor exacto del conductor empleado, se obtendrá la expresión de la longitud del conductor en un vano, en función de la distancia entre los postes, del peso del conductor y la tensión de flechado.

hasenhhL

22 desarrollando el seno hiperbólico de una serie infinita

5

5

3

3

252322

)h(!a

)h(!a

hahL

Tomando en cuenta únicamente los dos primeros términos

2

32

2

3

2

3

3

3

2424

244822

HaWa

WH

aah

aah

ahahL

2

32

24 TaWaL

o en función a la flecha

afaL

38 2

Ejemplo

Hallar la longitud de un cable en un vano de 400 m que tiene una flecha de 10 m.

Aplicamos la fórmula que relaciona la longitud del conductor con el vano y con la flecha:

)m(,..

afaL 67400

4003108

40038 22

Como se observa cómo el vano es prácticamente igual a la longitud del cable, pese a que la flecha es relativamente grande.

Page 11: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

133

8.4. SOBRECARGAS

Para realizar el cálculo mecánico de un conductor es necesario conocer cuáles son las fuerzas que actúan sobre el mismo. El primer dato que debe considerarse es el propio peso del conductor, pero además existirán sobrecargas importantes debidas a las inclemencias atmosféricas (hielo y/o viento).

8.4.1. Sobrecarga del viento.

Se puede decir que la fuerza ejercida por el viento sobre un cuerpo es directamente proporcional al cuadrado de la velocidad del viento y a la superficie expuesta

mkgd.v.K.,d.PWV

20070

Donde: WV = Fuerza del viento (kg/m) P = Presión del viento (kg/m2 de sección longitudinal del cable) v = Velocidad del viento (km/h) K = Factor de corrección. d = diámetro del conductor (m)

Por ejemplo, para una superficie plana la constante K es igual a 1.

Si la superficie expuesta al viento tiene cierta forma aerodinámica, como puede ser un conductor eléctrico de forma cilíndrica

K = 0,6 para cables cuyo diámetro sea igual o inferior a 16 mm

K = 0,5 para cables cuyo diámetro sea superior a 16 mm

El viento actúa de forma horizontal, mientras que el peso del conductor lo hace verticalmente, por tanto se debe componer ambas fuerzas

22vWWW (kg/m)

Page 12: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

134

La relación entre el peso aparente W´ y el peso del conductor (W) se denomina coeficiente de sobrecarga (m)

1

mdondeWWm

WmW

8.4.2. Sobrecarga de hielo

El hielo que se puede formar alrededor del conductor hace aumentar considerablemente el peso del mismo, por lo que se eleva la tensión, pudiendo llegar a la rotura de los cables.

WH = Peso del manguito de hielo (kg/m) HWWW Peso aparente del cable El peso del hielo se puede calcular de dos formas: 1°) Utilizando el reglamento español Este reglamento clasifica las líneas de acuerdo a la altura de instalación

Zona A, entre 0 y 500 metros de altitud sobre el nivel del mar, no se considera la formación de hielo Zona B, entre 500 y 1000 metros sobre el nivel del mar Zona C, más de 1000 metros sobre el nivel del mar

PESO DEL HIELO POR UNIDAD DE LONGITUD

ZONA WH (kg/m) d (mm)

A 0

B d,180

C d,360

Page 13: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

135

2°) Utilizando el criterio del espesor de hielo

2222 244

d)ed(ddW hhhH

mkgedeW hH

Donde ρh = Peso específico del hielo (kg/m3)

e = Espesor del manguito de hielo (m)

d = Diámetro del cable (m)

8.4.3. Sobrecarga de viento y hielo

22 WWWW HV

Donde edPWV 2

Ejemplo: Una línea de transmisión tiene un conductor ACSR N° 4/0. Tiene un vano promedio de 210 m. Calcular la flecha para las condiciones de tensión máxima (coeficiente de seguridad CS de 2,5) (Factor de seguridad del 40%); una velocidad del viento de 75 km/h y un depósito de hielo de 5 mm de espesor.

De tablas Cable ACSR N° 4/0 Penguin Diámetro exterior 14,31 mm Peso 432,5 kg/km = 0,4325 kg/m Tensión de ruptura 3820 kg Sección total 125,1 mm2

WV

W

WH

Page 14: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

136

Peso del hielo )m/kg(,,,,.,edeW hH 27930005001431000508920 Fuerza del viento

)m/kg(,,.,,..,ed,v,WV 5743000502014310607500702600070 22 Peso aparente

)m/kg(,,,,WWWW HV 91460432502793057430 2222 Peso especifico

20034570

112543250

mmmkg,

,,

SWw

Tensión de trabajo

)kg(,.,C

TTSR 1528403820

523820

Tensión de trabajo específico

22112

11251528

mmkg,

.STt

Coeficiente de sobrecarga

11524325091460 ,,,

WWm

Calculo de la flecha )m(,.

.,TaWf 303

1528821091460

8

22

)m(,,..

.,mTaWf 3031152

1528821043250

8

22

)m(,,.,..,m

tawf 3031152

211282100034570

8

22

8.5. ECUACIÓN DEL CAMBIO DE CONDICIONES

La temperatura influye sobre los conductores de las líneas, de forma que si aquella disminuye, la longitud del conductor y la flecha también disminuyen, aumentando la tensión T. Por el contrario a un aumento de la temperatura la flecha crece y disminuye la tensión de los cables.

Page 15: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

137

Por otro lado los conductores están también sometidos a la acción de sobrecargas de viento y nieve (hielo), que aumenta el peso aparente.

Por tanto, es preciso tomar en cuenta tanto las sobrecargas como los cambios de temperatura, para que en todo momento los conductores trabajen en buenas condiciones de seguridad.

Para plantear la ecuación de cambio de condiciones se usará la siguiente notación:

f = Flecha (m) a = Vano (m) L = Longitud del arco de parábola correspondiente al vano a (m)

t = Tensión específica en el punto más bajo del cable (kg/mm2) w = Peso específico (kg/m-mm2) α = Coeficiente de dilatación lineal del cable (1/°C) E = Módulo de elasticidad del cable (kg/mm2) Θ1 y Θ2 = Temperaturas (°C) L1 y L2 = Longitudes del cable que corresponden a Θ1 y Θ2 (m) t1 y t2 = Tensiones específicas correspondientes a Θ1 y Θ2 (kg/mm2) El alargamiento o acortamiento (L2 – L1 ) del cable, correspondiente a una variación de temperatura (θ2 – θ1) y a una tensión de (t2 – t1) tiene por expresión en función del coeficiente α de dilatación lineal y suponiendo que la deformaciones son elásticas y que se pueda aplicar la ley de Hook

E

ttLLLL 121212

Por otro lado

22

322

224 t

awaL

21

321

124 t

awaL restando

2

1

21

22

22

312 24 t

wtwaLL

igualando

2

1

21

22

22

312

12 24 tw

twa

EttLL

Si se admite que en esta ecuación L difiere poco de a (lo que es evidente cuando f y a son pequeños, dividimos el primer miembro entre L y el segundo entre a

2

1

21

22

22

212

12 24 tw

twa

Ett

Page 16: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

138

Si se considera a

WW

wwm ii

i Coeficiente de sobrecarga

Donde w = Peso específico del conductor solo (kg/m-mm2) wi = Peso específico del conductor y sobrecargas (kg/m-mm2)

SOBRECARGA DE

Coeficiente de sobrecarga

Viento

www

m v22

W

WWm v

22

Hielo wwwm H

W

WWm H

Viento y hielo w

wwwm vH

22

W

WWWm vH

22

Ordenando respecto a t2

2424

22

2

21

221

2112

22

32

Ewmat

EwmatEtt

2424

22

2

21

221

21122

22

Ewmat

EwmatEtt

Que es una ecuación de tercer grado de la forma BAxx 2

Si 21

221

211

24 tEwmatK

Entonces 22

221212

22 24

mEwaEKtt

Ecuación del cambio de estado o ecuación de Blondel Con esta ecuación, para las distintas condiciones de temperatura y sobrecargas, se pueden obtener valores t2 con los que se puede calcular las flechas a través de la ecuación

22

2

2

22

2 88m

twa

twaf

Page 17: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

139

La ecuación de cambio de estado es válida para vanos nivelados, es decir, que los dos apoyos están a la misma altura. Sin embargo, se consigue suficiente aproximación hasta un 14% de desnivel, lo que es muy común en la mayor parte de los casos prácticos. Para vanos muy desnivelados o muy grandes se aplican fórmulas más complejas que requieren un estudio más especializado. 8.6. APLICACIÓN DE LA ECUACIÓN DE CAMBIO DE CONDICIONES - HIPÓTESIS DE CÁLCULO

El objetivo de la aplicación de la ecuación de cambio de condiciones, es la determinación de las condiciones más desfavorables (la máxima tensión o la mayor flecha), y para ello se plantean una serie de hipótesis, que vienen preestablecidas. Esta hipótesis no están reglamentadas en Bolivia, sin embargo como referencia se indicarán las establecidas por la norma española.

Se plantean tres hipótesis:

a) Hipótesis de viento (V): Peso propio del conductor (P), acción horizontal del viento equivalente a 60 kg/m2 (120 km/h) (V) y temperatura de + 15°C

b) Hipótesis de temperatura: Peso propio del conductor (P) y temperatura no

inferior a + 50°C

c) Hipótesis de hielo (H): Peso propio del conductor (P), sobrecarga de hielo (H) y temperatura de 0°C

ZONA A

HIPÓTESIS PESO TEMP.

TRACCION MAXIMA P + V -5 °C

FLECHA MAXIMA P + V +15 °C

P +50 °C

T.D.C. P +15 °C

FLECHA MINIMA P -5 °C

Page 18: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

140

ZONA B

HIPÓTESIS PESO TEMP.

TRACCION MAXIMA P + H -15 °C

ADICIONAL P + V -10 °C

FLECHA MAXIMA

P + V +15 °C

P + H 0

P +50 °C

T.D.C. P +15 °C

FLECHA MINIMA P -15 °C

ZONA C

HIPOTESIS PESO TEMP.

TRACCION MAXIMA P + H -20 °C

ADICIONAL P + V -15 °C

FLECHA MAXIMA

P + V +15 °C

P + H 0

P +50 °C

T.D.C. P +15 °C

FLECHA MINIMA P -20 °C

Las hipótesis de flecha mínima y tensión de cada día (T.D.C.) no están reglamentadas, pero dada su importancia se introducen en las tablas.

La TDC Tensión de Cada Día, es la tensión a la que el conductor está sometido la mayor parte del tiempo y corresponde al peso del conductor sin sobrecargas y a una temperatura de +15 ºC.

La ecuación del cambio de condiciones nos permitirá hallar cuál es la peor condición a la que estará sometido un conductor en un vano, es decir, aquella situación en la

Page 19: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

141

que se acerque más a la rotura del conductor; ésta será la hipótesis más desfavorable.

Para aplicar la ecuación del cambio de condiciones se necesita una serie de datos básicos que quedarán definidos una vez determinado el conductor. La determinación del conductor se hace en función de las características eléctricas de la línea, y casi nunca por requerimientos mecánicos. Posteriormente se elige el vano, teniendo encuenta que cuanto mayor sea el vano las flechas resultantes serán mayores y por tanto también la altura de las estructuras que soportan la línea.

Las características del conductor que se necesita y que facilitan las tablas son:

Peso propio por unidad de longitud Diámetro total Sección total Carga de rotura Módulo de elasticidad. Coeficiente de dilatación

Para obtener la hipótesis más desfavorable, se compara entre la hipótesis de tracción máxima o la hipótesis adicional.

Como datos para la Hipótesis de tracción máxima se tienen el peso aparente, la temperatura y la tensión máxima que puede soportar el cable (carga de rotura dividida entre el coeficiente de seguridad adoptado).

Como datos de la Hipótesis adicional se tiene el peso aparente y la temperatura, resultando la tensión t2 la incógnita que se obtiene de la ecuación de cambo de condiciones.

La hipótesis que presenta una mayor tensión será la más desfavorable y con los datos de esta hipótesis se calcula la constante K1 en la ecuación del cambio de condiciones, y a partir de aquí se halla las tensiones correspondientes al resto de las hipótesis

Una vez efectuadas todas estas operaciones se tendrá la tensión a la que está sometido el conductor en cada una de las hipótesis que marca el reglamento, y por lo tanto se hallará las flechas correspondientes, debiendo fijarse especialmente en la flecha máxima que condiciona la altura de las estructuras.

Además con los datos de la hipótesis más desfavorable se calculará las tablas de flechado del conductor que se estudiará más adelante.

Page 20: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

142

Ejemplo de cálculo mecánico

Hallar las flechas de cada una de las hipótesis aplicando la ecuación de cambio de condiciones, de una línea de transmisión que tiene un cale ACSR N° 556,500 Eagle (Águila). La línea está situada a 2500 m.s.n.m. y tiene un vano teórico de 280 m. Coeficiente de seguridad 3

Los datos del conductor son: Designación Eagle (Águila) 556,500 MCM Composición: Al (30 x 3,46 mm) ; Ac (7 x 3,46 mm) Sección aluminio 282 mm2 Sección conductor completo 347,8 mm2 Diámetro conductor completo 24,22 mm

Peso total 1.243 kg/km Resistencia de rotura 12.360 kg

Módulo de elasticidad E = 8.200 kg/mm² Coeficiente de dilatación α = 1,78 10-5 ºC-1

La línea corresponde a la zona C, por tanto las hipótesis a analizar serán:

HIPOTESIS PESO APARENTE

TEMP.

A TRACCION MAXIMA P + H -20 °C

B ADICIONAL P + V -15 °C

1

FLECHA MAXIMA

P + V +15 °C

2 P + H 0

3 P +50 °C

4 T.D.C. P +15 °C

5 FLECHA MINIMA P -20 °C

Inicialmente calculamos las sobrecargas de viento y hielo

Sobrecarga del viento (v=120 km/h)

)m/kg(,,.WWW

)m/kg(,,.,d.PW

)mm/kg(,,..,,.v.,P

v

V

92111464812431

4648102422048604860601200070600070

2222

222

Sobrecarga de hielo

Page 21: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

143

)m/kg(,,,WWW

)m/kg(,,,d,WH

H01473771712431

771712224360360

La ecuación de cambio de condiciones es

22

221212

22 24

mEwaEKtt

Donde 21

221

211

24 tEwmatK

El peso específico del cable será:

20035740

83472431

mmmkg,

,,

SWw

A) Hipótesis de tracción máxima (P + H ; θ1 = -20 °C)

El cable está sometido a un peso

21

1

1

00866808347

01473

01473

mmmkg,

,,

SWw

)m/kg(,W

El coeficiente de sobrecarga será: 4222431014731

1 ,,,

WWm

La tensión será:

21

1

1

84118347

4120

41203

12360

mmkg,

,STt

)kg(

CTT

SR

La flecha será )m(,,.

,twaf 177

841180086680280

8

2

1

12

1

B) Hipótesis adicional (P + V ; θ2 = -15)

Peso aparente

22

2

2

00552308347

92111

92111

mmmkg,

,,

SWw

)m/kg(,W

Coeficiente de sobrecarga 5412431921112

2 ,,,

WWm

Page 22: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

144

Calculando

)mm/kg(,,.

,,,t

EwmatK 22

222

21

221

211 452

84112482000035740422280

841124

La ecuación de cambio de condiciones 22

221212

22 24

mEwaEKtt

222

22

2 54124

8200003574028020158200452 ,..,,tt .10 1,78x 5-

81218322

2 ,tt resolviendo )mm/kg(,t 22 388

La flecha para esta hipótesis será: )m(,,.

,twaf 466

38880055230280

8

2

2

22

2

Como t1 > t2 entonces la hipótesis más desfavorable es la de Tracción Máxima

Una vez conocida la hipótesis más desfavorable, y haciendo uso de la constante K1 hallada anteriormente, se calcula el resto de las hipótesis marcadas en la tabla:

1.- Hipótesis de flecha máxima (P + V; θ = +15)

Tenemos los siguientes datos iniciales:

t1 = 11,84 (kg/mm2).; w1 = 0,008688 (kg/m-mm2) ; θ1 = - 20 ºC ; K1 = -2,45 (kg/mm2)

Los datos de la hipótesis de flecha máxima son:

w2 =0,005523 (kg/m). ; θ2 = +15 ºC ; m2 =1,54

La ecuación de cambio de condiciones 22

221212

22 24

mEwaEKtt

222

22

2 54124

8200003574028020158200452 ,..,,tt .10 1,78x 5-

81156722

2 ,tt resolviendo )mm/kg(,t 22 377

La flecha para esta hipótesis será: )m(,,.

,twaf 347

37780055230280

8

2

2

22

2

Page 23: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

145

2.- Hipótesis de flecha máxima (P + H ; θ = 0)

Tenemos los siguientes datos iniciales:

t1 = 11,84 (kg/mm2).; w1 = 0,008688 (kg/m-mm2) ; θ1 = - 20 ºC ; K1 = -2,45 (kg/mm2)

Los datos de la hipótesis de flecha máxima son:

w2 =0,008688 (kg/m). ; θ2 = +0 ºC ; m2 =2,42

La ecuación de cambio de condiciones 22

221212

22 24

mEwaEKtt

222

22

2 42224

820000357402802008200452 ,..,,tt .10 1,78x 5-

200437522

2 ,tt resolviendo )mm/kg(,,t 22 0511

La flecha para esta hipótesis será: )m(,,.

,twaf 707

051180086880280

8

2

2

22

2

3.- Hipótesis de flecha máxima (P ; θ = +50 °C)

Tenemos los siguientes datos iniciales:

t1 = 11,84 (kg/mm2).; w1 = 0,008688 (kg/m-mm2) ; θ1 = - 20 ºC ; K1 = -2,45 (kg/mm2)

Los datos de la hipótesis de flecha máxima son:

w2 =0,003574 (kg/m). ; θ2 = +50 ºC ; m2 =1

La ecuación de cambio de condiciones 22

221212

22 24

mEwaEKtt

222

22

2 124

8200003574028020508200452 ..,,tt .10 1,78x 5-

342671222

2 ,tt resolviendo )mm/kg(,,t 22 464

La flecha para esta hipótesis será: )m(,,.

,twaf 857

46480035740280

8

2

2

22

2

Page 24: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

146

Por lo tanto, la flecha máxima se tiene cuando el conductor esté sometido a la acción de su propio peso y a una temperatura de 50 °C. Este dato servirá para calcular la altura de los postes.

4.- Tensión de cada día (P ; θ = 15°C) TDC (no reglamentaria)

Tenemos los siguientes datos iniciales:

t1 = 11,84 (kg/mm2).; w1 = 0,008688 (kg/m-mm2) ; θ1 = - 20 ºC ; K1 = -2,45 (kg/mm2)

Los datos de la hipótesis de TDC:

w2 =0,003574 (kg/m). ; θ2 = +15 ºC ; m2 =1

La ecuación de cambio de condiciones 22

221212

22 24

mEwaEKtt

222

22

2 124

8200003574028020158200452 ..,,tt .10 1,78x 5-

34256722

2 ,tt resolviendo )mm/kg(,t 22 185

La flecha para esta hipótesis será: )m(,,.

,twaf 766

18580035740280

8

2

2

22

2

5.- Hipótesis de flecha mínima (P ; θ = -20°C) (no reglamentaria)

Tenemos los siguientes datos iniciales:

t1 = 11,84 (kg/mm2).; w1 = 0,008688 (kg/m-mm2) ; θ1 = - 20 ºC ; K1 = -2,45 (kg/mm2)

Los datos de la hipótesis de TDC:

w2 =0,003574 (kg/m). ; θ2 = -20 ºC ; m2 =1

La ecuación de cambio de condiciones 22

221212

22 24

mEwaEKtt

222

22

2 124

8200003574028020208200452 ..,,tt .10 1,78x 5-

Page 25: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

147

34245222

2 ,tt resolviendo )mm/kg(,t 22 276

La flecha para esta hipótesis será: )m(,,.

,twaf 595

27680035740280

8

2

2

22

2

Resumen:

HIPÓTESIS

TENSIÓN

(kg/mm2)

TENSION

(kg)

Coeficiente

sobrecarga

FLECHA

(m) A Tracción máxima 11,84 4118 3 7,17 B Adicional 8,38 2915 4,24 6,46 1 Flecha máxima 7,37 2563 4,82 7,34 2 Flecha máxima 11,05 3843 3,22 7,70 3 Flecha Máxima 4,46 1551 7,97 7,85 4 TDC 5,18 1802 6,86 6,76 5 Flecha mínima 6,27 2181 5,67 5,59

8.7. TENSIÓN DE CADA DÍA

Por la experiencia adquirida en la explotación de las líneas eléctricas se llegó a la conclusión de que cuanto más elevada sea la tensión mecánica de un cable, mayores son las probabilidades de que aparezca el fenómeno de las vibraciones. De aquí se dedujo la conveniencia de mantener dicha tensión dentro de ciertos límites para eludir en lo posible la presencia de tal fenómeno.

Se pretendía determinar cuál sería la tensión admisible para poder recomendar valores con los que se esperaba no se produjeran averías por vibración, es decir, roturas de los hilos componentes de los cables.

Se llegó al concepto de "tensión de cada día" (T.D.C.) que es la tensión a la que está sometido el cable la mayor parte del tiempo correspondiente a la temperatura media de 15 ºC sin que exista sobrecarga alguna.

El coeficiente T.D.C. (tensión de cada día) se expresa en tanto por ciento de la carga de rotura, es decir:

%xT

TCR

TDCTCD 100

Se admite que cuando el coeficiente es mayor del 18% se colocarán antivibradores.

Page 26: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

148

En la figura se representa un antivibrador Stockbridge constituido por dos mazas enlazadas a través de un cabo de cable por cuyo centro se fija al conductor.

En el caso del ejemplo anterior la tensión de cada día es igual a 1802 (kg). El coeficiente de la tensión de cada día es:

%,x%xT

TCR

TDCTCD 614100

123601802100 < 18% ; por tanto no es

necesario la colocación de antivibradores

8.8. TABLAS Y CURVAS DE FLECHADO

Como ya hemos visto, tomando como punto de partida la hipótesis más desfavorable, obtenemos el resto de las hipótesis de flecha máxima, flecha mínima, condición T. D. C., etc. No obstante, estos cálculos no serán suficiente, ya que a la hora de montar la línea, las condiciones climatológicas no serán las de las citadas hipótesis.

Se trata pues de establecer una serie de condiciones que sean normales a la hora del montaje y que tendrán como condición extrema de referencia la hipótesis más desfavorable.

Así, mediante la ecuación del cambio de condiciones, deberemos resolver una serie de casos en los que supondremos que el viento y el manguito de hielo no existen, teniendo como única variable las diversas temperaturas que se suponen normales en la zona. Para cada valor de temperatura obtendremos una tensión, formando así lo que llamaremos tabla de tendido para un determinado vano.

La siguiente tabla de tendido está construida para un cable ACSR Tagle 556,500 MCM y un vano de 280 metros. Se ha considerado un intervalo de temperaturas comprendido entre -5 y 35 grados centígrados.

Para el cálculo se utilizó la ecuación de cambio de condiciones con:

t1 = 11,84 (kg/mm2).; w1 = 0,008688 (kg/m-mm2) ; θ1 = - 20 ºC ; K1 = -2,45 (kg/mm2)

Page 27: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

149

α = 1,78 x 10-5 (1/°C) ; E = 8200 (kg/mm2)

Y los datos para las distintas condiciones

w2 =0,003574 (kg/m). ; θ2 = varia de -5 °C a +35 ºC ; m2 =1

22

221212

22 24

mEwaEKtt

VANO 280 m

Θ2 (ºC)

Θ2 – Θ1

( °C )

3421245222

2 E,tt t (kg/mm2)

T

(kg)

f

(m)

- 5 15 34264422

2 ,tt 5,74 1996 6,10

0 20 34237522

2 ,tt 5,59 1944 6,26

5 25 34210622

2 ,tt 5,44 1892 6,44

10 30 34283622

2 ,tt 5,31 1847 6,60

15 35 34256722

2 ,tt 5,18 1802 6,76

20 40 34229822

2 ,tt 5,06 1760 6,92

25 45 34202922

2 ,tt 4,95 1722 7,07

30 50 34275922

2 ,tt 4,84 1683 7,24

35 55 342481022

2 ,tt 4,74 1649 7,39

De esta tabla podemos obtener lo que llamaremos curvas de tendido, es decir, la variación de la tensión y la flecha con la temperatura:

Se observa como la tensión disminuye con la temperatura, mientras que la flecha aumenta con la temperatura.

Page 28: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

150

8.9. VANO IDEAL DE REGULACIÓN.

Un tramo de línea está constituido por una serie de apoyos de alineación, limitadas por dos estructuras de anclaje (o de tensión). Los vanos entre apoyos serán en general distintos puesto que la configuración topográfica del terreno obliga a tal situación.

Si el cálculo de las tensiones y flechas se hiciese de modo independiente para cada uno de los vanos del tramo (para cada vano a), en función de las diferentes longitudes de los vanos, habría que tensar de manera distinta en vanos contiguos, pero como los cables cuelgan de cadenas de aisladores de suspensión, las diferencias de tensión quedarían automáticamente anuladas por las inclinaciones que en sentido longitudinal tomarían dichas cadenas, cuya posición correcta es precisamente vertical y no inclinada.

Puesto que en un tramo de línea constituido por una serie de apoyos de alineación, limitada por dos de anclaje, las cadenas de suspensión (verticales) no pueden absorber las diferencias de tensado, debidas a las distintas longitudes de los vanos,

Page 29: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

151

se debe admitir que las tensiones de los cables, iguales en todos los vanos, varíen como lo haría el de un vano teórico que se llama "Vano ideal de regulación".

Es necesario, por consiguiente, que las tablas regulación (de tendido o flechado) de los distintos vanos tengan una misma tensión para cada valor de la temperatura, siendo la variación de la flecha quien compense las diferencias de longitud de los vanos.

El vano ideal de regulación aR puede calcularse mediante la fórmula siguiente:

n

kk

n

kk

nn

Ra

a

aaaaaaaaa

1

1

3

321

333

32

31

si los apoyos están al mismo nivel

También se puede admitir de manera aproximada

aaaa maxR 32

Donde n

apromediovanoa

n

kk

1

En la que a1, a2, a3, ... an son las diferentes longitudes de los vanos que forman un determinado tramo de alineación comprendida entre dos estructuras de tensión. 8.10. TABLA DE REGULACIÓN DEL CABLE

Una vez determinado valor del vano ideal de regulación, se debe hallar su condición reglamentaria más desfavorable y la tabla de tendido correspondiente. De esta manera tendremos el punto de partida para determinar las características de los vanos que integran esta serie.

Según la tabla de tendido, para cada temperatura le corresponde una tensión y una flecha, por lo tanto para el vano de regulación aR le corresponde una flecha de regulación fR cuyo valor resultará ser:

t.w.af R

R 8

2

Page 30: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

152

Como la tensión en la serie de vanos que integran la alineación es igual en todos ellos, tendremos que la flecha "incógnita" para cada uno de los distintos vanos, será:

t.w.af i

i 8

2

Dividiendo estas dos igualdades, resulta: RRi

i f.aaf

2

Ecuación que nos proporciona el valor de la flecha fi , de cada vano, en función de la flecha de regulación fR , y de sus correspondientes vanos ai y aR, para una condición determinada de temperatura, tensión y peso del conductor.

Ejemplo:

Tomado el ejemplo anterior, y asumiendo que el vano de regulación es de 280 m

θ (ºC) t (kg/mm2) T (kg) f (m)

- 5 5,74 1996 6,10

0 5,59 1944 6,26

5 5,44 1892 6,44

10 5,31 1847 6,60

15 5,18 1802 6,76

20 5,06 1760 6,92

25 4,95 1722 7,07

30 4,84 1683 7,24

35 4,74 1649 7,39

Se pueden calcular las flechas para distintos vanos utilizando la expresión anterior

Ri

RRi

i faf.aaf

22

280

Page 31: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo

TABLA DE TENSIONES Y FLECHAS DE REGULACIÓN

CABLE ACSR 556,500 MCM EAGLE

°C

Kg

FLECHAS EN METROS

LONGITUDES DE VANO EN METROS

220 240 260 280 300 320 340 360

- 5 1996 3,77 4,48 5,26 6,10 7,00 7,97 8,99 10,08 0 1944 3,86 4,60 5,40 6,26 7,19 8,18 9,23 10,35 5 1892 3,98 4,73 5,55 6,44 7,39 8,41 9,49 10,64

10 1847 4,07 4,85 5,69 6,60 7,58 8,62 9,73 10,91 15 1802 4,17 4,97 5,83 6,76 7,76 8,83 9,97 11,17 20 1760 4,27 5,08 5,97 6,92 7,94 9,04 10,20 11,44 25 1722 4,36 5,19 6,09 7,07 8,12 9,23 10,42 11,69 30 1683 4,47 5,32 6,24 7,24 8,31 9,46 10,67 11,97 35 1649 4,56 5,43 6,37 7,39 8,48 9,65 10,90 12,22

Page 32: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

U.T.O. – F.N.I. - LINEAS DE TRANSMISION Ing. Gustavo Adolfo Nava Bustillo 154

154

8.11. PROCEDIMIENTOS DE FLECHADO

8.11.1. Medición de la flecha por visualización

Para este procedimiento se debe contar con la tabla de regulación. La medición de la temperatura se la realiza por medio de un termómetro suspendido en una estructura y cubierto de la acción directa de los rayos del sol. Debe evitarse el flechado en horas donde hay bruscos cambios de temperatura.

Con la finalidad de que en un tramo entre dos estructuras de tensión (retensión o anclaje) de una línea se realice correctamente el tesado de los conductores, se efectúa la medición de la flecha en un vano cualquiera del tramo.

Una vez determinada la flecha más adecuada, de acuerdo a la tabla de regulación, se procede a la medición señalando en cada una de dos estructuras contiguas la distancia de la flecha medida desde el punto de suspensión del conductor (Puntos A y B). Luego se dirige la visual alineando la parte más baja del conductor con las señales de las dos estructuras, pudiendo usarse un teodolito.

8.11.2. Medición de la flecha por el método de la onda de retorno

Este es un método alternativo, muy utilizado en las líneas de alta tensión. El método consiste en que un individuo golpee secamente el conductor con la mano o desde tierra con una soga a una distancia de un metro de la cadena de aisladores, con el fin de producir un impulso mecánico que viajará en forma de onda y se reflejará en la estructura alejada un ano del individuo. Las sucesivas reflexiones continuarán hasta que la energía de la onda se disipe completamente.

En el momento de producirse el golpe se cuenta cero y en ese instante se acciona un cronómetro. Se cuenta cada retorno hasta el décimo y en ese momento se

Page 33: CÁLCULO MECÁNICO DE LAS LINEAS DE TRANSMISIÓN€¦ · LINEAS DE TRANSMISIÓN DE ENERGÍA ELÉCTRICA Ing. Gustavo Adolfo Nava Bustillo 123 CAPITULO 8 CÁLCULO MECÁNICO DE LAS LINEAS

U.T.O. – F.N.I. - LINEAS DE TRANSMISION Ing. Gustavo Adolfo Nava Bustillo 155

155

detiene el cronómetro, por lo tanto se mide el tiempo empleado por la onda en recorrer diez veces ida y vuelta el vano seleccionado para efectuar la medición.

Esta operación no debe realizarse con viento, tampoco en vanos donde la línea pueda tocar objetos extraños (por ejemplo ramas). Es conveniente realizar la medición en vanos donde haya estructuras de suspensión, porque la ferretería de las estructuras de tensión tiende a modificar la onda.

La fórmula para determinar el tiempo de la décima onda de retorno, en función de la flecha es:

30640,ft

Donde: t es el tiempo medido en segundos f es la flecha medida en centímetros VANO 280 m

° C Flecha (m) Tiempo (seg) - 5 6,10 44,62 0 6,26 45,20 5 6,44 45,84

10 6,60 46,41 15 6,76 46,97 20 6,92 47,52 25 7,07 48,03 30 7,24 48,61 35 7,39 49,11