13
LBST.de 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH Press workshop on sustainable energy solutions « Renewables for the transport sector – which routes are open? » AEE ∙ Brussels ∙ 31 March 2015 Comparing greenhouse gas (GHG) emissions of renewable energy options in the transport sector Patrick R. Schmidt (Dipl.-Ing.) LBST ∙ Ludwig-Bölkow-Systemtechnik GmbH Munich ∙ Germany 2015-03-31 ∙ FINAL

Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

  • Upload
    vominh

  • View
    219

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Press workshop on sustainable energy solutions laquo Renewables for the transport sector ndash which routes are open raquo AEE ∙ Brussels ∙ 31 March 2015

Comparing greenhouse gas (GHG) emissions of renewable energy options in the transport sector

Patrick R Schmidt (Dipl-Ing)

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH

Munich ∙ Germany

2015-03-31 ∙ FINAL

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

2

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH

3

Company profile

Independent expert for sustainable energy and mobility for over 30 years

Bridging technology markets and policy

Renewable energies fuels infrastructure

Technology-based strategy consulting System and technology studies Sustainability assessment

Global and long term perspective

Rigorous system approach ndash thinking outside the box

Serving international clients in industry finance politics and NGOs

Selected studies

German Mobility amp Fuels Strategy (MKS)

EC-JRCEUCARCONCAWE lsquoWell-to-Tank Analysis of Transport Fuelsrsquo

European Parliament ITRE amp ENVI Committee

German Research Association for Combustion Engines (FVV)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

4

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Significant efforts required to achieve GHG reduction targets

5

--- IPCC

Greenhouse gas emission reduction targets (base year 1990)

Demanding reduction targets for greenhouse gas and selected pollutant emissions sbquowell-to-uselsquo

At the same time rising global energy demands (in absolute terms)

Critical for staying within the reduction corridor System transformation may take significant time

EU regulatory framework is currently in a state of stallmove and blurry post-2020

EU Fuel Quality Directive (FQD) and EU Renewables Energy Directive (RED) under review for years now

National infrastructure plans to be developed for EU Alternative Fuels Infrastructure Directive (AFID)

--- EU Germany

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Transportation fuels from biomass and renewable electricity Many routes lead to Rome and there is no optimal way

6

Legend

BTL Biomass-to-Liquids via gasification amp synthesis

RES-H2 Renewable power-to-hydrogen

FT-Synthesis Fischer-Tropsch synthesis

GTL Gas-to-Liquid

PTL Power-to-Liquids

Fuels

GasolineKerosene

Diesel

Plant oil

Hydro-gen

BEVElectricity

LBST 2015-03-26

Plant oils(rape soy)Fats hellip

Organicwastes

Wood Lignocellul Black liquor

Wind

Solar

Gasification + FT synthesis

Fermentation(Biogas)

Electrolysis(RES-H2)

Hydrotreating

Reforming + FT synthesis

Methanol synthesis

Sust

ain

able

bio

mas

s

Primary energy Conversion

Oil mill + raffination

Ren

ewab

le e

lect

rici

ty

Water Geothermal

Inverse CO-shift + FT synthesis

Olefin synthesis + Oligomerisation+ Hydrotreating

Hyd

rocr

acki

ng

CO2

EE-H2

CO2

CH4

CO2 absorption(eg from the air)

EE-H2

RES-H2

RES-H2

BTL

HVOHEFA

PTL

PTL

Bio-GTL

RES-H2

Renewable electricity

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 2: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

2

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH

3

Company profile

Independent expert for sustainable energy and mobility for over 30 years

Bridging technology markets and policy

Renewable energies fuels infrastructure

Technology-based strategy consulting System and technology studies Sustainability assessment

Global and long term perspective

Rigorous system approach ndash thinking outside the box

Serving international clients in industry finance politics and NGOs

Selected studies

German Mobility amp Fuels Strategy (MKS)

EC-JRCEUCARCONCAWE lsquoWell-to-Tank Analysis of Transport Fuelsrsquo

European Parliament ITRE amp ENVI Committee

German Research Association for Combustion Engines (FVV)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

4

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Significant efforts required to achieve GHG reduction targets

5

--- IPCC

Greenhouse gas emission reduction targets (base year 1990)

Demanding reduction targets for greenhouse gas and selected pollutant emissions sbquowell-to-uselsquo

At the same time rising global energy demands (in absolute terms)

Critical for staying within the reduction corridor System transformation may take significant time

EU regulatory framework is currently in a state of stallmove and blurry post-2020

EU Fuel Quality Directive (FQD) and EU Renewables Energy Directive (RED) under review for years now

National infrastructure plans to be developed for EU Alternative Fuels Infrastructure Directive (AFID)

--- EU Germany

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Transportation fuels from biomass and renewable electricity Many routes lead to Rome and there is no optimal way

6

Legend

BTL Biomass-to-Liquids via gasification amp synthesis

RES-H2 Renewable power-to-hydrogen

FT-Synthesis Fischer-Tropsch synthesis

GTL Gas-to-Liquid

PTL Power-to-Liquids

Fuels

GasolineKerosene

Diesel

Plant oil

Hydro-gen

BEVElectricity

LBST 2015-03-26

Plant oils(rape soy)Fats hellip

Organicwastes

Wood Lignocellul Black liquor

Wind

Solar

Gasification + FT synthesis

Fermentation(Biogas)

Electrolysis(RES-H2)

Hydrotreating

Reforming + FT synthesis

Methanol synthesis

Sust

ain

able

bio

mas

s

Primary energy Conversion

Oil mill + raffination

Ren

ewab

le e

lect

rici

ty

Water Geothermal

Inverse CO-shift + FT synthesis

Olefin synthesis + Oligomerisation+ Hydrotreating

Hyd

rocr

acki

ng

CO2

EE-H2

CO2

CH4

CO2 absorption(eg from the air)

EE-H2

RES-H2

RES-H2

BTL

HVOHEFA

PTL

PTL

Bio-GTL

RES-H2

Renewable electricity

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 3: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH

3

Company profile

Independent expert for sustainable energy and mobility for over 30 years

Bridging technology markets and policy

Renewable energies fuels infrastructure

Technology-based strategy consulting System and technology studies Sustainability assessment

Global and long term perspective

Rigorous system approach ndash thinking outside the box

Serving international clients in industry finance politics and NGOs

Selected studies

German Mobility amp Fuels Strategy (MKS)

EC-JRCEUCARCONCAWE lsquoWell-to-Tank Analysis of Transport Fuelsrsquo

European Parliament ITRE amp ENVI Committee

German Research Association for Combustion Engines (FVV)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

4

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Significant efforts required to achieve GHG reduction targets

5

--- IPCC

Greenhouse gas emission reduction targets (base year 1990)

Demanding reduction targets for greenhouse gas and selected pollutant emissions sbquowell-to-uselsquo

At the same time rising global energy demands (in absolute terms)

Critical for staying within the reduction corridor System transformation may take significant time

EU regulatory framework is currently in a state of stallmove and blurry post-2020

EU Fuel Quality Directive (FQD) and EU Renewables Energy Directive (RED) under review for years now

National infrastructure plans to be developed for EU Alternative Fuels Infrastructure Directive (AFID)

--- EU Germany

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Transportation fuels from biomass and renewable electricity Many routes lead to Rome and there is no optimal way

6

Legend

BTL Biomass-to-Liquids via gasification amp synthesis

RES-H2 Renewable power-to-hydrogen

FT-Synthesis Fischer-Tropsch synthesis

GTL Gas-to-Liquid

PTL Power-to-Liquids

Fuels

GasolineKerosene

Diesel

Plant oil

Hydro-gen

BEVElectricity

LBST 2015-03-26

Plant oils(rape soy)Fats hellip

Organicwastes

Wood Lignocellul Black liquor

Wind

Solar

Gasification + FT synthesis

Fermentation(Biogas)

Electrolysis(RES-H2)

Hydrotreating

Reforming + FT synthesis

Methanol synthesis

Sust

ain

able

bio

mas

s

Primary energy Conversion

Oil mill + raffination

Ren

ewab

le e

lect

rici

ty

Water Geothermal

Inverse CO-shift + FT synthesis

Olefin synthesis + Oligomerisation+ Hydrotreating

Hyd

rocr

acki

ng

CO2

EE-H2

CO2

CH4

CO2 absorption(eg from the air)

EE-H2

RES-H2

RES-H2

BTL

HVOHEFA

PTL

PTL

Bio-GTL

RES-H2

Renewable electricity

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 4: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

4

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Significant efforts required to achieve GHG reduction targets

5

--- IPCC

Greenhouse gas emission reduction targets (base year 1990)

Demanding reduction targets for greenhouse gas and selected pollutant emissions sbquowell-to-uselsquo

At the same time rising global energy demands (in absolute terms)

Critical for staying within the reduction corridor System transformation may take significant time

EU regulatory framework is currently in a state of stallmove and blurry post-2020

EU Fuel Quality Directive (FQD) and EU Renewables Energy Directive (RED) under review for years now

National infrastructure plans to be developed for EU Alternative Fuels Infrastructure Directive (AFID)

--- EU Germany

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Transportation fuels from biomass and renewable electricity Many routes lead to Rome and there is no optimal way

6

Legend

BTL Biomass-to-Liquids via gasification amp synthesis

RES-H2 Renewable power-to-hydrogen

FT-Synthesis Fischer-Tropsch synthesis

GTL Gas-to-Liquid

PTL Power-to-Liquids

Fuels

GasolineKerosene

Diesel

Plant oil

Hydro-gen

BEVElectricity

LBST 2015-03-26

Plant oils(rape soy)Fats hellip

Organicwastes

Wood Lignocellul Black liquor

Wind

Solar

Gasification + FT synthesis

Fermentation(Biogas)

Electrolysis(RES-H2)

Hydrotreating

Reforming + FT synthesis

Methanol synthesis

Sust

ain

able

bio

mas

s

Primary energy Conversion

Oil mill + raffination

Ren

ewab

le e

lect

rici

ty

Water Geothermal

Inverse CO-shift + FT synthesis

Olefin synthesis + Oligomerisation+ Hydrotreating

Hyd

rocr

acki

ng

CO2

EE-H2

CO2

CH4

CO2 absorption(eg from the air)

EE-H2

RES-H2

RES-H2

BTL

HVOHEFA

PTL

PTL

Bio-GTL

RES-H2

Renewable electricity

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 5: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Significant efforts required to achieve GHG reduction targets

5

--- IPCC

Greenhouse gas emission reduction targets (base year 1990)

Demanding reduction targets for greenhouse gas and selected pollutant emissions sbquowell-to-uselsquo

At the same time rising global energy demands (in absolute terms)

Critical for staying within the reduction corridor System transformation may take significant time

EU regulatory framework is currently in a state of stallmove and blurry post-2020

EU Fuel Quality Directive (FQD) and EU Renewables Energy Directive (RED) under review for years now

National infrastructure plans to be developed for EU Alternative Fuels Infrastructure Directive (AFID)

--- EU Germany

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Transportation fuels from biomass and renewable electricity Many routes lead to Rome and there is no optimal way

6

Legend

BTL Biomass-to-Liquids via gasification amp synthesis

RES-H2 Renewable power-to-hydrogen

FT-Synthesis Fischer-Tropsch synthesis

GTL Gas-to-Liquid

PTL Power-to-Liquids

Fuels

GasolineKerosene

Diesel

Plant oil

Hydro-gen

BEVElectricity

LBST 2015-03-26

Plant oils(rape soy)Fats hellip

Organicwastes

Wood Lignocellul Black liquor

Wind

Solar

Gasification + FT synthesis

Fermentation(Biogas)

Electrolysis(RES-H2)

Hydrotreating

Reforming + FT synthesis

Methanol synthesis

Sust

ain

able

bio

mas

s

Primary energy Conversion

Oil mill + raffination

Ren

ewab

le e

lect

rici

ty

Water Geothermal

Inverse CO-shift + FT synthesis

Olefin synthesis + Oligomerisation+ Hydrotreating

Hyd

rocr

acki

ng

CO2

EE-H2

CO2

CH4

CO2 absorption(eg from the air)

EE-H2

RES-H2

RES-H2

BTL

HVOHEFA

PTL

PTL

Bio-GTL

RES-H2

Renewable electricity

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 6: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Transportation fuels from biomass and renewable electricity Many routes lead to Rome and there is no optimal way

6

Legend

BTL Biomass-to-Liquids via gasification amp synthesis

RES-H2 Renewable power-to-hydrogen

FT-Synthesis Fischer-Tropsch synthesis

GTL Gas-to-Liquid

PTL Power-to-Liquids

Fuels

GasolineKerosene

Diesel

Plant oil

Hydro-gen

BEVElectricity

LBST 2015-03-26

Plant oils(rape soy)Fats hellip

Organicwastes

Wood Lignocellul Black liquor

Wind

Solar

Gasification + FT synthesis

Fermentation(Biogas)

Electrolysis(RES-H2)

Hydrotreating

Reforming + FT synthesis

Methanol synthesis

Sust

ain

able

bio

mas

s

Primary energy Conversion

Oil mill + raffination

Ren

ewab

le e

lect

rici

ty

Water Geothermal

Inverse CO-shift + FT synthesis

Olefin synthesis + Oligomerisation+ Hydrotreating

Hyd

rocr

acki

ng

CO2

EE-H2

CO2

CH4

CO2 absorption(eg from the air)

EE-H2

RES-H2

RES-H2

BTL

HVOHEFA

PTL

PTL

Bio-GTL

RES-H2

Renewable electricity

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 7: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

GHG emissions of fossil and renewable fuels lsquowell-to-wheellsquo

7

0

20

40

60

80

100

120

140

160

Be

nzi

n

Die

sel

CN

G

PM

E (B

iod

iese

l) R

aps

Eth

ano

l We

izen

Eth

ano

l Str

oh

CN

G B

ioga

s M

aisg

anzp

flan

zen

CN

G B

ioga

s A

bfa

ll

Ern

euer

bar

er

Stro

m

Stro

mm

ix E

U

EE-C

GH

2 (

Elek

tro

lyse

vo

r O

rt)

EE-C

NG

EE-B

en

zin

EE-D

iese

l

Fossil Biomasse Strom Power-to-Gas Power-to-Liquid

Trei

bh

ausg

ase

mis

sio

nen

(g

CO

2-Auml

qu

ival

ent

km)

Konventionelles Rohoumll

Ref

ere

nzf

ahrz

eug

C-S

egm

ent

(zB

VW

Go

lf)

LBST

14

10

20

14

Rohoumll aus Teersand

Pipeline 2500 km

Pipeline 7000 km

Schlempe =gt BiogasProzessenergie aus Biogas-KWK

getrocknete Schlempe =gt ViehfutterProzessenergie aus Erdgas-KWK

Verbrennungsmotor (VKM) Hybrid Elektromotor VKM Hybrid

0

20

40

60

80

100

120

140

160G

aso

line

Die

sel

CN

G

Pla

nt

oil

(Bio

die

sel)

rap

e

Eth

ano

l wh

eat

Eth

ano

l str

aw

CN

G b

ioga

s m

aize

wh

ole

pla

nt

CN

G b

ioga

s o

rgan

ic w

aste

Re

new

able

ele

ctri

city

Elec

tric

ity

mix

EU

RE

CG

H2

(o

nsi

te e

lect

roly

sis)

RE

CN

G

RE

gaso

line

RE

die

sel

Fossil Biomass Power Power-to-Gas Power-to-Liquid

Gre

enh

ou

se g

as e

mis

sio

ns

(g C

O2-e

qu

iv

km)

Conventional crude-oil

Ref

ere

nce

veh

icle

C s

egm

ent

eg

VW

Go

lf

LBST

26

03

20

15

Crude-oil from tarsand

Pipeline 2500 km

Pipeline 7000 km

Destillers grain =gt BiogasBiogas CHP

Destillers dried grain =gt FodderNatural gas CHP

Internal combustion engine (ICE) hybrid Electric motor ICE hybrid

Sour

ce L

BST

bas

ed o

n da

ta f

rom

RED

JR

CE

UC

AR

CO

NC

AW

E

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 8: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Content

LBST profile

Greenhouse gas emissions

Example scenarios

8

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 9: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

How much EU land is (ceteris paribus) needed to fulfil the EU-RED 10 renewable fuel target in transport by 2020

With biomass pathways substitution of animal feed taken into account

Electricity and electricity-based fuels have low land area requirements The sbquowell-to-tanklsquo efficiency of PtX is misleading when compared with biofuels

9

Source LBST based on data from RED JRCEUCARCONCAWE

0

5

10

15

20

25

30

RME Ethanol wheat

BTL SRF

FAME algae

EE-PTL EE-CNG CGH2 Electricity EE-PTL EE-CNG CGH2 Electricity

Biomass PV Wind

[]

of

ara

ble

land

in E

U 2

7

Ludw

ig-B

oumllko

w-S

yste

mte

chni

kG

mbH

(LB

ST)

201

4-1

0-17

Land cover ~1Land cover ~30Land cover ~99

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 10: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical potential for renewable electricity in Germany (conservative approach)

10

Source LBST for the German Mobility and Fuels Strategy (MFS)

EE-Stromerzeugung1990

EE-Stromerzeugung2012

EE-Strompotenzial(technisch)

EE-StrompotenzialVerwendung

EE-Strom fuumlr Kraftstoff 465 TWha

Stromnachfrage 2012 535 TWha

Geothermie 0 TWha 1 TWha 15 TWha

Photovoltaik 0 TWha 26 TWha 284 TWha

Wind Offshore 0 TWha 1 TWha 280 TWha

Wind Onshore 0 TWha 51 TWha 390 TWha

Wasserkraft 20 TWha 22 TWha 25 TWha

0 TWha

200 TWha

400 TWha

600 TWha

800 TWha

1000 TWha

1200 TWhaEE

Str

om

erze

ugu

ng

lt

lt

asymp 1000 TWhaasymp 100 TWhaasymp 20 TWha

MK

S 0

80

52

01

4

4320 PJa

2160 PJa

3600 PJa

2880 PJa

720 PJa

1440 PJa

0 PJa

Potential 465 TWhela (1674 PJela) renewable

electricity for transporation

Electricity consumption

535 TWha (1271 PJa)

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 11: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

Scen 1 Scen 2 Scen 3

2010 2050

Methane in transport

H2 in transport

Electricity (direct) intransportOther sectors

TWh a

(Industrie Haushalte )

CNG LNG

without PtCH4

CNG LNG with

PtCH4 RE PtCH4 + FCEVs

The scenarios exclusively explored road transport and inland navigation

Fueldrivetrain choices and fuel demand ndash 3 scenarios

Transportation demand in Germany Traffic Prognosis 2030 Technical renewable electricity potential in Germany ~1000 TWha

11

Source MFS PtG study (2014 w VP2030)

Road transport +

inland shipping

Technical RE potential Germany

CNG PtCH4 BEV+ PtH2

Table 1 Energy carrier shares of mileage (passenger cars) or transport

performances (HDVs and inland vessels) in the scenarios

Scenario 1 lsquoCNG LNG

without RE PtCH4rsquo

Scenario 2 lsquoCNG LNG

with RE PtCH4rsquo

Scenario 3 lsquoRE PtCH4 +

fuel cell vehicles

2050 2050 2050

Ca

r

Petroldiesel 467 433 274

CNG 288 321 100

H2 in fuel cell 57 57 359

Electricity from grid

189 189 267

HD

V1

Diesel 13 13 5

CNG LNG 78 78 25

H2 in fuel cell 5 5 62

Electricity from grid

5 5 7

Inla

nd

ves

se

l

Diesel 50 50 50

LNG 50 50 50

Table 2 PtG share in the scenarios

Scenario 1

lsquowithout RE PtCH4rsquo

Scenario 2 + 3

lsquowith RE PtCH4rsquo

2050 2050

Share RE PtCH4 of total H2

100 100

Share RE PtCH4 of total CNGLNG

0 100

1 The proportional transport performances in the HDV segments N1 N2 and N3 were included in the

scenario with separate assumptions these were aggregated in this table for simplification purposes Detailed information on the assumptions may be found in the MFS study lsquoRenewable energies in transportrsquo

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 12: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Key messages ndash fuel for thought

Blind spots result from focusing environmental assessments on greenhouse gases only Biodiversity water criteria pollutants social aspects etc

There is no single optimal fuel with regard to technology economics and ecology Diversification of fueldrivetrain portfolio in the midterm downsizing and electrification

Efficiency measures alone will not do for achieving greenhouse gas targets Renewables sufficiency

Societal question Where shall the valuable (but limited) biomass go to Several (cascading) uses

Renewable electricity and fuels derived from renewable electricity eg hydrogen synthetic methane or power-to-liquids provide both large quantity and high emission reduction potentials Accountability towards environmental targets must be given

There is a trade-off between fuels infrastructures and availability

ndash Renewable (drop-in) fuels use already established infrastructures ndash but limited availability (ie rising fuel production costs)

ndash Renewable power-to-gas (hydrogen methane) as well the direct use of renewable electricity both provide very high efficiency and availability potentials ndash but require a switch of infrastructures and drivetrains (ie investments)

12

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13

Page 13: Comparing greenhouse gas (GHG) emissions of …, 2014-10-17 Land cover: ~99% Land cover: ~30% Land cover: ~1% 31 March 2015 Ludwig-Bölkow-Systemtechnik GmbH LBST.de ludwig bölkow

LBSTde 31 March 2015 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Contact

Patrick Schmidt (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH Daimlerstr 15 85521 Munich Germany

T +49 (89) 608110-36 E PatrickSchmidtLBSTde W httpwwwlbstde

13